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I. Motivation
Modern-Era Retrospective Analysis for Research and

Applications, version 2 (MERRA-2) reanalysis
log particulate matter (PM) data on January 1, 2016

Fig. 1: Middle East Fig. 2: United States
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II. Preliminaries
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II. Preliminaries: Space-Time Geostatistics
I Suppose Z1 ∈ ℝn1 is a vector of measurements from n1

sampled space-time locations, i.e.,
Z1 = {Z (s1,t1), . . . ,Z (sn1 ,tn1)}>, where Z (s,t ) ∈ ℝ is the
measurement at sampled space-time location (s,t ) ∈ ℝd ×ℝ.

I Suppose Z2 ∈ ℝn2 is a vector of missing measurements at n2
unsampled space-time locations, i.e.,
Z2 = {Z (s̃1, t̃1), . . . ,Z (s̃n2 , t̃n2)}>, where Z (s̃, t̃ ) ∈ ℝ is the
missing measurement at unsampled space-time location
(s̃, t̃ ) ∈ ℝd ×ℝ.

I Suppose Z1 and Z2 are jointly Gaussian, i.e.,[
Z1

Z2

]
∼ Nn1+n2

( [
𝝁1
𝝁2

]
,

[
𝚺11 𝚺12

𝚺21 𝚺22

] )
, (1)

where 𝝁1 ∈ ℝn1 and 𝝁2 ∈ ℝn2 are the mean vectors of Z1 and
Z2, respectively, 𝚺11 and 𝚺22 are the covariance matrices of
Z1 and Z2, respectively, and 𝚺12 = 𝚺>

21 is the
cross-covariance matrix of Z1 and Z2.
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II. Preliminaries: Space-Time Geostatistics
I Prediction for Z2 can be performed using the concept of

conditional distribution of Gaussian processes, i.e.,

Z2 |Z1 ∼ Nn2{𝝁2 + 𝚺21𝚺
−1
11 (Z1 − 𝝁1),𝚺22 − 𝚺21𝚺

−1
11𝚺12}. (2)

This means that the best prediction for the missing
measurements vector Z2, denoted Ẑ2, is

Ẑ2 = 𝝁2 + 𝚺21𝚺
−1
11 (Z1 − 𝝁1). (3)

I Prediction relies on the mean vectors and covariance
matrices.

I In practice, mean vectors and covariance matrices are
estimated from the given measurements, Z1.

I This is done by choosing and fitting a parametric mean
function and a parametric covariance function to the data.
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II. Preliminaries: Space-Time Geostatistics

I Suppose 𝝁1 = 𝝁2 = 0.

I To model the covariance matrices 𝚺11, 𝚺22, and 𝚺12, we
need a parametric space-time covariance function, denoted
C (s1,s2; t1,t2 |𝜽), such that

𝚺11(𝜽) = {C (si ,s j ; ti ,t j |𝜽)}n1i ,j=1,
𝚺22(𝜽) = {C (s̃i , s̃ j ; t̃i , t̃ j |𝜽)}n2i ,j=1, and
𝚺12(𝜽) = [{C (si , s̃ j ; ti , t̃ j |𝜽)}n1i=1]

n2
j=1.

I C (s1,s2; t1,t2 |𝜽) describes the strength of dependence of the
measurements at any two space-time locations (s1,t1) and
(s2,t2).
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II. Preliminaries: Space-Time Geostatistics
I A popular space-time covariance function proposed in

Gneiting (2002) has the form:

C (h,u |𝜽) = 𝜎2

|u |2𝛼/at + 1
M𝜈

{
‖h‖/as

( |u |2𝛼/at + 1)𝛽/2

}
,

where h = s1 − s2 and u = t1 − t2, M𝜈 is the univariate Matérn
correlation function with parameter vector
𝜽 = (𝜎2,as , 𝜈,at ,𝛼, 𝛽 )> ∈ ℝ6, such that 𝜎2 > 0 is the variance
parameter, 𝜈 > 0 and 𝛼 ∈ (0,1] are the smoothness
parameters in space and time, respectively, as ,at > 0 are the
range parameters in space and time, respectively, and
𝛽 ∈ [0,1] is the space-time interaction parameter.

I When 𝛽 = 0, separable model

I When 𝛽 > 0, nonseparable model
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II. Preliminaries: Space-Time Geostatistics
Simulated space-time realizations

from the space-time covariance function model

Fig. 3: Nonseparable Fig. 4: Separable
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II. Preliminaries: Spatio-Temporal Geostatistics

Gaussian log-likelihood function

l (𝜽) = −n
2
log(2𝜋) − 1

2
log |𝚺(𝜽) | − 1

2
Z>𝚺(𝜽)−1Z,

Here |𝚺(𝜽) | is the determinant of 𝚺(𝜽).

The grand challenge in large-scale Gaussian geostatistical
modeling lies in the inversion of 𝚺(𝜽).
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II. Preliminaries: The ExaGeoStat Software

Fig. 5: The ExaGeoStat software layers for geostatistics applications.
Source: Huang et al. (2021)



12 / 33II. Preliminaries: State-of-the-Art Dense Linear Algebra
Libraries

Data layout formats

Fig. 6: LAPACK: Column-major
data layout format.

Fig. 7: Chameleon: Tile data
layout format.
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II. Preliminaries: Directed Acyclic Graph (DAG)

Fig. 8: An example of task-based DAG to perform Cholesky
factorization of 4-tiles by 4-tiles matrix.
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II. Preliminaries: Particle Swarm Optimization

Fig. 9: Iteration 0 Fig. 10: Iteration N

PSO-based MLE optimization of a univariate purely spatial
covariance function.
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III. Contributions
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III. Contributions

1. Implementation of high-performance space-time model on
large-scale systems

2. Visualization of space-time random fields generated by the
high-performance implementation

3. Incorporation of the PSO algorithm to the MLE operation to
utilize the execution performance on distributed
environments

4. Illustration of benefits of flexible vs. simple space-time model
via large scale space-time experiments

5. Application to air pollution datasets from the Middle East
and US



17 / 33

IV. The Proposed Two-Level Parallelization Framework
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IV. Proposed: Parallel Optimization Strategy

I MPI_COMM_WORLD: MPI default communicator
I MPI_Comm_split: partition the default communicator into

disjoint subgroups associated with di�erent
sub-communicators

I PPSwarm algorithm

We split the default communicator into a set of
sub-communicators where each can be used to evaluate a single

log-likelihood function solution.
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IV. Proposed: Framework
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Fig. 11: Testcase using 32 nodes and 8 MPI sub-communicators. Each
sub-communicator includes 4 nodes that estimate the log-likelihood
function with a certain set of parameters in parallel using the StarPU
runtime system.
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V. Performance Results & Analysis
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V. Performance Results & Analysis

I Synthetic data from the space-time model with
𝛽 ∈ {0.1,0.5,1}
I 400 spatial locations
I 100 temporal locations
I 40,000 × 40,000 covariance matrix size

I Real data of particulate matter
I 550 spatial locations
I 730 temporal locations
I 401,500 × 401,500 covariance matrix size

I The performance is tested on an Intel-based Cray XC40
system with 6,174 compute nodes, each of which has two
16-core Intel Haswell CPUs at 2.30 GHz and 128 GB of
memory.

I All the experiments were conducted on the whole number of
cores with di�erent nodes.
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V. Performance Results & Analysis: Synthetic Data
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Fig. 12: Boxplots of the prediction errors when fitting a separable and
nonseparable model on space-time data with varying degrees of
space-time interactions. Weak, moderate, and strong space-time
interactions are represented by 𝛽 = 0.1,0.5, and 1, respectively.
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V. Performance Results & Analysis: Synthetic Data
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Fig. 13: Boxplots of parameter estimates under varying degrees of
space-time dependence. The true parameters are highlighted in red.
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V. Performance Results & Analysis: Real Data

Fig. 14: Visualization of the log PM2.5 dataset after space-time mean
removal at the first six time points in 2016 over Saudi Arabia.
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V. Performance Results & Analysis: Real Data

Fig. 15: Visualization of the log PM2.5 dataset after space-time mean
removal at four hour intervals on January 1, 2016 over the Midwest US.
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V. Performance Results & Analysis: Real Data

Table 1: A summary of the estimated parameters of the nonseparable (NS) and
separable (S) models and their corresponding errors (MSPE) and prediction
uncertainty (PU) for the Saudi Arabia and US datasets. MSPE1 and PU1
correspond to Testing Dataset 1, while MSPE2 and PU2 point to Testing
Dataset 2. The best model reports the lower MSPE and PU.

Model 𝜎̂2 âs 𝜈 ât 𝛼̂ 𝛽 MSPE1 / PU1 MSPE2 / PU2

Saudi Arabia
NS 1.29 1.34 2.15 1.12 0.14 0.75 0.0017/76 1.08/875
S 2.61 1.27 2.15 2.04 0.03 0 0.0018/78 1.14/1066

US
NS 0.47 1.33 1.12 6.77 0.72 0.14 0.0028/155 0.05/322
S 2.12 1.54 1.47 7.99 0.48 0 0.0031/134 0.06/1118
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V. Performance Results & Analysis: Real Data
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Fig. 16: Boxplots of the prediction errors for the separable (S) and
nonseparable (NS) models in the real data pseudo cross-validation
study.
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V. Performance Results & Analysis: Real Data

(a) 128 nodes. (b) 256 nodes.

(c) 512 nodes. (d) 1024 nodes.

Fig. 17: Performance of a single MLE optimization step using di�erent
number of nodes on Shaheen-II Cray XC40 Supercomputer.
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V. Performance Results & Analysis: Real Data
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(a) One-level parallelization.
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(b) Two-level parallelization.

Fig. 18: Performance of one MLE optimization step using single and n
MPI communicators on Shaheen-II Cray XC40 Supercomputers. In (b)
x MPI sub-communicators is used where x is tuned for performance.
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V. Performance Results & Analysis: Real Data

Fig. 19: One-level versus two-level MLE parallelization performance
using 1024 nodes on Shaheen-II Cray XC40 system.
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V. Performance Results & Analysis: Real Data
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(a) One-level parallelization.
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(b) Two-level parallelization.

Fig. 20: Time-to-solution of full MLE operation using 100 optimization
iterations on Shaheen-II Cray XC40 system. In (b), we tune x MPI
sub-communicators for performance.
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VI. Summary
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VI. Summary
I Proposed a two-level parallelization framework of

geostatistical space-time modeling
I Upper level: MPI sub-communicators perform independent

log-likelihood function evaluation with di�erent sets of
parameters via PPSO algorithm

I Inner level: task-based parallel technique is used to perform
linear solver operations on a given set of nodes representing
a single MPI sub-communicator

I Demonstrated, through synthetic and real datasets, the
merits of the proposed implementation

I Achieved high prediction accuracy with up to 757 TFLOPS/s
using 1024 nodes on the KAUST Shaheen-II Cray XC40
system (around 63% of the theoretical peak)

I Other avenues for research: tile low rank and
mixed-precision approximations to accelerate further the
modeling process
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