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I. Motivation
Modern-Era Retrospective Analysis for Research and

Applications, version 2 (MERRA-2) reanalysis
log particulate matter (PM) data on January 1, 2018

Fig. 1: log Dust Mass Concentration Fig. 2: log Black Carbon Concentration
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II. Review of Spatio-Temporal Geostatistics



5 / 57II. Review of Spatio-Temporal Geostatistics:
Univariate Spatio-Temporal Random Fields

Consider a real-valued spatio-temporal random field

Y (s,t ), (s,t ) ∈ ℝd ×ℝ,

where (s,t ) is the spatio-temporal location.

Suppose thatY (s,t ) is comprised of a deterministic and a
random component, i.e.,

Y (s,t ) = `(s,t ) + Z (s,t ),

where `(·) is a trend function, and Z (·) a zero mean
spatio-temporal random field.
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Spatio-Temporal Covariance Functions

Assuming Z (·) is a zero-mean Gaussian spatio-temporal random
field, then Z (·) is completely characterized by its spatio-temporal
covariance function

C (s1,s2; t1,t2) = cov {Z (s1,t1),Z (s2,t2)} .

A valid spatio-temporal covariance function ensures that the
resulting spatio-temporal covariance matrix of the n-dimensional
vector Z = {Z (s1,t1), . . . ,Z (sn ,tn)}> is positive definite, i.e., for
any n ∈ ℤ+, for any finite set of points (s1,t1), . . . , (sn ,tn), and for
any vector 𝝀 ∈ ℝn , we have 𝝀>𝚺𝝀 > 0, where 𝚺 is an n × n matrix,
and n is the number of spatio-temporal locations.
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Properties of Spatio-Temporal Covariance Functions

I (weakly) stationary: C (s1,s2; t1,t2) simplifies to C (h,u),
where h = s1 − s2 and u = t1 − t2

I isotropy: C (s1,s2; t1,t2) further simplifies to C (‖h‖, |u |),
where ‖h‖ = ‖s1 − s2‖ and |u | = |t1 − t2 |

I space-time separability: C (s1,s2; t1,t2) = C S (s1,s2)CT (t1,t2),
where C S (s1,s2) is a purely spatial covariance function and
CT (t1,t2) is a purely temporal covariance function

I full symmetry: C (s1,s2; t1,t2) = C (s1,s2; t2,t1)
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Kriging

Let Z (s0,t0) be the unknown value at an unobserved
spatio-temporal location s0 ∈ ℝd and t0 ∈ ℝ.

Under the squared-error loss criterion, the best linear unbiased
predictor of Z (s0,t0) given Z = {Z (s1,t1), . . . ,Z (sn ,tn)}> is the
simple kriging predictor

Ẑ (s0,t0) = E {Z (s0,t0) |Z (s1,t1), . . . ,Z (sn ,tn)}

with the closed form

Ẑ (s0,t0) = 𝚫>
0 𝚺

−1Z,

where 𝚫0 = {C (s0,s1; t0,t1),C (s0,s2; t0,t2), . . . ,C (s0,sn ; t0,tn)}>.
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Multivariate Spatio-Temporal Random Fields

Consider a spatio-temporal random field

Y(s,t ) =
{
Y1(s,t ), . . . ,Yp (s,t )

}>
,

such that at each spatial location s ∈ ℝd ,d ≥ 1, and at each time
t ∈ ℝ, there are p variables.

Assume that Y(s,t ) can be decomposed into a sum of a
deterministic and a random component, i.e.,

Y(s,t ) = 𝝁(s,t ) + Z(s,t ),

where 𝝁(·) is a trend function, and Z(·) a zero mean multivariate
spatio-temporal Gaussian random field with stationary
cross-covariance function

Ci j (h,u) = cov
{
Zi (s,t ),Z j (s + h,t + u)

}
.
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Properties of Spatio-Temporal Cross-Covariance
Functions

I (weakly) stationary: Ci j (s1,s2; t1,t2) simplifies to Ci j (h,u),
where h = s1 − s2 and u = t1 − t2

I isotropy: Ci j (s1,s2; t1,t2) further simplifies to Ci j (‖h‖, |u |),
where ‖h‖ = ‖s1 − s2‖ and |u | = |t1 − t2 |

I space-time separability:
Ci j (s1,s2; t1,t2) = C Si j (s1,s2)CTi j (t1,t2), where C S (s1,s2) is a
purely spatial covariance function and CT (t1,t2) is a purely
temporal covariance function

I full symmetry: Ci j (s1,s2; t1,t2) = Ci j (s1,s2; t2,t1)
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Cokriging

Let Z(s0,t0) be the vector of unknown values at an unobserved
spatio-temporal location s0 ∈ ℝd and t0 ∈ ℝ.

Under the squared-error loss criterion, the best linear unbiased
predictor of Z(s0,t0) given Z = {Z(s1,t1)>, . . . ,Z(sn ,tn)>}> is the
simple cokriging predictor

Ẑ(s0,t0) = E {Z(s0,t0) |Z(s1,t1), . . . ,Z(sn ,tn)}

with the closed form

Ẑ(s0,t0) = 𝚫>
0 𝚺

−1Z,

where 𝚫0 = {C(s0,s1; t0,t1),C(s0,s2; t0,t2), . . . ,C(s0,sn ; t0,tn)}>.
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III. The Lagrangian Framework
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III. The Lagrangian Framework: Review
Waymire et al. (1987) defined a process

Z (s,t ) = Z̃ (s − vt )

with spatio-temporal stationary covariance function

C (h,u) = C S (h − vu)

and called it the frozen field. Here v is called the advection
velocity vector.

Cox and Isham (1988) replaced the constant velocity with a
random velocity, V ∈ ℝd , resulting in a spatio-temporal
covariance function model of the form

C (h,u) = EV
{
C S (h −Vu)

}
.

We call this the non-frozen field model.
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III. The Lagrangian Framework: Review
Covariance functions modeling

Z (s,t ) = Z̃ (s − vt )
are termed “spatio-temporal covariance functions under the
Lagrangian framework".

Fig. 3: Lagrangian Reference Frame (Gräler et al.,
2012).

Fig. 4: Wide-angle photographs of the sky taken at 10
min intervals in Kungsbacka, Sweden on 2018-05-25. Read
left to right and top to bottom. The clouds move from the
lower right to the upper left (Gingsjoö, 2018).
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III. The Lagrangian Framework: Contribution

The frozen field model was used to model waves, solar
irradiance, cloud cover data, spread of diseases, and wind.

A survey of existing literature suggests that there is no detailed
Lagrangian formulation in the nonstationary and multivariate
arena.

Hence, we took significant strides towards developing and
unifying the modeling of transport datasets using specialized
covariance functions under the Lagrangian framework.
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IV. The Univariate Nonstationary Extension
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IV. Univariate Nonstationary Extension: Main Theorem

Theorem 1

Let V be a random vector on ℝd . If C S (s1,s2) is a valid purely spatial
nonstationary covariance function on ℝd , then,

C (s1,s2; t1,t2) = EV
{
C S (s1 −Vt1,s2 −Vt2)

}
for s1,s2 ∈ ℝd and t1,t2 ∈ ℝ, is a valid spatio-temporal nonstationary
covariance function on ℝd ×ℝ provided that the expectation exists.
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IV. Univariate Nonstationary Extension: Example 1

Spatially Varying Parameters Model (Paciorek & Schervish, 2006)

C S (s1,s2) = 𝜎(s1,s2)Ma

[{
(s1 − s2)>D(s1,s2)−1(s1 − s2)

}1/2]
,

Here Ma is the univariate Matérn stationary correlation with
smoothness parameter a > 0, i.e., Ma (h) = 21−a

Γ(a) (‖h‖)
a Ka (‖h‖),

𝜎(s1,s2) is the spatially varying variance parameter, and D(s1,s2)
is a positive definite matrix which serves as the spatially varying
scale parameter.

Lagrangian Spatio-Temporal Spatially Varying Parameters Model

C (s1,s2; t1,t2) = EV

{
𝜎(s1 −Vt1,s2 −Vt2)Ma

( [
{s1 − s2 −V(t1 − t2)}>

×D(s1 −Vt1,s2 −Vt2)−1 {s1 − s2 −V(t1 − t2)}
]1/2 )}
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IV. Univariate Nonstationary Extension: Example 1
Lagrangian Spatio-Temporal Spatially Varying Parameters Model

Fig. 5: Simulations on the unit square with V ∼ Nd (𝝁V,𝚺V).
A: 𝝁V = (0,0)>, B: 𝝁V = (0.1,0.1)>
I: 𝚺V = 0.001

(
1 0
0 1

)
, II: 𝚺V = 0.1

(
1 0
0 1

)
, III: 𝚺V =

(
1 0
0 1

)
.
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IV. Univariate Nonstationary Extension: Example 1

Lagrangian Spatio-Temporal Spatially Varying Parameters Model

Fig. 6: Heatmaps of C (s1,s2; t1,t2) observed at two reference locations
marked with “×" when V ∼ Nd (𝝁V,𝚺V) with 𝝁V = (0.1,0.1)> and
𝚺V = 0.001

(
1 0
0 1

)
.
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IV. Univariate Nonstationary Extension: Example 2

Deformation Model

C S (s1,s2) = C̃ S {‖f (s1) − f (s2)‖} ,

where C̃ S (·) is a valid purely spatial stationary covariance
function on ℝd and f : ℝd → ℝd represents deterministic
non-linear smooth bijective function of the original space onto
the deformed space.

Lagrangian Spatio-Temporal Deformation Model

C (s1,s2; t1,t2) = EV
[
C̃ S {‖f (s1 −Vt1) − f (s2 −Vt2)‖}

]
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IV. Univariate Nonstationary Extension: Example 2
Lagrangian Spatio-Temporal Deformation Model

Fig. 7: Simulations on the unit square with V ∼ Nd (𝝁V,𝚺V).
A: 𝝁V = (0,0)>, B: 𝝁V = (0.1,0.1)>
I: 𝚺V = 0.001

(
1 0
0 1

)
, II: 𝚺V = 0.1

(
1 0
0 1

)
, III: 𝚺V =

(
1 0
0 1

)
.
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IV. Univariate Nonstationary Extension: Example 2

Lagrangian Spatio-Temporal Deformation Model

Fig. 8: Heatmaps of C (s1,s2; t1,t2) observed at two reference locations
marked with “×" when V ∼ Nd (𝝁V,𝚺V) with 𝝁V = (0.1,0.1)> and
𝚺V = 0.001

(
1 0
0 1

)
.
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Two-Step Maximum Likelihood Estimation

Deformation Models

To estimate: f (·), purely spatial parameters of C̃ S (·), advection
velocity parameters

Spatially Varying Parameters Models

To estimate: spatially varying parameters and advection velocity
parameters

Approach: Two-step maximum likelihood estimation with partial
warps parameterization of the thin-plate splines to model the
nonstationary parameters
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Maximum Likelihood Estimation

Suppose Z =
{
Z (s1,t1),Z (s2,t2), . . . ,Z (sn ,tn)

}> is a zero mean
observation vector where n ∈ ℤ+ is the total number of
space-time locations. Inference is performed through maximizing
the log-likelihood

l (𝚯;Z) = −n
2
log(2𝜋) − 1

2
log |𝚺(𝚯) | − 1

2
Z>𝚺(𝚯)−1Z

with respect to all the parameters collected in 𝚯 ∈ ℝq .

Here 𝚺(𝚯) is the n × n covariance matrix formed by a parametric
spatio-temporal nonstationary covariance function.
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Likelihood Approximations in the Temporal Domain

The log-likelihood function can be approximated as follows:

l (𝚯;Z1, . . . ,ZT ) ≈ l (𝚯;Z1,t∗) +
T∑︁

j=t∗+1
l (𝚯;Z j |Z j−t∗,j−1),

where Za,b =
(
Z>
a , . . . ,Z

>
b

)>
∈ ℝN t∗ , for a < b , and t ∗ specifies the

number of consecutive temporal locations included in the
conditional distribution and l (𝚯;Z j |Z j−t∗,j−1) is the
log-likelihood function based only on the vector of space-time
observations Z j−t∗,j−1 =

(
Z>
j−t∗ , . . . ,Z

>
j−1

)>. Here

Zt = {Z (s1,t ), . . . ,Z (sN ,t )}> ∈ ℝN , for t = 0, . . . ,T − 1, N and T
are the number of spatial and temporal locations, respectively,
and n = N ×T .
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IV. Univariate Nonstationary Extension: Application
Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2) reanalysis hourly

log PM2.5 data on January 2017

Fig. 9: log Dust Mass Concentration Residuals
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IV. Univariate Nonstationary Extension: Application

We fit six dierent spatio-temporal covariance functions with
Matérn spatial margins.
I M1: Non-frozen Lagrangian spatio-temporal stationary

covariance
I M2: Non-frozen Lagrangian spatio-temporal spatially

varying parameters model
I M3: Non-frozen Lagrangian spatio-temporal deformation

model
I M4: Non-Lagrangian spatio-temporal stationary covariance
I M5: Non-Lagrangian spatio-temporal nonstationary model I
I M6: Non-Lagrangian spatio-temporal nonstationary model II
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IV. Univariate Nonstationary Extension: Application

Table 1: A summary of the models fitted to the log PM2.5 residuals and
their corresponding AIC, BIC, and MSE. The lower the values, the
better. The best scores are in bold. The number of parameters
(NumParams) are also reported.

Model NumParams AIC BIC MSE

M1 (S) 8 −597,266 −597,179 0.209
M2 (NS) 38 −602,736 −602,430 0.208
M3 (NS) 28 −607,148 −606,733 0.207
M4 (S) 4 −591,474 −591,430 0.213
M5 (NS) 34 −595,644 −595,272 0.211
M6 (NS) 44 −596,082 −595,601 0.211

M3: Non-frozen Lagrangian spatio-temporal deformation model
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Study

Lagrangian vs. Non-Lagrangian Stationary Models

When V ∼ Nd (𝝁V,𝚺V) and C S is the stationary squared
exponential covariance function,

C (h,u) = 1√
|Id+𝚺Vu2 |

exp
{
−a

(
h − 𝝁Vu

)> (
Id + 𝚺Vu2

)−1 (h − 𝝁Vu
)}

,

where a > 0 is a scale parameter in space and 𝝁V and 𝚺V are the
Lagrangian parameters (Schlather, 2010).
When 𝝁V = 0 and 𝚺V = 𝜎2

VId , 𝜎
2
V > 0, the Lagrangian model

above reduces to

C (h,u) = 1

(1 + 𝜎2
Vu

2)d/2
exp

{
− a‖h‖2

1 + 𝜎2
Vu

2

}
,

which is a spatio-temporal isotropic covariance function under
the Gneiting class (Gneiting, 2002).
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Study

Lagrangian vs. Non-Lagrangian Stationary Models
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Fig. 10: Values of the non-frozen Lagrangian covariance model for
𝜌V = 0,0.1,0.5, and 0.9, at temporal lags u = 1,2, and 3, at every h = (hx ,hy )>
such that ‖h‖2 = 1. Note that 𝜌V = 0 (black) corresponds to the
non-Lagrangian model.
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Study

Lagrangian vs. Non-Lagrangian Nonstationary Models

The Loss of Eciency (LOE) and Misspecification of the Mean
Square Error (MOM) at space-time location (s,t ) are given by:

LOE(s,t ) = Etr ,m (s,t )
Etr (s,t )

− 1 and MOM(s,t ) = Em (s,t )
Etr ,m (s,t )

− 1,

where Etr (s,t ) and Em (s,t ) are the mean square errors of the
predictors under the true, tr , and misspecified, m, models,
respectively. Etr ,m (s,t ), on the other hand, is the mean square
error, with respect to the true model, of the predictor that is
derived from the misspecified model.
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Study

Lagrangian vs. Non-Lagrangian Nonstationary Models
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V. The Multivariate Nonstationary Extension
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Main Theorem

Theorem 2

Let V be a random vector on ℝd . If CS (s1,s2) is a valid purely spatial
matrix-valued nonstationary covariance function on ℝd ,
i.e., CS (s1,s2) = {C Si j (s1,s2)}

p
i ,j=1, then

C(s1,s2; t1,t2) = EV{CS (s1 −Vt1,s2 −Vt2)}

for s1,s2 ∈ ℝd and t1,t2 ∈ ℝ, is a valid spatio-temporal matrix-valued
nonstationary covariance function on ℝd ×ℝ provided that the
expectation exists.
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V. Multivariate Nonstationary Extension: Example 1
Bivariate Lagrangian Spatio-Temporal Spatially Varying

Parameters Model

Fig. 12: Bivariate simulations on the unit square with V ∼ Nd (𝝁V,𝚺V),
𝝁V = (0.1,0.1)> and 𝚺V = 0.001

(
1 0
0 1

)
at dierent values of the

correlation parameter 𝜌.
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V. Multivariate Nonstationary Extension: Example 2

Multivariate Deformation Model

Theorem 3

If C̃ Si j (s1 − s2) is a valid purely spatial stationary cross-covariance
function on ℝd , then

C Si j (s1,s2) = C̃ Si j
{
‖fi (s1) − f j (s2)‖

}
,

for s1,s2 ∈ ℝd , where fi , i = 1, . . . ,p , represent deterministic non-linear
smooth bijective functions of the geographical space onto the deformed
space, is a valid purely spatial nonstationary cross-covariance function
on ℝd .

Multivariate Lagrangian Spatio-Temporal Deformation Model

Ci j (s1,s2; t1,t2) = EV
[
C̃ Si j

{
‖fi (s1 −Vt1) − f j (s2 −Vt2)‖

} ]



38 / 57

V. Multivariate Nonstationary Extension: Example 2

Bivariate Lagrangian Spatio-Temporal Deformation Model

Fig. 13: Bivariate simulations on the unit square with V ∼ Nd (𝝁V,𝚺V),
𝝁V = (0.1,0.1)> and 𝚺V = 0.001

(
1 0
0 1

)
at dierent values of the

correlation parameter 𝜌.
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Example

Lagrangian Spatio-Temporal Linear Model of Coregionalization

Theorem 4

Let Vr , r = 1, . . . ,R, be random vectors on ℝd . If 𝜌r (h) is a valid
univariate stationary correlation function on ℝd , then

C(h,u) =
R∑︁
r=1

EVr {𝜌r (h −Vru)}Tr

is a valid spatio-temporal matrix-valued stationary cross-covariance
function on ℝd ×ℝ, for any 1 ≤ R ≤ p and Tr , r = 1, . . . ,R, are
positive semi-denite matrices.
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Example
Lagrangian Spatio-Temporal Linear Model of Coregionalization

C(h,u) =
R∑︁
r=1

EVr {𝜌r (h −Vru)}Tr

The model above is the resulting Lagrangian spatio-temporal
cross-covariance function of the multivariate spatio-temporal
process:

Z(s,t ) = AW(s,t ) = A[W1(s−V1t ),W2(s−V2t ), . . . ,WR (s−VRt )]>,

where A is p ×R matrix and the components of W(s,t ) ∈ ℝR are
independent but not identically distributed. Each componentWr

has a univariate Lagrangian spatio-temporal stationary
correlation function 𝜌r (h −Vru), r = 1, . . . ,R .



41 / 57

V. Multivariate Nonstationary Extension: Example 2
Lagrangian Spatio-Temporal Linear Model of Coregionalization

Fig. 14:
I: Z1 (s,t ) = 0.9W1 (s,t ) − 0.1W2 (s,t ) and Z2 (s,t ) = −0.6W1 (s,t ) + 0.4W2 (s,t ),
II: Z1 (s,t ) =W1 (s,t ) and Z2 (s,t ) =W2 (s,t ),
III: Z1 (s,t ) = 0.9W1 (s,t ) + 0.1W2 (s,t ) and Z2 (s,t ) = 0.6W1 (s,t ) + 0.4W2 (s,t ).
Here we have 𝝁W1

= (0.1,0.1)> and 𝝁W2
= (−0.1,−0.1)>.
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V. Multivariate Nonstationary Extension: Application

Regional Climate Model Output
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Fig. 15: Bivariate dataset of Genton and Kleiber (2015) with temporal
resolution of 92 days ( June to August), for the years 1982 − 1989.
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V. Multivariate Nonstationary Extension: Results

Table 2: In-sample (log-likelihood, AIC, and BIC) and out-of-sample scores.
The lower the AIC, BIC, and RMSE values, the better. The reverse is true for
the log likelihood. The best scores are in bold. For concise comparison, we
include the fit of three models in Genton and Kleiber (2015) and their
corresponding out-of-sample prediction scores.

Portion of Data Screened
Model Log likelihood AIC BIC 5% 10% 15% 20%

Sp
at
ia
l M1 (Nonstationary) 67,173 −134,218 −133,935 0.079 0.070 0.083 0.080

Nonstationary Parsimonious Matérn in Genton and Kleiber (2015) 67,242 −134,476 −134,446 0.077 0.073 0.078 0.072
Stationary Parsimonious Matérn in Genton and Kleiber (2015) 66,234 −132,456 −132,410 0.078 0.077 0.077 0.080

Stationary LMC in Genton and Kleiber (2015) 65,611 −131,208 −131,155 0.074 0.078 0.079 0.078

Sp
at
io
-T
em

po
ra
l

M2 (Stationary) 67,564 −135,110 −135,042 0.034 0.047 0.048 0.059
M3 (Nonstationary) 67,722 −135,508 −135,371 0.032 0.047 0.048 0.060
M4 (Stationary) 68,771 −137,520 −137,436 0.028 0.032 0.042 0.049

M5 (Nonstationary) 68,952 −137,864 −137,712 0.027 0.032 0.041 0.049
M6 (Stationary) 67,435 −134,854 −134,793 0.034 0.047 0.048 0.059

M7 (Nonstationary) 67,499 −134,674 −133,928 0.029 0.039 0.043 0.052
M8 (Stationary) 67,563 −135,098 −134,992 0.030 0.042 0.055 0.068

M9 (Nonstationary) 68,514 −136,826 −136,057 0.029 0.036 0.046 0.051

M5: Non-frozen Lagrangian spatio-temporal nonstationary LMC with multiple
advection velocity vectors
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VI. The Multivariate Stationary with Multiple Advections
Extension
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VI. Multiple Advections Extension: Main Theorem
Theorem 5

Let V11,V22, . . . ,Vpp be random vectors on ℝd . If CS (h) is a valid
purely spatial matrix-valued stationary cross-covariance function on ℝd

then
C(h; t1,t2) = EV[{C Si j (h −Vii t1 +V j j t2)}pi ,j=1],

where the expectation is taken with respect to the joint distribution of
V = (V>

11,V
>
22, . . . ,V

>
pp )>, is a valid matrix-valued spatio-temporal

cross-covariance function on ℝd ×ℝ provided that the expectation exists.

The validity can be established by considering

Z(s,t ) =
{
Z̃1(s −V11t ), . . . ,Z̃p (s −Vppt )

}>
,

such that Z̃(s) =
{
Z̃1(s), . . . ,Z̃p (s)

}> is a zero-mean multivariate
purely spatial random field and every component is transported
by dierent random advections Vii ∈ ℝd ,i = 1, . . . ,p .
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Example

Theorem 6
For p > 2, let V = (V>

11,V
>
22, . . . ,V

>
pp )> ∼ Npd (𝝁V,𝚺V). If CS (h) is a

matrix-valued normal scale-mixture cross-covariance function, then

Cii (h,u) =
C Sii {(h−e>(di−1) :(di ) 𝝁Vu)> (Id+e>(di−1) :(di )𝚺Vu2)−1 (h−e>(di−1) :(di ) 𝝁Vu) }

|Id+e>(di−1) :(di )𝚺Vu2 |1/2
,

where e(di−1) :(di ) is the sub-matrix of Ipd , comprised of its (di − 1)-th and (di )-th
rows, for i = 1, . . . ,p , and

Ci j (h; t1,t2) =
C Si j ( (h−Tẽ>𝝁V)> [Id−T{T>T+(ẽ>𝚺V)−1 }−1T> ] (h−Tẽ>𝝁V))

|I2d+(ẽ>𝚺V)T>T |1/2 ,

where T = (t1Id − t2Id ), ẽ = e{(di−1) :(di ) ,(d j−1) :(d j ) } , such that
e{(di−1) :(di ) ,(d j−1) :(d j ) } is the sub-matrix of Ipd comprised of its (di − 1)-th, (di )-th,
(d j − 1)-th, and (d j )-th rows, for i , j = 1, . . . ,p , i ≠ j .
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dierent distributional assumptions on V

Fig. 16: Bivariate simulations on the unit square with I: V11 = −0.9V22,
II: V11 and V22 are independent, and III: V11 = 0.9V22.
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VI. Multiple Advections Extension: Simulation Study

I M1: Univariate Lagrangian spatio-temporal model, i.e.,

Cii (h,u) =
𝜎2
ii√

|Id+𝚺Vii u
2 |
M{

(
h − 𝝁Vii

u
)> (

Id + 𝚺Viiu
2)−1 (h − 𝝁Vii

u
)
; aii , aii },

where M(h; a, a) is the univariate Matérn correlation with
spatial scale and smoothness parameters a and a,
respectively;

I M2: Bivariate Lagrangian spatio-temporal model with single
advection, i.e.,

Ci j (h,u) =
𝜌𝜎ii𝜎 j j√
|Id+𝚺Vu2 |

M{
(
h − 𝝁Vu

)> (
Id + 𝚺Vu2

)−1 (h − 𝝁Vu
)
; a, ai j };

I M3: Bivariate Lagrangian spatio-temporal model with
multiple advections in Theorem 6
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VI. Multiple Advections Extension: Simulation Study
Experiment 1 – Data: M3

Models: M1 vs. M3
0.
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Fig. 17: Boxplots of the MSEs under dierent assumptions on the joint
distribution of V11 and V22, namely, (a) V11 = 0.9V22, (b) V11 and V22 are
independent, and (c) V11 = −0.9V22, when M1 (red) and M3 (blue) are fitted
to data generated from M3 with dierent values of 𝜌.
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VI. Multiple Advections Extension: Simulation Study
Experiment 2 – Data: M3

Models: M2 vs. M3
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Fig. 18: Boxplots of the centered and scaled MLEs of the parameters of M2
when it is fitted to data generated from M3 under scenarios (d), in cyan, (e), in
orange, and (f), in purple, when 𝜌 = 0.6. Scenarios (d) and (f) represent the
highly positive and negative dependence between the corresponding
components of V11 and V22, respectively, while (e) establishes that V11 and
V22 are independent.
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VI. Multiple Advections Extension: Simulation Study

Experiment 2 – Data: M3
Models: M2 vs. M3
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Fig. 19: Boxplots of the MSEs under scenarios (d)-(f) when M2 (green) and
M3 (blue) are fitted to data generated from M3 at dierent values of 𝜌.
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VI. Multiple Advections Extension: Application

Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2) reanalysis

log PM2.5 residuals

Fig. 20: 880 hPa Fig. 21: 985 hPa



53 / 57

VI. Multiple Advections Extension: Application
We fit six dierent spatio-temporal cross-covariance functions, namely, M1-M3,
and

I M4: Bivariate Lagrangian spatio-temporal model with variable specific
multiple advections, i.e.,

Ci j {(h,h′i j ); t1,t2} = EṼ{C Si j (h −Vii t1 +V j j t2,h′i j −V′
ii t1 +V′

j j t2)},

where h′i j = s′ii − s′j j , for s
′
ii ,s

′
j j ∈ ℝd

′
, and the expectation is taken with

respect to the joint distribution of Ṽ = {(V>
11,V

′>
11), (V

>
22,V

′>
22))}

>;

I M5: Bivariate Lagrangian spatio-temporal LMC;

I M6: Bivariate non-Lagrangian fully symmetric Gneiting-Matérn, i.e.,

Ci j (h,u) =
𝜌𝜎ii𝜎 j j

𝛼 |u |2b + 1
M

{
h

(𝛼 |u |2b + 1)b/2
; a, ai j

}
,

where 𝛼 > 0, b ∈ (0,1], and b ∈ [0,1] are the temporal range and
smoothness, and space-time nonseparability parameters, respectively.
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VI. Multiple Advections Extension: Results

Table 3: In-sample (log-likelihood, AIC∗, and BIC∗) and out-of-sample (MSE)
scores. The lower the values, the better. The best scores are given in bold.

In-Sample Out-of-Sample Computation
Model log-likelihood AIC∗ BIC∗ MSE NumParams Time (secs)

M1 461,825 −923,614 −923,439 0.0521 18 10,857
M2 479,159 −958,290 −958,156 0.0546 14 13,446
M3 484,070 −968,094 −967,873 0.0516 23 68,784
M4 484,150 −968,210 −967,777 0.0514 45 227,444
M5 470,852 −941,658 −941,437 0.1602 23 15,059
M6 477,480 −954,936 −954,821 0.0601 12 8,391

M4: Bivariate Lagrangian spatio-temporal model with variable specific multiple
advections
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VI. Multiple Advections Extension: Results
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Fig. 22: Empirical and fitted bivariate distributions of the MERRA-2
simulated wind vectors (in m/s ).
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VII. Summary
I Developed the multivariate, nonstationary, and multiple

advections extensions of the covariance functions under the
Lagrangian framework

I Proposed three main theorems that provide more flexibility
and features designed to cover a wider range of transport
scenarios

I Proposed appropriate estimation procedures for models of
this class

I Demonstrated, through real and simulated datasets, the
merits of the proposed models

I Other avenues for research: Taylor’s hypothesis for
non-frozen nonstationary spatio-temporal random fields,
high performance implementation of the Lagrangian
spatio-temporal models in ExaGeoStat, and stochastic
partial dierential equations (SPDEs) extension
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