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Foreword

I first met Christine in the spring of 2002 when I visited GREMAQ at Université
Toulouse I, at her invitation to teach a short-course in spatial econometrics for grad-
uate students. June14of that yearwas also thefirstWorkshoponSpatialEconometrics
and Statistics, organized by Christine, with Noel Cressie giving a keynote presenta-
tion. At that workshop I met Cem Ertur, Julie Le Gallo, and Catherine Baumont from
Université de Bourgogne in Dijon who hosted the next workshop inMay 2003. I also
met Olivier Parent, a graduate student at the time, who drove from Strasbourg to
Toulouse to attend the conference. In the years following these first two workshops,
I had the good fortune to collaborate with many of the French researchers I met as
well as their graduate students and to attend seven more of the workshops. Over
the years, these workshops have been held in Avignon, Besançon, Dijon, Grenoble,
Orleans, Paris, Strasbourg, and Toulon, and have attracted an international audience
and several invited speakers from around theworld. The success of this workshop has
continued with the 19th workshop originally scheduled for May 2020 re-scheduled
to May 2021 in Nantes due to the Covid-19 outbreak. This is one important legacy
of Christine for those working in the areas of spatial statistics and econometrics.

This book contains five parts that reflect research areas in which Christine has
worked over the years. These include nonparametric statistics and econometrics,
quantiles and expectiles, spatial statistics and econometrics, compositional data anal-
ysis, and tools for empirical studies in economics and applications. So, spatial statis-
tics and econometrics reflects only one area of Christine’s past research efforts, but
the continuing success of the workshop is a wonderful example of her ability to bring
together researchers and promote collaboration.

In terms of collaboration, Christine has worked with nearly 50 co-authors during
the last 25 years, on publications appearing in prestigious journals such as Journal
of the American Statistical Association, Annals of Statistics, Econometric Theory,
Statistical Papers, Journal of Regional Science, Numerical Algorithms, Statistics &
Probability Letters, Statistical Methodology, Journal of Nonparametric Statistics,
and Computational Statistics. Her 2004 book Reproducing kernel Hilbert spaces in
probability and statistics co-authored with Alain Berlinet has received a great deal
of attention in the literature, as has her Econometric Theory article: Nonparametric
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vi Foreword

frontier estimation: a conditional quantile-based approach, co-authored with Yves
Aragon and Abdelaati Daouia.

This volume contains numerous contributions, some by those who have collab-
orated with Christine over the years, and we can all learn from these works. I have
collaborated with Christine and found her to be a fabulous person to work with
and have benefited from her scholarly expertise and insights. Christine is one of
only a handful of scholars whose interests span very theoretical statistical issues as
well as applied research that aims at tackling real-world problems. The contribu-
tions in this volume reflect that broad range of interests, so there is something for
everyone to enjoy. Christine’s past work and her ability to promote collaboration
among researchers have been an inspiration to us all. Let us hope she continues her
research and collaborative efforts for many years to come.

November 2020 James P. LeSage
Fields Endowed Chair
Texas State University

San Marcos, USA



Preface

Christine Thomas-Agnan became Senior Lecturer at Toulouse Capitole University
(UTC) in 1988 and Professor in 1994, after completing a doctoral thesis at theUniver-
sity of California, Los Angeles, and a PRAG teaching position at Toulouse Jean
Jaurès University. She founded and chaired the group STATISTIQUE—UT1 from
1994, when the faculty of Economics of UTCmoved to the building of “Manufacture
des Tabacs de Toulouse”. Currently, she heads the mathematics department at UTC.

Over her long and brilliant academic career, Christine Thomas-Agnan has worked
on a variety of topics in mathematical and applied statistics, including nonparametric
and semi-parametric inference, spatial statistics and econometrics, compositional
data analysis, market share regression models, and political economics statistical
models. Her work in these areas has found applications in a broad variety of fields,
including efficiency measurements of French postal services and Spanish electricity
distributors, optimal location of a new fire station in the surroundings of Toulouse,
explaining the patterns of regional unemployment and doctors’ prescribing in the
Midi-Pyrénées region, testing spatial dependence in air passenger flows, assessing
the relations between socioeconomic factors and nutritional diet in Vietnam, and
understanding the impact of the composition of media investments on automobile
sales in the French automobile market, to cite a few. She has published 5 books and
over 50 refereed works in top academic journals. She has been Chief Editor of the
Journal CSBIGS (Case Studies in Business, Industry and Government) since 2015,
and Member of the publications committee of the French Statistical Society. She has
also supervised 12 Ph.D. students and 5 Habilitation degrees (HDR).

Christine Thomas-Agnan is not only a gifted and inspirational researcher and
teacher but also a hard-working colleague with a fruitful and curious mind. She has
boundless and communicative energy that she puts at the service of the University,
her colleagues, co-authors, and students at all levels, especially her Ph.D. students.
Her enthusiasm and open-mindedness are greatly appreciated by all. Working with
her is an absolute pleasure for us, researchers and teachers in the statistics group,
and more generally in the mathematics department, as she facilitated a high-level
stimulating environment while maintaining a friendly and inviting demeanor that
makes us feel like family.

vii



viii Preface

The task of editing this volume was remarkably easy as the colleagues contacted
were so enthusiastic about contributing to this Festschrift by writing and/or editing a
research article in Christine’s honor. She had dozens of collaborators on an extraor-
dinary variety of research topics. As evidenced by the many tributes in this volume,
all colleagues who have had the chance to work with Christine praise her human and
scientific qualities.

The 35 articles in this volume are at the frontier of contemporary research in the
fields of statistics and econometrics. They testify to Christine’s numerous contribu-
tions in these fields at both theoretical and applied levels. Christine was first trained
as a specialist in reproducing kernel Hilbert space theory and its use in statistical
applications. The results she has established since her Ph.D. thesis were published in
2004 in a Springer book jointly with Alain Berlinet. In 1987, she started to explore
nonparametric regression by elegantly using spline and kernel smoothing. Then, in
1993, she oriented her research toward functional estimation under form constraints.
In the meantime, her intense work on nonparametric and semi-parametric modeling
led her to the active fields of quantile/expectile regression and dimension reduction
formultivariate response data. In 2002, she began to orient her research toward spatial
statistics and econometrics through collaborations she initiated with James P. LeSage
and Noel Cressie at the first spatial econometrics workshop she organized at UTC.
By adopting the mathematical rigor of statistics and benefiting from the subtlety
of econometrics, Christine has first generalized existing models to take into account
spatial autocorrelation, and investigatedMonte Carlo estimation ofMarkovianGaus-
sian fields, before moving to spatial point processes and their use to deal with spatial
homogeneity tests, cluster detection, and optimal location-allocation problems. Her
efforts have also focused on combining nonparametric methods with spatial statis-
tics to estimate, for instance, autocovariance functions not only of processes but
also of random fields, and to study the implications on kriging. Christine’s attention
was also directed toward the area of frontier and efficiency analysis in production
econometrics, with her influential 2005 Econometric Theory paper in this literature.
From 2011 to 2016, she has been the principal investigator of the interdisciplinary
ModULand project on the modeling of land use, a prestigious research grant of
the French National Research Agency. More recently, she has become interested in
compositional data analysis and market share regression models with a particular
attention to measuring the impact of covariates in spatial and compositional models.
Her recent research allows her to investigate new areas while integrating various
interdisciplinary components of her previous research.

Christine’s impressive research record should not, however, hide her immense
investment in education and services to the community and students. For more than
30 years, she has been heavily involved in the Master program of Econometrics and
Statistics at the faculty of Economics of UTC and more recently at Toulouse School
of Economics. Among other things, she created the statistical consultancy course
of the Master 2 in Statistics and Econometrics more than 20 years ago. This course
allows our students to develop their ability to confront concrete statistical problems,
posed by companies, under reassuring university supervision. Students were given
an invaluable opportunity to experience concrete and exciting projects.
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As she nears retirement, one might think that Christine would have less energy or
desire to invest in new areas or experience new things in her work, but nothing could
be further from the truth. In addition to assuming responsibility for the Master 1 in
Econometrics and Statistics at the Toulouse School of Economics, she has accepted
the direction of the mathematics department, which she manages with great initiative
and tact. She has also very recently accepted to supervise new doctoral students,
namely Lukas Dargel and Thibault Laurent, in two stimulating research programs
with applications in social sciences.

We would like to thank Christine Thomas-Agnan for being such an inspiring
figure in our professional and personal lives. We join our colleague James P. LeSage
in the hope that she will continue her excellent work for many years to come.

Thefive parts of this volume correspond to the topics thatChristine has contributed
much to. The contributions collected in each section answer important questions that
reflect varied theoretical and/or applied interests of their authors. They provide nice
examples of the new research ideas that are currently being developed. We expect
that everyone will find something interesting in this rich collection of papers.

The first part contains seven papers related to the active area of nonparametric
statistics and econometrics. Fadoua Balabdaoui and Piet Groeneboom elucidate the
open question of whether a profile least squares estimator in the monotone single
index model is

√
n convergent and asymptotically normal. Gérard Biau and Benoît

Cadre present a general framework for studying two widespread gradient boosting
algorithms from the perspective of functional optimization, and address the less-
discussed problem of their convergence as the number of iterations tends to infinity.
Sandrine Casanova and Eve Leconte introduce a novel nonparametric model-based
estimator for the conditional distribution function of a right censored response, which
is superior to its most known competitors in small domains. Eric Gautier suggests
endogenous selection models, which allow for instrument nonmonotonicity and are
based on nonparametric random coefficient indices. Camelia Goga gives a review
of applications of B-spline regression in a survey sampling framework and design-
based approach, including new properties of the (un)penalized estimators, and their
improved consistency rates. Hadrien Lorenzo and Jérôme Saracco propose three
computational devices to detect outliers in a single index regression model, when
conducting sliced inverse regression along with kernel smoothing of the link func-
tion. Jan Meis and Enno Mammen revisit the uncoupled isotonic regression problem
by improving the rate of convergence of the so-called minimumWasserstein decon-
volution estimator, for Lp-risks and for error distributions supported on a finite set
of points.

The second part also contains seven contributions that are dedicated to the topic
of (un)conditional quantiles and expectiles. The class of expectiles corresponds to a
least squares analogue of quantiles. CécileAdam and IrèneGijbels studymultivariate
partially linear expectile regression in which the nonlinear part is fitted using a local
polynomial approach, along with an optimal choice of the bandwidth parameter.
Delphine Blanke and Denis Bosq prove that, for estimating univariate quantiles, the
reciprocal of the piecewise linear interpolation at the midpoints of a sample distribu-
tion function strictly improves the MISE of the usual sample quantile function. Axel
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Bücher, Anouar El Ghouch, and Ingrid Van Keilegom propose a valid local linear
smoothing approach to iteratively estimate a semi-parametric single-index model
for conditional quantiles with right-censored data. Stéphane Girard, Gilles Stupfler,
and Antoine Usseglio-Carleve construct kernel estimators of extreme regression Lp-
quantiles, which encompass both families of expectiles and standard quantiles, and
develop their asymptotic theory for heavy-tailed conditional distributions.BaoHoang
Nguyen and Valentin Zelenyuk perform a robust frontier and efficiency analysis of
public hospitals in Queensland, Australia, by estimating both individual and aggre-
gate quantile-based efficiency scores. Davy Paindaveine and Joni Virta unravel the
behavior of extreme d-dimensional spatial quantiles under minimal conditions, in
a general setup for both population and sample multivariate distributions. Fabian
Otto-Sobotka, Radoslava Mirkov, Benjamin Hofner, and Thomas Kneib use shape-
constrained expectile regression in conjunction with a geoadditive model to provide
deeper insights into the behavior of gas flow within transmission networks.

The third part concerns spatial statistics and econometricswith eight contributions.
François Bachoc provides a review of the asymptotic theory for maximum likelihood
estimation of covariance parameters for Gaussian processes, under increasing and
fixed-domain asymptotics. Florent Bonneu and Lionel Cucala adapt spatial scan
methods, borrowed from local cluster detection, to test for global similarity between
two spatial point patterns. Hervé Cardot and Antonio Musolesi rely on the use of
additive models and conditional mixtures and on random forests to estimate the
variation along time of the spillover effects of spatial policies. Raja Chakir and Julie
Le Gallo review the current state of the literature on studies which account for spatial
autocorrelation in econometric land use models or in the environmental impacts
of land use. Noel Cressie and Christopher Wikle develop a modern hierarchical
statistical approach to modeling spatio-temporal data on regular or irregular spatial
lattices.VanHuyenDo,Thibault Laurent, andAnneVanhems implementwidely used
methods in the areal interpolation problem using R software, and provide practical
guidelines to concrete questions such as spatial scales, types of target variable, and
border incompatibility. Thibault Laurent and Paula Margaretic apply prediction of
spatial econometric models for areal data to model regional unemployment rates
taking into account local interactions. Mary Lai Salvaña and Marc Genton propose a
new estimation methodology for nonstationary covariance models of the Lagrangian
type, by modeling the second-order nonstationarity parameters via thin plate splines
and estimating all the parameters via two-step maximum likelihood estimation.

The fourth part contains six papers on the area of compositional data analysis that
Christine has also contributed to over the last years. Peter Filzmoser, Karel Hron,
and AlessandraMenafoglio present and discuss a log-ratio approach to distributional
modeling in a unifying framework for the discrete and the continuous distributional
data based on the theory of Bayes spaces. Built on ideas from the spatial Durbin
model, Tingting Huang, Gilbert Saporta, and Huiwen Wang propose and estimate a
newcompositional linearmodel for areal data by employing theorthonormal log-ratio
transformation and maximum likelihood method. Wilfredo Maldonado, Juan José
Egozcue, and Vera Pawlowsky-Glahn contribute to the modeling and compositional
analysis of exchange rate matrices and the corresponding no-arbitrage matrices, by
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considering the Special Drawing Rights and by studying the relative exchange rate
bubbles among the countries. Josep Antoni Martín-Fernández and Carles Barceló-
Vidal revisit the basic concepts and properties of log ratios, log contrasts, and
orthonormal coordinates for compositional data, and introduce a new approach that
includes both the log-ratio orthonormal coordinates and an auxiliary variable carrying
absolute information. Christoph Muehlmann, Kamila Fačevicová, Alžbčta Gardlo,
Hana Janečková, and Klaus Nordhausen review some basic methods of independent
component analysis and show how to apply such analysis to compositional data.
Michel Simioni, Huong Thi Trinh, Tuyen Thi Thanh Huynh, and Thao-Vy Vuong
explore the association between food sources and diet quality in Vietnam by making
use of recent advances in compositional data analysis.

The seven contributions collected in the last part provide useful tools for empir-
ical studies in economics and applied work. Bastien Bernela, Liliane Bonnal, and
Pascal Favard untangle the empirical reality of the phenomenon of geographical
mobility among students and young graduates in France. Christophe Bontemps and
Valérie Orozco show how the research process, from data collection to paper publica-
tion, could efficiently be reorganized to improve and promote reproducible research.
Olivier deMouzon, Thibault Laurent, andMichel Le Breton explore and estimate the
departure from the “OneMan,OneVote” principle in the context of political represen-
tation and its consequences for distributive politics. They also provide several applica-
tions of the Lorenz curve and the Gini and Dauer-Kelsay indices to the measurement
of malapportionment and disproportionality. Jonathan Haughton and Dominique
Haughton recommend and illustrate the use of cartograms as an effective comple-
ment to the more-traditional choropleth maps for conveying spatially distributed
statistical data. Jérôme Mariette, Madalina Olteanu, and Nathalie Vialaneix present
kernel and dissimilarity methods to perform exploratory analysis in the presence of
multiple sources of data or of multiple kernels describing different features of the
data. Finally, Alban Thomas develops and applies a generalized method of particle
nonlinear filtering to estimate a system of structural equations for agricultural crop
yield functions, when unobserved productivity depends on water availability that is
only partially observed.

Toulouse, France
January 2021

Abdelaati Daouia
Anne Ruiz-Gazen
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Profile Least Squares Estimators in the
Monotone Single Index Model

Fadoua Balabdaoui and Piet Groeneboom

Abstract We consider least squares estimators of the finite regression parameter α

in the single index regression model Y = ψ(αT X) + ε, where X is a d-dimensional
random vector, E(Y |X) = ψ(αT X), and ψ is a monotone. It has been suggested to
estimate α by a profile least squares estimator, minimizing

∑n
i=1(Yi − ψ(αT X i ))

2

over monotone ψ and α on the boundary Sd−1 of the unit ball. Although this sug-
gestion has been around for a long time, it is still unknown whether the estimate
is

√
n-convergent. We show that a profile least squares estimator, using the same

pointwise least squares estimator for fixed α, but using a different global sum of
squares, is

√
n-convergent and asymptotically normal. The difference between the

corresponding loss functions is studied and also a comparison with other methods is
given.

1 Introduction

Themonotone single indexmodel tries to predict a response from the linear combina-
tion of a finite number of parameters and a function linking this linear combination to
the response via a monotone link function ψ0 which is unknown. So, more formally,
we have the model

Y = ψ0(α
T
0 X) + ε,

where Y is a one-dimensional random variable, X = (X1, . . . , Xd)
T is a

d-dimensional random vector with distribution function G, ψ0 is monotone, and
ε is a one-dimensional random variable such that E[ε|X] = 0 G almost surely. For
identifiability, the regression parameter α0 is a vector of norm ‖α0‖2 = 1, where
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‖ · ‖2 denotes the Euclidean norm inRd , so α0 ∈ Sd−1, the unit (d − 1)-dimensional
sphere.

The ordinary profile least squares estimate of α0 is an M-estimate in two senses:
for fixed α, the least squares criterion

ψ �→ n−1
n∑

i=1

{
Yi − ψ(αT X i )

}2
(1)

is minimized for all monotone functions ψ (either decreasing or increasing) which
gives an α-dependent function ψ̂n,α , and the function

α �→ n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}2
(2)

is then minimized over α. This gives a profile least squares estimator α̂n of α0, which
we will call LSE in the sequel. Although this estimate of α0 has been known now
for a very long time (more than 30 years probably), it is not known whether it is√

n-convergent (under appropriate regularity conditions), let alone that we know its
asymptotic distribution. Also, simulation studies are rather inconclusive. For exam-
ple, it is conjectured in Tanaka (2008) on the basis of simulations that the rate of
convergence of α̂n is n9/20. Other simulation studies, presented in Balabdaoui et al.
(2019a), are also inconclusive. In that paper, it was also proved that an ordinary least
squares estimator (which ignores that the link function could be non-linear) is

√
n-

convergent and asymptotically normal under elliptic symmetry of the distribution
of the covariate X . Another linear least squares estimator of this type, where the
restriction on α is αT Snα = 1, Sn is the usual estimate of the covariance matrix of
the covariates, and a renormalization at the end is not needed (as it is in the just
mentioned linear least squares estimator) was studied in Balabdaoui et al. (2019b)
and was shown to have similar behavior. If this suggests that the profile LSE should
also be

√
n-consistent, the extended simulation study in Balabdaoui et al. (2019b)

shows that it is possible to find other estimates which exhibit better performance in
these circumstances.

An alternative way to estimate the regression vector is to minimize the criterion

α �→
∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

(3)

over α ∈ Sd−1, where ‖ · ‖ is the Euclidean norm. Note that this is the sum of d
squares. The rational behind minimizing (3) is the fact that the true index vector, α0,
satisfies the (population) score equation

E
{
(Y − ψ0(α

T
0 X))Xθ(αT

0 X)
} = 0, (4)
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where θ is any measurable and bounded function. This clearly follows from the
iterative law of expectations and the fact thatE{Y |αT

0 X} = ψ0(α
T
0 X). If the function

θ is taken to be the constant 1, then the goal is to find the minimizer of the Euclidean
norm of the empirical counterpart of the above score equation, after replacing the
unknown link function, ψ0, by its estimator ψ̂n,α .

We prove in Sect. 3 that this minimization procedure leads to a
√

n-consistent
and asymptotically normal estimator, which is a more precise and informative result
compared to what we know now about the LSE.. Using the well-known properties
of isotonic estimators, it is easily seen that the function (3) is piecewise constant
as a function of α, with finitely many values, so the minimum exists and is equal
to the infimum over α ∈ Sd−1. Notice that this estimator does not use any tuning
parameters, just like the LSE.

In Balabdaoui et al. (2019b), a similar Simple Score Estimator (SSE) α̂n was
defined as a point α ∈ Sd−1 where all components of the function

α �→ n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

cross zero. If the criterion function were continuous in α, this estimator would have
been the same as the least squares estimator, minimizing (3), with a minimum equal
to zero, but in the present case we cannot assume this because of the discontinuities
of the criterion function.

The definition of an estimator as a crossing of the d-dimensional vector 0 makes
it necessary to prove the existence of such an estimator, which we found to be a
rather non-trivial task. Defining our estimator directly as the minimizer of (3), so as
a least squares estimator, relieves us from the duty to prove its existence. Since our
estimator has the same limit distribution as the SSE, we refer to it here under the
same name.

A fundamental function in our treatment is the function ψα , defined as follows.

Definition 1 Let Sd−1 denote again the boundary of the unit ball in R
d . Then, for

each α ∈ Sd−1, the function ψα : R → R is defined as the nondecreasing function
which minimizes

ψ �→ E{Y − ψ(αT X)}2

over all nondecreasing functions ψ : R → R. The existence and uniqueness of the
function ψα follows, for example, from the results in Landers and Rogge (1981).

The function ψα coincides in a neighborhood of α0 with the ordinary conditional
expectation function ψ̃α

ψ̃α(u) = E
{
ψ0(α

T
0 X)|αT X = u

}
, u ∈ R; (5)
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see Balabdaoui et al. (2019b), Proposition 1. The general definition of ψα uses
conditioning on a σ -lattice, and ψα is also called a conditional 2-mean (see Landers
and Rogge 1981).

The importance of the function ψα arises from the fact that we can differentiate
this function w.r.t. α, in contrast with the least squares estimate ψ̂n,α , and that ψα

represents the least squares estimate of ψ0 in the underlying model for fixed α, if we
use αT x as the argument of the monotone link function.

It is also possible to introduce a tuning parameter and use an estimate of
d

du ψα(u)
∣
∣
u=αT X . This estimate is defined by

ψ̃ ′
n,h,α(u) = 1

h

∫

K

(
u − x

h

)

dψ̂n,α(x), (6)

where K is one of the usual kernels, symmetric around zero andwith support [−1, 1],
and h is a bandwidth of order n−1/7 for sample size n. For fixed α, the least squares
estimate ψ̂n,α is defined in the same way as above. Note that this estimate is rather
different from the derivative of a Nadaraya-Watson estimate which is also used in
this context and is in fact the derivative of a ratio of two kernel estimates. If we use
the Nadaraya-Watson estimate, we need in principle two tuning parameters, one for
the estimation of ψ0 and another one for the estimation of the derivative ψ ′

0.
Using the estimate (6) of the derivative, we now minimize

α �→
∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i ψ̃ ′

n,h,α(αT X i )

∥
∥
∥
∥
∥

2

(7)

instead of (3),where ‖ · ‖ is again theEuclidean norm.Themotivation for considering
such a minimization problem is very similar to the one given above for the SSE. The
only difference now is that the current approach allows us to take the function θ to
be equal to the derivative of ψ ′

0, which is replaced in the empirical version of the
population score in (4) by its estimator ψ̃ ′

n,h,α . A variant of this estimator was defined
in Balabdaoui et al. (2019b) and called the Efficient Score Estimator (ESE) there,
since, if the conditional variance var(Y |X = x) = σ 2, where σ 2 is independent of
the covariate X (the homoscedastic model), the estimate is efficient. As in the case
of the simple score estimator (SSE), the estimate was defined as a crossing of zero
estimate in Balabdaoui et al. (2019b) and not as a minimizer of (7). But the definition
as a minimizer of (7) produces an estimator that has the same limit distribution.

The qualification “efficient” is somewhat dubious, since the estimator is no longer
efficient if we do not have homoscedasticity. We give an example of that situation
in Sect. 5, where, in fact, the SSE has a smaller asymptotic variance than the ESE.
Nevertheless, to be consistent with our treatment in Balabdaoui et al. (2019b) we
will call the estimate, α̂n , minimizing (7), again the ESE.

Dropping the monotonicity constraint, we can also use as our estimator of the link
function a cubic spline ψ̂n,α , which is defined as the function minimizing
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n∑

i=1

{
ψ(αT X i ) − Yi

}2 + μ

∫ b

a
ψ ′′(x)2 dx, (8)

over the class of functions S2[a, b] of differentiable functions ψ with an absolutely
continuous first derivative, where

a = min
i

αT X i , b = max
i

αT X i ,

seeGreen andSilverman (1994), pp. 18 and 19,whereμ > 0 is the penalty parameter.
Using these estimators of the link function, the estimate α̂n of α0 is then found in
Kuchibhotla and Patra (2020) by using a (d − 1)-dimensional parameterization β

and a transformation S : β �→ S(β) = α, where S(β) belongs to the surface of the
unit sphere in Rd , and minimizing the criterion

β �→
n∑

i=1

{Yi − ψ̂S(β),μ(S(β)T X i )}2,

over β, where ψ̂S(β),μ minimizes (8) for fixed α = S(β).
Analogous to our approach above, we can skip the reparameterization and mini-

mize instead
∥
∥
∥
∥
∥

1

n

n∑

i=1

{
ψ̂n,α,μ(αT X i ) − Yi

}
X i ψ̃ ′

n,α,μ(u)
∣
∣
u=αT X i

∥
∥
∥
∥
∥

(9)

where ψ̃n,α,μ minimizes (8) for fixed α and ψ̃ ′
n,α,μ is its derivative. We call this

estimator the spline estimator.
We finally give simulation results for these different methods in Sect. 5, where,

apart from the comparison with the spline estimator, we make a comparison with
other estimators ofα0 not using themonotonicity constraint: the EffectiveDimension
Reduction (EDR) method, proposed in Hristache et al. (2001) and implemented in
the R package edr, the (refined) Mean Average conditional Variance Estimator
(MAVE) method, discussed in Xia (2006), and implemented in the R package MAVE,
and Estimation Function Method (EFM), discussed in Cui et al. (2011).

For reasons of space, the proofs of the statements of our paper are given in Bal-
abdaoui and Groeneboom (2020).

2 General Conditions and the Functions ψ̂n,α̂ and ψα̂

We give general conditions that we assume to hold in the remainder of the paper here
and give graphical comparisons of the functions ψ̂n,α and ψα , where ψα is defined
in Definition 1.
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Fig. 1 The loss functions LLSE (red, dashed) and L̂LSE
n (solid), where n = 104 and n = 105

Example 1 As an illustrative example, we take d = 2, ψ0(x) = x3, α0 = (1/
√
2,

1/
√
2)T , Yi = ψ0(α

T
0 Xi ) + εi , where the εi are i.i.d. standard normal random vari-

ables, independent of the X i , which are i.i.d. random vectors, consisting of two
independent Uniform(0, 1) random variables. In this case, the conditional expecta-
tion function (5) is a rather complicated function of α which we shall not give here
but can be computed by a computer package such as Mathematica or Maple. The
loss functions:

LLSE : α1 �→ E{Y − ψα(αT X)}2 and L̂LSE
n : α1 �→ n−1

n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}2

(10)

where the loss function L̂LSE
n is for sample sizes n = 10, 000 and n = 100, 000, and

α = (α1, α2)
T . For α1 ∈ [0, 1] and α2 equal to the positive root {1 − α2

1}1/2, we get
Fig. 1. The function LLSE has a minimum equal to 1 at α1 = 1/

√
2, and L̂LSE

n has a
minimum at a value very close to 1/

√
2 (furnishing the profile LSE α̂n), which gives

a visual evidence for consistency of the profile LSE.

In order to show the
√

n-consistency and asymptotic normality of the estimators
in the next sections, we now introduce some conditions, which correspond to those
in Balabdaoui et al. (2019b). We note that we do not need conditions on reparame-
terization.

(A1) X has a density w.r.t. Lebesguemeasure on its supportX , which is a convex set
X with a nonempty interior, and satisfies X ⊂ {x ∈ R

d : ‖x‖ ≤ R} for some
R > 0.

(A2) The function ψ0 is bounded on the set {u ∈ R : u = αT
0 x, x ∈ X }.

(A3) There exists δ > 0 such that the conditional expectation ψ̃α , defined by (5), is
nondecreasing on Iα = {u ∈ R : u = αT x, x ∈ X } and satisfies ψ̃α = ψα , so
minimizes
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∥
∥E

{
Y − ψ(αT X)

}
X

∥
∥2

,

over nondecreasing functions ψ , if ‖α − α0‖ ≤ δ.
(A4) Let a0 and b0 be the (finite) infimum and supremum of the interval {αT

0 x, x ∈
X }. Then ψ0 is continuously differentiable on (a0 − δR, a0 + δR), where R
and δ are as in Assumption A1 and A3.

(A5) The density g of X is differentiable and there exist strictly positive constants
c1 to c4 such that c1 ≤ g(x) ≤ c2 and c3 ≤ ∂

∂xi
g(x) ≤ c4 for x in the interior

of X .
(A6) There exists a c0 > 0 and M > 0 such that E{|Y |m |X = x} ≤ m!Mm−2

0 c0 for
all integers m ≥ 2 and x ∈ X almost surely w.r.t. dG.

These conditions are rather natural, and are discussed in Balabdaoui et al. (2019b).
The following lemma shows that, for the asymptotic distribution of α̂n , we can reduce
the derivation to the analysis of ψα̂n . We have the following result (Proposition 4 in
Balabdaoui et al. 2019b) on the distance between ψ̂n,α̂ and ψα̂ .

Lemma 1 Let conditions (A1)–(A6) be satisfied and let G be the distribution function
of X . Then we have, for α in a neighborhood B(α0, δ) of α0

sup
α∈B(α0,δ)

∫ {
ψ̂nα(αT x) − ψα(αT x)

}2
dG(x) = Op

(
(log n)2n−2/3

)
.

3 The Limit Theory for the SSE

In this section, we derive the limit distribution of the SSE introduced above. In our
derivation, the function ψα of Definition 1 plays a crucial role. Below, we will use
the following assumptions, additionally to (A1)–(A6).

(A7) There exists a δ > 0 such that for allα ∈ (B(α0, δ) ∩ Sd−1) \ {α0}, the random
variable

cov
(
(α0 − α)T X, ψ0(α

T
0 X)

∣
∣ αT X

)

is not equal to 0 almost surely.
(A8) The matrix

E
[
ψ ′

0(α
T
0 X) cov(X|αT

0 X)
]

has rank d − 1.

We start by comparing (3) with the function

α �→ ∥
∥E

{
Y − ψα(αT X)

}
X

∥
∥2

. (11)
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Fig. 2 The loss functions LSSE (red, dashed) and L̂SSE
n (solid), where n = 104 and n = 105

As in Sect. 1, the function ψ̂n,α is just the (isotonic) least squares estimate for fixed
α.

Example 2 (Continuation of Example 1) We consider the loss function given by

LSSE : α1 �→ ∥
∥E

{
Y − ψα(αT X)

}
X

∥
∥2

, (12)

and compare this with the loss function

L̂SSE
n : α1 �→

∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

, (13)

for the same data as in Example 1 in Sect. 2. If we plot the loss functions LSSE and
L̂SSE

n for the model of Example 1, where α = (α1, α2)
T , for α1 ∈ [0, 1] and α2 the

positive root
√
1 − α2

1 , we get Fig. 2. The function LLSE has a minimum equal to 0

at α1 = 1/
√
2 while L̂SSE

n attains its minimum at a value that is very close to 1/
√
2.

In general, the curve L̂SSE
n will be smoother than the curve L̂LSE

n . The rather striking
difference in smoothness of the loss functions L̂LSE

n and L̂SSE
n can be seen in Fig. 3,

where we zoom in on the interval [0.65, 0.80] for n = 10, 000 and the examples of
Figs. 1 and 2. The question is whether this difference in smoothness explains why
the SSE is

√
n-consistent while this might not be the case for the profile LSE.

In the computation of the SSE, we have to take a starting point. For this, we use the
LSE, which is proved to be consistent in Balabdaoui et al. (2019a). The proof of the
consistency of the SSE is a variation on the proof for corresponding crossing of the
zero estimator in Balabdaoui et al. (2019b) in (D.2) of the supplementary material.
We use the following lemma, which is a corollary to Proposition 2 in the material of
Balabdaoui et al. (2019b).
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(b) LSSE
n

Fig. 3 The loss functions L̂LSE
n and L̂SSE

n on [0.65, 0.80], for n = 104

Lemma 2 Let φn and φ be defined by

φn(α) =
∫

x
{

y − ψ̂n,α(αT x)
}

dPn(x, y),

and

φ(α) =
∫

x
{

y − ψα(αT x)
}

d P(x, y).

Then, uniformly for α in a neighborhood B(α0, δ) ∩ Sd−1 of α0

φn(α) = φ(α) + op(1).

Remark 1 The proof in Balabdaoui et al. (2019b) used reparameterization, but this
is actually not needed in the proof.

Theorem 1 (Consistency of the SSE) Let α̂n ∈ Sd−1 be the SSE of α0 and let con-
ditions (A1)–(A8) be satisfied. Then

α̂n
p−→ α0.

Lemma 3 Let α̂n ∈ Sd−1 be a minimizer of

∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

, (14)

for α ∈ Sd−1, where ‖ · ‖ denotes the Euclidean norm. Then, under conditions (A1)–
(A8) we have
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n−1
n∑

i=1

{
Yi − ψ̂n,α̂n (α̂

T
n X i )

}
X i = n−1

n∑

i=1

{
Yi − ψα̂n (α̂

T
n X i )

} {
X i − E

(
X|α̂T

n X i

)}
+ op

(
n−1/2

)
.

(15)

We now have the following limit result.

Theorem 2 (Asymptotic normality of the SSE) Let α̂n be the minimizer of

∥
∥
∥
∥
∥

n−1
n∑

i=1

{
Yi − ψ̂n,α(αT X i )

}
X i

∥
∥
∥
∥
∥

2

, (16)

for α ∈ Sd−1, where ‖ · ‖ denotes the Euclidean norm. Let the matrices A and � be
defined by

A = E

[
ψ ′

0(α
T
0 X) Cov(X|αT

0 X)
]
, (17)

and

� = E

[{
Y − ψ0(α

T
0 X)

}2 {
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T
]
. (18)

Then, under conditions (A1)–(A8), we have

√
n(α̂n − α0) →d N

(
0, A−�A−)

,

where A− is the Moore-Penrose inverse of A.

Example 3 (Continuation of Example 2) We compute the asymptotic covariance
matrix for Example 2. In this case, we get for matrix A in part (ii) of Theorem 2

A = E

[
ψ ′

0(α
T
0 X)Cov(X|αT

0 X)
]

= 3

4
E

[(
X1 + X2√

2

)2 (
X − E(X|αT

0 X)
) (

X − E(X|αT
0 X)

)T

]

=
(

1/15 −1/15
−1/15 1/15

)

.

The Moore-Penrose inverse of A is given by

A− =
(

15/4 −15/4
−15/4 15/4

)

.

Furthermore, we get
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� = E

[{
Y − ψ0(α

T
0 X)

}2 {
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T
]

= E
{
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T

=
(

1/24 −1/24
−1/24 1/24

)

.

So the asymptotic covariance matrix is given by

A−�A− =
(

75/32 −75/32
−75/32 75/32

)

≈
(

2.34375 −2.34375
−2.34375 2.34375

)

.

Remark 2 Theorem 2 corresponds to Theorem 3 in Balabdaoui et al. (2019b), but
note that the estimator has a different definition. Reparameterization is also avoided.

4 The Limit Theory for ESE and Cubic Spline Estimator

The proofs of the consistency and asymptotic normality of the ESE and spline esti-
mator are highly similar to the proofs of these facts for the SSE in the preceding
section. The only extra ingredient is the occurrence of the estimate of the derivative
of the link function. We only discuss the asymptotic normality.

In addition to the assumptions (A1)–(A7), we now assume the following:

(A8’) ψα is twice differentiable on (inf x∈X (αT x), supx∈X (αT x)).
(A9) The matrix

E
[
ψ ′

0(α
T
0 X)2 cov(X|αT

0 X)
]

has rank d − 1.

An essential step is again to show that

∫

x
{

y − ψ̂n,α̂n (α̂
T
n x)

}
ψ̂ ′

nα̂n
(α̂

T
n x) dPn(x, y)

=
∫ {

x − E(X |α̂T
n X)

} {
y − ψ̂n,α̂n (α̂

T
n x)

}
ψ̂ ′

nα̂n
(α̂

T
n x) dPn(x, y)

+ op(n
−1/2) + op(α̂n − α0).

For the ESE, this is done by defining the piecewise constant function ρ̄n,α for u in
the interval between successive jumps τi and τi+1) of ψ̂nα by

ρ̄n,α(u) =
⎧
⎨

⎩

E[X|αT X = τi ]ψ ′
α(τi ) if ψα(u) > ψ̂nα(τi ) for all u ∈ (τi , τi+1),

E[X|αT X = s]ψ ′
α(s) if ψα(s) = ψ̂nα(s) for some s ∈ (τi , τi+1),

E[X|αT X = τi+1]ψ ′
α(τi+1) if ψα(u) < ψ̂nα(τi ) for all u ∈ (τi , τi+1);
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see Appendix E in the supplement of Balabdaoui et al. (2019b). The remaining part
of the proof runs along the same lines as the proof for the SSE. For additional details,
see Appendix E in the supplement of Balabdaoui et al. (2019b).

The corresponding step in the proof for the spline estimator is given by the fol-
lowing lemma.

Lemma 4 Let the conditions of Theorem 5 in Kuchibhotla and Patra (2020) be
satisfied. In particular, let the penalty parameter μn satisfy μn = op(n−1/2). Then
we have for all α in a neighborhood of α0 and for the corresponding natural cubic
spline ψ̂nα

∫

E(X|αT X)
{

y − ψ̂nα

(
αT x

)}
ψ̂ ′

nα

(
αT x

)
dPn(x, y) = Op(μn) = op

(
n−1/2

)
.

Remark 3 The result shows that we have as our basic equation in α

1

n

n∑

i=1

{
ψ̂nα(αT X i ) − Yi

}
ψ̂ ′

nα(αT X i )X i

= 1

n

n∑

i=1

{
ψ̂nα(αT X i ) − Yi

}
ψ̂ ′

nα(αT X i )
{
X i − E(X i |αT X i )

} + op
(
n−1/2

)

= op
(
n−1/2

)
.

The remaining part of the proof of the asymptotic normality can either run along
the same lines as the proof for the corresponding fact for the SSE, using the function
u �→ ψα(u) = E{ψ0(α

T x)|αT X = u}, or directly use the convergence of ψ̂nα̂n to
ψ0 and of ψ̂ ′

nα̂n
to ψ ′

0 (see Theorem 3 in Kuchibhotla and Patra 2020). For the SSE
and ESE, we were forced to introduce the intermediate function ψα to get to the
derivatives, because for these estimators the derivative of ψ̂nα̂n did not exist.

We get the following result.

Theorem 3 Let either α̂n be the ESE of α0 and let Assumptions (A1)–(A7) and (A8’)
and (A9) of the present section be satisfied, or let α̂n be the spline estimator of α0

and let Assumptions (A0)-(A6) and (B1)–(B3) of Kuchibhotla and Patra 2020) be
satisfied. Moreover, let the bandwidth h  n−1/7 in the estimate of the derivative of
ψα for the ESE. Define the matrices

Ã := E

[
ψ ′

0(α
T
0 X)2 Cov(X|αT

0 X)
]
, (19)

and

�̃ := E

[{
Y − ψ0(α

T
0 X)

}2
ψ ′

0(α
T
0 X)2

{
X − E(X|αT

0 X)
} {

X − E(X|αT
0 X)

}T
]
.

(20)
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Then

√
n(α̃n − α0) →d Nd

(
0, Ã

−
�̃ Ã

−)
,

where Ã
−

is the Moore-Penrose inverse of Ã.

This corresponds to Theorem 6 in Balabdaoui et al. (2019b) and Theorem 5
in Kuchibhotla and Patra (2020), but note that the formulation of Theorem 5 in
Kuchibhotla and Patra (2020) still contains the Jacobian connected with the lower
dimensional parameterization. Consequently, the ESE and the cubic spline estimator
admit the same weak limit under the conditions stated above.

5 Simulation and Comparisons with Other Estimators

In this section, we compare the LSE with the Simple Score Estimator (SSE), the
Efficient Score Estimator (ESE), the EffectiveDimensionReduction (EDR) estimate,
the spline estimate, the MAVE estimate, and the EFM estimate. We take part in
the simulation settings in Balabdaoui et al. (2019a), which means that we take the
dimension d equal to 2. Since the parameter belongs to the boundary of a circle in this
case, we only have to determine a one-dimensional parameter. Using this fact, we use
the parameterization α = (α1, α2) = (cos(β), sin(β)) and determine the angle β by
a golden section search for the SSE, ESE, and spline estimate. For EDR, we used
the R package edr; the method is discussed in Hristache et al. (2001). The spline
method is described in Kuchibhotla and Patra (2020), and there exists an R package
simest for it, but we used our own implementation. For the MAVE method, we
used the R package MAVE; for theory, see Xia (2006). For the EFM estimate (see Cui
et al. 2011), we used an R script, due to Xia Cui and kindly provided to us by her and
Rohit Patra. All runs of our simulations can be reproduced by running the R scripts
in Groeneboom 2018.

In simulation model 1, we take α0 = (1/
√
2, 1/

√
2)T and X = (X1, X2)

T , where
X1 and X2 are independent Uniform(0, 1) variables. The model is now

Y = ψ0(α
T
0 X) + ε,

where ψ0(u) = u3 and ε is a standard normal random variable, independent of X .
In simulation model 2, we also take α0 = (1/

√
2, 1/

√
2)T and X = (X1, X2)

T ,
where X1 and X2 are independent Uniform(0, 1) variables. This time, however, the
model is (Table 1)

Y = Bin
(
10, exp(αT

0 X)/
{
1 + exp(αT

0 X)
}) ;

see also Table 2 in Balabdaoui et al. (2019a). This means
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Table 1 Simulation, model 1; εi is standard normal and independent of X i , consisting of two
independent Uniform(0, 1) random variables. Themean value μ̂i =mean(α̂in), i = 1, 2 and n times
the variance-covariance σ̂i j = n·cov(α̂in, α̂ jn), i, j = 1, 2, of the Efficient Dimension Reduction
Estimate (EDR), computed by the R package edr, the Least Squares Estimate (LSE), the Simple
Score Estimate (SSE), the Efficient Score Estimate (ESE), the spline estimate, the MAVE estimate,
and the EFM estimate for different sample sizes n. The line, preceded by ∞, gives the asymptotic
values (unknown for EDR and LSE). The values are based on 1000 replications

Method n μ̂1 μ̂2 σ̂11 σ̂22 σ̂12

EDR 100 0.621877 0.361894 11.409222 36.869184 9.152389

500 0.701217 0.686094 7.334756 11.468453 –3.881349

1000 0.701669 0.702244 6.437653 8.090771 –3.552562

5000 0.706021 0.706798 7.344431 7.276717 –7.288047

∞ 0.707107 0.707107 ? ? ?

LSE 100 0.672698 0.697350 3.148912 2.975246 –2.915427

500 0.702163 0.701718 3.620960 3.665710 –3.588491

1000 0.704706 0.704320 3.665561 3.664711 –3.637541

5000 0.707262 0.705690 4.435842 4.485168 –4.453713

∞ 0.707107 0.707107 ? ? ?

SSE 100 0.673997 0.6919403 3.338637 3.362656 –3.141408

500 0.699986 0.706198 2.849647 2.807978 –2.793798

1000 0.706477 0.704191 2.501106 2.510047 –2.494237

5000 0.707090 0.706423 2.473765 2.485884 –2.477371

∞ 0.707107 0.707107 2.343750 2.343750 –2.343750

ESE 100 0.682781 0.687949 3.067802 2.991976 –2.855176

500 0.702940 0.702462 3.100843 3.116337 –3.064151

1000 0.704055 0.706387 2.676388 2.653164 –2.650667

5000 0.707130 0.706444 2.257541 2.265547 –2.259443

∞ 0.707107 0.707107 1.885522 1.885522 –1.885522

Spline 100 0.690741 0.705485 1.801235 1.762567 –1.711552

500 0.703670 0.702640 1.795384 1.778454 –1.773560

1000 0.705684 0.706007 1.786589 1.781797 –1.777691

5000 0.706404 0.707193 2.180466 2.181544 –2.179269

∞ 0.707107 0.707165 1.885522 1.885522 –1.885522

MAVE 100 0.686503 0.684887 2.423618 3.546768 –2.245708

500 0.703333 0.705537 1.897806 1.876220 –2.040677

1000 0.705840 0.705660 1.929966 1.907128 –1.911452

5000 0.707328 0.706299 2.071168 2.082169 –2.074914

∞ 0.707107 0.707107 1.885522 1.885522 –1.885522

EFM 100 0.686292 0.684274 2.802308 3.280956 –2.312445

500 0.703236 0.705133 2.082162 2.045150 –2.044960

1000 0.705629 0.705950 1.866486 1.860184 –1.856340

5000 0.707269 0.707251 1.953800 1.964081 –1.957351

∞ 0.707107 0.707107 1.885522 1.885522 –1.885522
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Table 2 Simulation, model 2; Yi ∼ Bin
(
10, exp(αT

0 X i )/
{
1 + exp(αT

0 X i )
})
, where X i consists

of two independentUniform(0, 1) randomvariables. Themean value μ̂i = mean(α̂in), i = 1, 2 and
n times the variance-covariance ncov(α̂in, α̂ jn), i, j = 1, 2, of the Efficient Dimension Reduction
Estimate (EDR), computed by the R package edr, the Least Squares Estimate (LSE), the Simple
Score Estimate (SSE), the Efficient Score Estimate (ESE), the spline estimate, the MAVE estimate,
and the EFM estimate for different sample sizes n. The line, preceded by ∞, gives the asymptotic
values (unknown for EDR and LSE). The values are based on 1000 replications

Method n μ̂1 μ̂2 σ̂11 σ̂22 σ̂12

EDR 100 0.587264 0.202005 13.33724 48.15572 11.87625

500 0.670702 0.602469 26.76111 66.92737 14.09701

1000 0.696075 0.666591 21.89080 49.31544 9.345753

5000 0.704424 0.706604 11.39598 11.11493 –11.17376

∞ 0.707107 0.707107 ? ? ?

LSE 100 0.658631 0.699725 4.069966 3.596783 –3.609490

500 0.695541 0.703007 5.650618 5.362877 –5.358190

1000 0.704497 0.701243 5.909494 6.043808 –5.911246

5000 0.704805 0.707621 6.303320 6.321866 –6.298515

∞ 0.707107 0.707107 ? ? ?

SSE 100 0.667908 0.694376 3.760921 3.420387 –3.356968

500 0.698498 0.706423 3.358458 3.182044 –3.223734

1000 0.707276 0.702390 3.179623 3.236283 –3.184724

5000 0.706162 0.707286 2.718742 2.707549 –2.709870

∞ 0.707107 0.707107 2.727482 2.727482 –2.727482

ESE 100 0.684804 0.688063 2.892165 2.874755 –2.744223

500 0.698078 0.706159 3.562625 3.457337 –3.446605

1000 0.707879 0.701445 3.420159 3.470217 –3.418606

5000 0.706321 0.707110 2.775092 2.760287 –2.764230

∞ 0.707107 0.707107 2.737200 2.737200 –2.737200

Spline 100 0.677287 0.695301 3.009781 2.779876 –2.714928

500 0.699117 0.706946 2.952928 2.784383 –2.830415

1000 0.707890 0.702001 3.027712 3.064772 –3.026082

5000 0.706200 0.707312 2.764447 2.762986 –2.760530

∞ 0.707107 0.707232 2.737200 2.737200 –2.737200

MAVE 100 0.667849 0.654361 3.891510 8.700093 –2.325804

500 0.699108 0.706377 3.155191 2.990569 –3.031249

1000 0.707520 0.702341 3.040201 3.097965 –3.049075

5000 0.707657 0.705827 2.572343 2.573418 –2.570275

∞ 0.707107 0.707107 2.737200 2.737200 –2.737200

EFM 100 0.663227 0.666070 5.681573 5.978194 –2.503058

500 0.698920 0.706295 3.279110 3.055940 –3.118757

1000 0.707878 0.706275 3.102414 3.157143 –3.108516

5000 0.706043 0.701894 2.669352 2.650343 –2.656742

∞ 0.707107 0.707107 2.737200 2.737200 –2.737200
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Y = ψ0(α
T
0 X) + ε,

where

ψ0(α
T
0 X) = 10 exp(αT

0 X)/{1 + exp(αT
0 X)}, ε = Nn − ψ0(α

T
0 X),

and

Nn = Bin

(

10,
exp(αT

0 X

1 + exp(αT
0 X)

)

.

Note that indeed E{ε|X) = 0, but that we do not have independence of ε and X , as
in the previous example.

It was noticed in Xia (2006), p. 1113, that, although it was shown in Hristache
et al. (2001) that the

√
n rate of convergence for the estimation of α0 can be achieved,

the asymptotic distribution of the method proposed in Hristache et al. (2001) was not
derived, which makes it difficult to compare the limiting efficiency of the estimation
method with other methods. In Xia (2006), the asymptotic distribution of the rMAVE
estimate is derived (see Theorem 4.2 of Xia 2006), which shows that this limit
distribution is actually the same as that of the ESE and the spline estimate. Since
Xia is one of the authors of the recent MAVE R package, we assume that the rMAVE
method has been implemented in this package, so we will identify MAVE with
rMAVE in the sequel.

The proof of the asymptotic normality result for the MAVE method uses the fact
that the iteration steps, described on p.1117 of Xia (2006), start in a neighborhood
{α : ‖α − α0‖ ≤ Cn−1/2+c0} of α0, where C > 0 and c0 < 1/20, and indeed our

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-2

0

2

4

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

-2
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4

Fig. 4 TwoMAVE estimates of α0 = 2−1/2(1, 1)T for model 1 with sample size n = 1000: a from
starting the iterations at α0, b from starting the iterations at−α0; the blue solid curve is the estimate
of the link function, based on α̂n ; the blue dashed function is t �→ t3 in a and t �→ −t3 in b. Note
that in b also the sign of the first coordinates of the points (α̂

T
n X i , Yi ) in the scatterplot is reversed.

Under the restriction that the link function is nondecreasing b cannot be a solution
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Fig. 5 Boxplots of
√

n/2 ‖α̂n − α0‖2 for model 1. In b and c, the values of EDR were truncated
at 0.6 to show more clearly the differences between the other estimates

original experiments with the R package showed many outliers, probably due to
starting values not sufficiently close to α0. A further investigation revealed that there
were many solutions in the neighborhood of the points −α0. This phenomenon is
illustrated in Fig. 4, generated by our own implementation of the algorithm in Xia
(2006). The link function is constructed from the values aα̂n

j in the algorithm in Xia

(2006), p. 1117, where the ordered values of α̂
T
n X j are the first coordinates.

Because of the difficulty we just discussed, we reversed in the results of the
MAVE R package the sign of the solutions in the neighborhood of −α0. By the
parameterization with a positive first coordinate in Cui et al. (2011), situation (b) in
Fig. 4 cannot occur for the EFM algorithm. We also tried a modification of the same
type as our modification of the MAVE algorithm for the EDR algorithm, but this did
not lead to a similar improvement of the results.



20 F. Balabdaoui and P. Groeneboom
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Fig. 6 Boxplots of
√

n/2 ‖α̂n − α0‖2 for model 2. In b and c, the values of EDR were truncated
at 0.6 to show more clearly the differences between the other estimates

It follows from Theorem 2 that the variance of the asymptotic normal distribution
for the SSE is equal to 2.727482 and from Theorem 3 that the variance of the
asymptotic normal distribution for the ESE and spline estimator equals 2.737200.
We already noticed in Sect. 4 that the present model is not homoscedastic. In this
case, the asymptotic covariance matrix for the SSE of Theorem 2 is in fact given by
A− = A−�A−.

It is clear that the estimate EDR is inferior to the other methods for these models;
even the LSE for which we do not know the rate of convergence has a better per-
formance, see Figs. 5 and 6. In Hristache et al. (2001), not only it is assumed that
the errors have a normal distribution, but also in model 1, where this condition is
satisfied, the behavior is clearly inferior, in particular for the lower sample sizes.
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6 Concluding Remarks

We replaced the “crossing of zero” estimators in Balabdaoui et al. (2019b) with
profile least squares estimators. The asymptotic distribution of the estimators was
determined and its behavior illustrated by a simulation study, using the same models
as in Balabdaoui et al. (2019a).

In the first model, the error is independent of the covariate and homoscedastic
and in this case, four of the estimators were efficient. In the other (binomial-logistic)
model, the errorwas dependent on the covariates andnot homoscedastic. Itwas shown
that the Simple Score Estimate (SSE) had in fact a smaller asymptotic variance in
this model than the other estimators for which the asymptotic variance is known,
although the difference is very small and does not really show up in the simulations.

There is no uniformly best estimate in our simulation, but the EDR estimate is
clearly inferior to the other estimates, including the LSE, in particular for the lower
sample sizes. On the other hand, the LSE is inferior to the other estimators except
for the EDR. All simulation results can be reproduced by running the R scripts in
Groeneboom (2018).
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Optimization by Gradient Boosting

Gérard Biau and Benoît Cadre

Abstract Gradient boosting is a state-of-the-art prediction technique that sequen-
tially produces a model in the form of linear combinations of elementary predic-
tors—typically decision trees—by solving an infinite-dimensional convex optimiza-
tion problem.We provide in the present paper a thorough analysis of two widespread
versions of gradient boosting, and introduce a general framework for studying these
algorithms from the point of view of functional optimization. We prove their conver-
gence as the number of iterations tends to infinity and highlight the importance of
having a strongly convex risk functional to minimize. We also present a reasonable
statistical context ensuring consistency properties of the boosting predictors as the
sample size grows. In our approach, the optimization procedures are run forever (that
is, without resorting to an early stopping strategy), and statistical regularization is
basically achieved via an appropriate L2 penalization of the loss and strong convexity
arguments.
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1 Introduction

More than twenty years after the pioneering articles of Freund and Schapire (Schapire
1990; Freund 1995; Freund andSchapire 1996, 1997), boosting is still one of themost
powerful ideas introduced in statistics and machine learning. Freund and Schapire’s
AdaBoost algorithm and its numerous descendants have proven to be competitive
in a variety of applications, and are still able to provide state-of-the-art decisions in
difficult real-life problems. In addition, boosting procedures are computationally fast
and comfortable with both regression and classification problems. For surveys of var-
ious aspects of boosting algorithms, we refer to Meir and Rätsch (2003), Bühlmann
and Hothorn (2007), and to the monographs by Hastie et al. (2009) and Bühlmann
and van de Geer (2011). These references point in particular to approaches related to
boosting, for example, Frank and Wolfe (1956) algorithm, Mallat and Zhang (1993)
matching pursuit algorithm, and weak greedy algorithms of Temlyakov (2000).

In a nutshell, the basic idea of boosting is to combine the outputs ofmany “simple”
predictors, in order to produce a powerful committee with performances improved
over the single members. Historically, the first formulations of Freund and Schapire
considered boosting as an iterative classification algorithm that is run for a fixed
number of iterations, and, at each iteration, selects one of the base classifiers, assigns
a weight to it, and outputs the weighted majority vote of the chosen classifiers. Later
on, Breiman (1997, 1998, 1999, 2000, 2004)made in a series of papers and technical
reports the breakthrough observation that AdaBoost is in fact a gradient-descent-type
algorithm in a function space, thereby identifying boosting at the frontier of numer-
ical optimization and statistical estimation. This connection was further emphasized
by Friedman et al. (2000), who rederivedAdaBoost as amethod for fitting an additive
model in a forward stagewise manner. Following this, Friedman (2001, 2002) devel-
oped a general statistical framework (both for regression and classification) that (i)
yields a direct interpretation of boosting methods from the perspective of numerical
optimization in a function space, and (i i) generalizes them by allowing optimization
of an arbitrary loss function. The term “gradient boosting” was coined by the author,
who paid special attention to the case where the individual additive components are
decision trees. At the same time, Mason et al. (1999, 2000) embraced a more math-
ematical approach, revealing boosting as a principle to optimize a convex risk in a
function space, by iteratively choosing a weak learner that approximately points in
the negative gradient direction.

This functional view of boosting has led to the development of algorithms inmany
areas of machine learning and computational statistics, beyond regression and clas-
sification. The history of boosting goes on today with algorithms such as XGBoost
(ExtremeGradient Boosting, Chen andGuestrin 2016), a tree boosting systemwidely
recognized for its outstanding results in numerous data challenges. (An overview of
its successes is given in the introductive section of the paper by Chen and Guestrin,
2016.) From a general point of view, XGBoost is but a scalable implementation of
gradient boosting that contains various systems and algorithmic optimizations. Its
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mathematical principle is to perform a functional gradient-type descent in a space of
decision trees, while regularizing the objective to avoid overfitting.

However, despite a long list of successes, much work remains to be done to clarify
the mathematical forces driving gradient boosting algorithms. Many influential arti-
cles regard boosting with a statistical eye and study the somewhat idealized problem
of empirical risk minimization with a convex loss (e.g., Blanchard et al. 2003; Lugosi
and Vayatis 2004). These papers essentially concentrate on the statistical properties
of the approach (that is, consistency and rates of convergence as the sample size
grows) and often ignore the underlying optimization aspects. Other important arti-
cles, such as Bühlmann and Yu (2003); Mannor et al. (2003); Zhang and Yu (2005);
Bickel et al. (2006); Bartlett and Traskin (2007), take advantage of the iterative
principle of boosting, but mainly focus on regularization via early stopping (that is,
stopping the boosting iterations at some point), without paying too much attention to
the optimization side. Notable exceptions are the pioneering notes of Breiman cited
above, and the original paper by Mason et al. (2000), who envision gradient boost-
ing as an infinite-dimensional numerical optimization problem and pave the way
for a more abstract analysis. All in all, there is to date no sound theory of gradient
boosting in terms of numerical optimization. This state of affairs is a bit paradoxi-
cal, since optimization is certainly the most natural mathematical environment for
gradient-descent-type algorithms.

In line with the above, our main objective in this article is to provide a thorough
analysis of two widespread models of gradient boosting, due to Friedman (2001) and
Mason et al. (2000). We introduce in Sect. 2 a general framework for studying the
algorithms from the point of viewof functional optimization in an L2 space, and prove
in Sect. 3 their convergence as the number of iterations tends to infinity. Our results
allow for a large choice of convex losses in the optimization problem (differentiable or
not), while highlighting the importance of having a strongly convex risk functional to
minimize. This point is interesting, since it provides some theoretical justification for
adding a penalty term to the objective, as advocated, for example, in the XGBoost
system of Chen and Guestrin (2016). Thus, the main message of Sect. 3 is that,
under appropriate conditions, the sequence of boosted iterates converges toward the
minimizer of the empirical risk functional over the set of linear combinations of weak
learners. However, this does not guarantee that the output of the algorithms (i.e., the
boosting predictor) enjoys good statistical properties, as overfitting may kick in.
For this reason, we present in Sect. 4 a reasonable framework ensuring consistency
properties of the boosting predictors as the sample size grows. In our approach, the
optimization procedures are run forever (that is, without resorting to an early stopping
strategy), and statistical regularization is basically achieved via an appropriate L2

penalization of the loss and strong convexity arguments. For clarity, most proofs are
gathered in the Supplementary Material Document.

Before embarking on the analysis, we would like to stress that the present paper is
theoretical in nature and that its main goal is to clarify/solidify some of the optimiza-
tion ideas that are behind gradient boosting. In particular, we do not report experi-
mental results, and refer to the specialized literature on (extreme) gradient boosting
for discussions on the computational aspects and experiments with real-world data.
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2 Gradient Boosting

The purpose of this section is to describe the gradient boosting procedures that we
analyze in the paper.

2.1 Mathematical Context

Weassume to be given a sampleDn = {(X1,Y1), . . . , (Xn,Yn)} of i.i.d. observations,
where each pair (Xi ,Yi ) takes values inX × Y . Throughout, X is a Borel subset
of Rd , and Y ⊂ R is either a finite set of labels (for classification) or a subset of R
(for regression). The vector space Rd is endowed with the Euclidean norm ‖ · ‖.

Our goal is to construct a predictor F : X → R that assigns a response to each
possible value of an independent random observation distributed as X1. In the context
of gradient boosting, this general problem is addressed by considering a class F of
functions f : X → R (called the weak or base learners) and minimizing some
empirical risk functional

Cn(F) = 1

n

n∑

i=1

ψ(F(Xi ),Yi )

over the linear combinations of functions in F . The function ψ : R × Y → R+,
called the loss, is convex in its first argument and measures the cost incurred by
predicting F(Xi ) when the answer is Yi . For example, in the least squares regression
problem, ψ(x, y) = (y − x)2 and

Cn(F) = 1

n

n∑

i=1

(Yi − F(Xi ))
2.

However, many other examples are possible, as we will see below. Let δz denote
the Dirac measure at z, and let μn = (1/n)

∑n
i=1 δ(Xi ,Yi ) be the empirical measure

associated with the sample Dn . Clearly,

Cn(F) = Eψ(F(X),Y ),

where (X,Y ) denotes a random pair with distribution μn and the symbol E denotes
the expectation with respect toμn . Naturally, the theoretical (i.e., population) version
of Cn is

C(F) = Eψ(F(X1),Y1),

where now the expectation is taken with respect to the distribution of (X1,Y1). It
turns out that most of our subsequent developments are independent of the context,
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whether empirical or theoretical. Therefore, to unify the notation, we let throughout
(X,Y ) be a generic pair of random variables with distributionμX,Y , keeping in mind
thatμX,Y may be the distribution of (X1,Y1) (theoretical risk), the standard empirical
measure μn (empirical risk), or any smoothed version of μn .

We let μX be the distribution of X , L2(μX ) the vector space of all measurable
functions f : X → R such that

∫ | f |2dμX < ∞, and denote by 〈·, ·〉μX and ‖ · ‖μX

the corresponding normand scalar product. Thus, for now, our problem is tominimize
the quantity

C(F) = Eψ(F(X),Y )

over the linear combinations of functions in a given subset F of L2(μX ). A typ-
ical example for F is the collection of all binary decision trees in Rd using
axis parallel cuts with k terminal nodes. In this case, each f ∈ F takes the form
f = ∑k

j=1 β j1A j , where (β1, . . . , βk) ∈ Rk and A1, . . . , Ak is a tree-structured par-
tition of Rd (Devroye et al. 1996, Chap. 20).

As noted earlier, we assume that, for each y ∈ Y , the function ψ(·, y) is convex.
In the framework we have in mind, the function ψ may take a variety of different
forms, ranging from standard (regression or classification) losses to more involved
penalized objectives. It may also be differentiable or not. Before discussing some
examples in detail, we list assumptions thatwill be needed at somepoint. Throughout,
we let ξ(·, y) = ∂−

x ψ(·, y) (left derivative) be a subgradient of the convex function
ψ(·, y) (the choice of a specific subgradient ξ(·, y) has no impact on the results). In
particular, for all (x1, x2) ∈ R2,

ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2). (1)

Assumption A1

A1 One has Eψ(0,Y ) < ∞. In addition, for all F ∈ L2(μX ), there exists δ > 0
such that

sup
G∈L2(μX ):‖G−F‖μX ≤δ

E|∂−
x ψ(G(X),Y )|2 < ∞.

This assumption ensures that the convex functional C is locally bounded (in par-
ticular, C(F) < ∞ for all F ∈ L2(μX ), and C is continuous). Indeed, by inequality
(1), for all G ∈ L2(μX ),

ψ(G(x), y) ≤ ψ(0, y) + ξ(G(x), y)G(x).

Therefore, by Assumption A1 and the Cauchy-Schwarz inequality,

Eψ(G(X),Y ) ≤ Eψ(0,Y ) + (
Eξ(G(X),Y )2EG(X)2

)1/2
,

so that C is locally bounded. Naturally, AssumptionA1 is automatically satisfied for
the choice μX,Y = μn .
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Assumption A2

A2 There exists α > 0 such that, for all y ∈ Y , the function ψ(·, y) is α-strongly
convex, i.e., for all (x1, x2) ∈ R2 and t ∈ [0, 1],

ψ(t x1 + (1 − t)x2, y) ≤ tψ(x1, y) + (1 − t)ψ(x2, y) − α

2
t (1 − t)(x1 − x2)

2.

This assumption will be used in most, but not all, results. Strong convexity will
play an essential role in the statistical Sect. 4. We note that, under Assumption A2,
for all (x1, x2) ∈ R2,

ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2) + α

2
(x1 − x2)

2, (2)

which is of course an inequality tighter than (1). Furthermore, the α-strong convexity
of ψ(·, y) implies the α-strong convexity of the risk functional C over L2(μX ).

In addition to Assumptions A1 and A2, we require the following:

A3 There exists a positive constant L such that, almost surely, for all (x1, x2) ∈ R2,

|E(ξ(x1,Y ) − ξ(x2,Y ) | X)| ≤ L|x1 − x2|.

(In the sequel, in order to lighten the text, we drop the “almost sure” wording
wherever conditional expectations are involved.) However esoteric this assumption
may seem, it is in fact mild and provides a framework that encompasses a large
variety of familiar situations. In particular, AssumptionA3 admits a stronger version
A′

3, which is useful as soon as the function ψ is continuously differentiable with
respect to its first variable:

A′
3 For all y ∈ Y , the function ψ(·, y) is continuously differentiable, and there
exists a positive constant L such that, for all (x1, x2, y) ∈ R2 × Y ,

|∂xψ(x1, y) − ∂xψ(x2, y)| ≤ L|x1 − x2|.

AssumptionA′
3 impliesA3, but the converse is not true. To see this, just note that,

in the smooth situation A′
3, we have ξ(x, y) = ∂xψ(x, y). Therefore,

E(ξ(x1,Y ) | X) =
∫

∂xψ(x1,Y )μY |X (dy),

where μY |X is the conditional distribution of Y given X . Assumption A3 (or A′
3)

plays a key role in controlling the decrease of the risk functional along the boosting
iterations, as can be seen very clearly in Lemmas 1 and 2. This type of Lipschitz
hypothesis is classical in the optimization literature (e.g., Bubeck 2015). We also
note that, in the context of A′

3, the functional C is differentiable at any F ∈ L2(μX )

in the direction G ∈ L2(μX ), with differential
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dC(F;G) = 〈∇C(F),G〉μX ,

where ∇C(F)(x) := ∫
∂xψ(F(x), y)μY |X=x (dy) is the gradient of C at F . How-

ever, Assumption A3 allows to deal with a larger variety of losses, including non-
differentiable ones, as shown in the examples below.

2.2 Some Examples

Each of the loss functions that we discuss in this subsection corresponds to amachine
learning algorithm, as thoroughly explained in Bühlmann and Hothorn (2007), Sect.
3. We refer to this article for more properties of these losses and for issues regarding
their practical implementation.

• A first canonical example, in the regression setting, is to let ψ(x, y) = (y − x)2

(squared error loss), which is 2-strongly convex in its first argument (Assumption
A2) and satisfies Assumption A1 as soon as EY 2 < ∞. It also satisfies A′

3, with
∂xψ(x, y) = 2(x − y) and L = 2.

• Another example in regression is the loss ψ(x, y) = |y − x | (absolute error loss),
which is convex but not strongly convex in its first argument. Whenever strong
convexity of the loss is required, a possible strategy is to regularize the objective
via an L2-type penalty, and take

ψ(x, y) = |y − x | + γ x2,

where γ is a positive parameter (possibly function of the sample size n in the empir-
ical setting). This loss is (2γ )-strongly convex in x and satisfies A1 and A2 when-
ever E|Y | < ∞, with ξ(x, y) = sgn(x − y) + 2γ x (with sgn(u) = 21[u>0] − 1
for u = 0 and sgn(0) = 0). On the other hand, the function ψ(·, y) is not differ-
entiable at y, so that the smoothness Assumption A′

3 is not satisfied. However,

E(ξ(x1, Y ) − ξ(x2, Y ) | X) =
∫

(sgn(x1 − y) − sgn(x2 − y))μY |X (dy) + 2γ (x1 − x2)

= μY |X ((−∞, x1)) − μY |X ((−∞, x2)) + 2γ (x1 − x2)

− μY |X ((x1, ∞)) + μY |X ((x2, ∞)).

Thus, if we assume for example that μY |X has a density (with respect to the
Lebesgue measure) bounded by B, then

|E(ξ(x1,Y ) − ξ(x2,Y ) | X)| ≤ 2(B + γ )|x1 − x2|,

andAssumptionA3 is therefore satisfied.Of course, in the empirical setting, assum-
ing thatμY |X has a density precludes the use of the empirical measureμn forμX,Y .
A safe and simple alternative is to consider a smoothed version μ̃n of μn (based,
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for example, on a kernel estimate; see Devroye and Györfi 1985), and to minimize
the functional

Cn(F) =
∫

|y − F(x)|μ̃n(dx, dy) + γ

∫
F(x)2μ̃n(dx)

over the linear combinations of functions inF .
• In the±1-classification problem, the final classification rule is+1 if F(x) > 0 and

−1 otherwise.Often, the functionψ(x, y) has the formφ(yx), whereφ : R → R+
is convex. Classical losses include the choices φ(u) = ln2(1 + e−u) (logit loss),
φ(u) = e−u (exponential loss), and φ(u) = max(1 − u, 0) (hinge loss). None of
these losses is strongly convex, but here again, this can be repaired whenever
needed by regularizing the problem via

ψ(x, y) = φ(yx) + γ x2, (3)

where γ > 0. It is, for example, easy to see that ψ(x, y) = ln2(1 + e−yx ) + γ x2

satisfies Assumptions A1, A2, and A′
3. This is also true for the penalized sigmoid

loss ψ(x, y) = (1 − tanh(βyx)) + γ x2, where β is a positive parameter. In this
case,ψ(·, y) is 2(γ − β2)-strongly convex as soon asβ <

√
γ .Another interesting

example in the classification setting is the loss ψ(x, y) = φ(yx) + γ x2, where

φ(u) =
{−u + 1 if u ≤ 0
e−u if u > 0.

We leave it as an easy exercise to prove that Assumptions A1, A2, and A′
3 are

satisfied. Examples could be multiplied endlessly, but the point we wish to make
is that our assumptions are mild and allow considering a large variety of learning
problems. We also emphasize that regularized objectives of the form (3) are typ-
ically in action in the Extreme Gradient Boosting system of Chen and Guestrin
(2016).

2.3 Two Algorithms

Let lin(F ) be the set of all linear combinations of functions in F , our collection
of base predictors in L2(μX ). So, each F ∈ lin(F ) has the form F = ∑J

j=1 β j f j ,
where (β1, . . . , βJ ) ∈ RJ and f1, . . . , f J are elements ofF . Finding the infimum of
the functionalC over lin(F ) is a challenging infinite-dimensional optimization prob-
lem, which requires an algorithm. The core idea of the gradient boosting approach
is to greedily locate the infimum by producing a combination of base predictors
via a gradient-descent-type algorithm in L2(μX ). Focusing on the basics, this can
be achieved by two related yet different strategies, which we examine in greater
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mathematical details below. Algorithm 1 appears in Mason et al. (2000), whereas
Algorithm 2 is essentially due to Friedman (2001).

It is implicitly assumed throughout this paragraph that AssumptionA1 is satisfied.
We recall that under this assumption, the convex functionalC is locally bounded and
therefore continuous. Thus, in particular,

inf
F∈ lin(F )

C(F) = inf
F∈ lin(F )

C(F),

where lin(F ) is the closure of lin(F ) in L2(μX ). Loosely speaking, looking for the
infimum ofC over lin(F ) is the same as looking for the infimum ofC over all (finite)
linear combinations of base functions inF . We note in addition that if Assumption
A2 is satisfied, then there exists a unique function F̄ ∈ lin(F ) (which we call the
boosting predictor) such that

C(F̄) = inf
F∈ lin(F )

C(F). (4)

Algorithm 1. In this approach, we consider a class F of functions f : X → R

such that 0 ∈ F , f ∈ F ⇔ − f ∈ F , and ‖ f ‖μX = 1 for f = 0. An example is
the collectionF of all ±1-binary trees inRd using axis parallel cuts with k terminal
nodes (plus zero). Each nonzero f ∈ F takes the form f = ∑k

j=1 β j1A j , where
|β j | = 1 and A1, . . . , Ak is a tree-structured partition of Rd (Devroye et al. 1996,
Chap. 20). The parameter k is a measure of the tree complexity. For example, trees
with k = d + 1 are such that lin(F ) = L2(μX ) (Breiman 2000). Thus, in this case,

inf
F∈ lin(F )

C(F) = inf
F∈L2(μX )

C(F).

Although interesting from the point of view of numerical optimization, this situation
is however of little interest for statistical learning, as we will see in Sect. 4.

Suppose now that we have a function F ∈ lin(F ) and wish to find a new f ∈ F
to add to F so that the risk C(F + w f ) decreases at most, for some small value of
w. Viewed in function space terms, we are looking for the direction f ∈ F such
that C(F + w f ) most rapidly decreases. Assume for the moment, to simplify, that
ψ is continuously differentiable in its first argument. Then the knee-jerk reaction is
to take the opposite of the gradient of C at F , but since we are restricted to choosing
our new function in F , this will in general not be a possible choice. Thus, instead,
we start from the approximate identity

C(F) − C(F + w f ) ≈ −w〈∇C(F), f 〉μX (5)

and choose f ∈ F that maximizes−〈∇C(F), f 〉μX . For an arbitrary (i.e., not neces-
sarily differentiable) ψ , we simply replace the gradient by a subgradient and choose
f ∈ F that maximizes −Eξ(F(X),Y ) f (X). This motivates the following iterative
algorithm:
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Gradient Boosting Algorithm 1
1: Require (wt )t a sequence of positive real numbers.
2: Set t = 0 and start with F0 ∈ F .
3: Compute

ft+1 ∈ argmax f ∈F − Eξ(Ft (X), Y ) f (X) (6)

and let Ft+1 = Ft + wt+1 ft+1.
4: Take t ← t + 1 and go to step 3.

(Throughout the article, it is assumed to simplify that maximizers as in (6) exist.
This requirement can be avoided, for example, by working with approximate εt -
maximizers, as long as the quality of the approximation εt is controlled. This essen-
tially adds technical terms to the equations, without adding much to the general
picture.) We emphasize that the method performs a gradient-type descent in the
function space L2(μX ). At each iteration, it chooses a base predictor to include in
the combination. This predictor is chosen so as to maximally reduce the value of
the risk functional. However, the main difference with a standard gradient descent
is that Algorithm 1 forces the descent direction to belong to F . To understand the
rationale behind this principle, assume that ψ is continuously differentiable in its
first argument. As we have seen earlier, in this case,

−Eξ(Ft (X),Y ) f (X) = −〈∇C(Ft ), f 〉μX ,

and, for ∇C(Ft ) = 0,

−∇C(Ft )

‖∇C(Ft )‖μX

= argmaxF∈L2(μX ):‖F‖μX =1 − 〈∇C(Ft ), F〉μX .

Thus, at each step, Algorithm 1 mimics the computation of the negative gradient by
restricting the search of the supremum to the class F , i.e., by taking

ft+1 ∈ argmax f ∈F − 〈∇C(Ft ), f 〉μX ,

which is exactly (6). In the empirical case (i.e., μX,Y = μn), this descent step takes
the form

ft+1 ∈ argmax f ∈F − 1

n

n∑

i=1

∇C(Ft )(Xi ) · f (Xi ).

Finding this optimum is a non-trivial computational problem, which necessitates a
strategy. For example, in the spirit of the CART algorithm of Breiman et al. (1984),
Chen and Guestrin (2016) use in the XGBoost package a greedy approach that starts
from a single leaf and iteratively adds branches to the tree.

The sequence (wt )t is the sequence of step sizes, which are allowed to change
at every iteration and should be carefully chosen for convergence guarantees. It is
also stressed that the algorithm is assumed to be run forever, i.e., stopping or not the
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iterations is not an issue at this stage of the analysis. Aswewill see in the next section,
the algorithm is convergent under our assumptions (with an appropriate choice of
the sequence (wt )t ), in the sense that

lim
t→∞C(Ft ) = inf

F∈ lin(F )
C(F).

Of course, in the empirical case, the statistical properties as n → ∞ of the limit
deserve a special treatment, connectedwith possible overfitting issues. This important
discussion is postponed to Sect. 4.

Algorithm 2. The principle we used so far rests upon the simple Taylor-like identity
(5), which encourages us to imitate the definition of the negative gradient in the class
F . Still starting from (5), there is however another strategy, maybe more natural,
which consists in choosing ft+1 by a least squares approximation of −ξ(Ft (X),Y ).
To follow this route, we modify a bit the collection of weak learners, and consider
a classP ⊂ L2(μX ) of functions f : X → R such that f ∈ P ⇔ − f ∈ P , and
a f ∈ P for all (a, f ) ∈ R × P (in particular, 0 ∈ P , which is thus a cone of
L2(μX )). Binary trees inRd using axis parallel cuts with k terminal nodes are a good
example of a possible classP . These base learners are of the form f = ∑k

j=1 β j1A j ,
where this time (β1, . . . , βk) ∈ Rk , without any normative constraint.

Given Ft , the idea of Algorithm 2 is to choose ft+1 ∈ P that minimizes the
squared norm between −ξ(Ft (X),Y ) and ft+1(X), i.e., to let

ft+1 ∈ argmin f ∈PE(−ξ(Ft (X),Y ) − f (X))2,

or, equivalently,

ft+1 ∈ argmin f ∈P
(
2Eξ(Ft(X),Y ) f (X) + ‖ f ‖2μX

)
.

A more algorithmic format is shown below.

Gradient Boosting Algorithm 2
1: Require ν a positive real number.
2: Set t = 0 and start with F0 ∈ P .
3: Compute

ft+1 ∈ argmin f ∈P
(
2Eξ(Ft (X), Y ) f (X) + ‖ f ‖2μX

)
(7)

and let Ft+1 = Ft + ν ft+1.
4: Take t ← t + 1 and go to step 3.

We note that, contrary to Algorithm 1, the step size ν is kept fixed during the iter-
ations. We will see in the next section that choosing a small enough ν (depending in
particular on the Lipschitz constant of AssumptionA3) is sufficient to ensure the con-
vergence of the algorithm. In the empirical setting, assuming that ψ is continuously
differentiable in its first argument, the optimization step (7) reads
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ft+1 ∈ argmin f ∈P
1

n

n∑

i=1

(−∇C(Ft )(Xi ) − f (Xi ))
2.

Therefore, in this context, the gradient boosting algorithm fits ft+1 to the negative
gradient instances −∇C(Ft )(Xi ) via a least squares minimization. When ψ(x, y) =
(y − x)2/2, then −∇C(Ft )(Xi ) = Yi − Ft (Xi ), and the algorithm simply fits ft+1

to the residuals Yi − Ft (Xi ) at step t , in the spirit of original boosting procedures.
This observation is at the source of gradient boosting, which Algorithm 2 generalizes
to a much larger variety of loss functions and to more abstract measures.

3 Convergence of the Algorithms

This section is devoted to analyzing the convergence of the gradient boosting Algo-
rithms 1 and 2 as the number of iterations t tends to infinity. Despite its importance,
no results (or only partial answers) have been reported so far on this question.

3.1 Algorithm 1

The convergence of this algorithm rests upon the choice of the step size sequence
(wt )t , which needs to be carefully specified. We take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ(Ft(X),Y ) ft+1(X)

)
, t ≥ 0, (8)

where L is the Lipschitz constant of Assumption A3. Clearly, the sequence (wt )t is
nonincreasing. It is also nonnegative. To see this, just note that, by definition,

ft+1 ∈ argmax f ∈F − Eξ(Ft(X),Y ) f (X),

and thus, since 0 ∈ F , −Eξ(Ft(X),Y ) ft+1(X) ≥ 0. The main result of this section
is encapsulated in the following theorem.

Theorem 1 Assume that Assumptions A1 and A3 are satisfied, and let (Ft )t be
defined by Algorithm 1 with (wt )t as in (8). Then

lim
t→∞C(Ft ) = inf

F∈lin(F )
C(F).

Proof See Supplementary Material Document. �

Observe that Theorem 1 holds without Assumption A2, i.e., there is no need
here to assume that the function ψ(x, y) is strongly convex in x . However, when-
ever Assumption A2 is satisfied, there exists as in (4) a unique boosting predictor
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F̄ ∈ lin(F ) such that C(F̄) = inf F∈ lin(F ) C(F), and the theorem guarantees that
limt→∞ C(Ft ) = C(F̄).

The proof of the theorem relies on the following lemma, which states that the
sequence (C(Ft ))t is nonincreasing. Since C(F) is nonnegative for all F , we con-
clude that C(Ft ) ↓ infk C(Fk) as t → ∞. This is the key argument to prove the
convergence of C(Ft ) toward inf F∈ lin(F ) C(F).

Lemma 1 Assume that Assumptions A1 and A3 are satisfied. Then, for each t ≥ 0,

C(Ft ) − C(Ft+1) ≥ Lw2
t+1.

In particular, C(Ft ) ↓ infk C(Fk) as t → ∞,
∑

t≥1 w
2
t < ∞, and limt→∞ wt = 0.

Proof Let t ≥ 0. Recall that Ft+1 = Ft + wt+1 ft+1. If ft+1 = 0, then wt+1 = 0 and
Ft+1 = Ft , so that there is nothing to prove. Thus, in the remainder of the proof, it is
assumed that ft+1 is different from zero and, in turn, that ‖ ft+1‖μX = 1. Applying
technical Lemma 1 of the Supplementary Material Document, we may write

C(Ft ) ≥ C(Ft+1) − w2
t+1L − wt+1Eξ(Ft(X),Y ) ft+1(X)

≥ C(Ft+1) − w2
t+1L + 2Lwt+1 min

(
wt ,−(2L)−1Eξ(Ft(X),Y ) ft+1(X)

)

= C(Ft+1) + Lw2
t+1,

by definition (8) of the sequence (wt )t . �

Theorem 1 ensures that the risk of the boosting iterates gets closer and closer
to the minimal risk as the number of iterations grows. It turns out that, whenever
lin(F ) = L2(μX ), under AssumptionA2 and the smooth framework of Assumption
A′

3, the sequence (Ft )t itself approaches F̄ = argminF∈L2(μX )C(F), as shown in
Corollary 1 below. This corollary is an easy consequence of Theorem 1 and the
strong convexity of C .

Corollary 1 Assume that lin(F ) = L2(μX ). Assume, in addition, that Assumptions
A1, A2, and A′

3 are satisfied, and let (Ft )t be defined by Algorithm 1 with (wt )t as in
(8). Then

lim
t→∞ ‖Ft − F̄‖μX = 0,

where
F̄ = argminF∈L2(μX )C(F).

Proof By the α-strong convexity of C ,

C(Ft ) ≥ C(F̄) + Eξ(F̄,Y )(Ft − F̄) + α

2
‖Ft − F̄‖2μX

,

which, under A′
3, takes the more familiar form
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C(Ft ) ≥ C(F̄) + 〈∇C(F̄), Ft − F̄〉μX + α

2
‖Ft − F̄‖2μX

.

But, since F̄ = argminF∈L2(μX )C(F), we know that 〈∇C(F̄), Ft − F̄〉μX = 0. Thus,

C(Ft ) − C(F̄) ≥ α

2
‖Ft − F̄‖2μX

,

and the conclusion follows from Theorem 1. �

We would like to close this subsection by stressing that Theorem 1 is not quan-
titative, in the sense that nothing is known about the speed of convergence when
increasing the number of iterations of the algorithm. This is an open question, which
unfortunately cannot be dealt with in the present article. In line with the remarks of a
referee, we believe that the existing analyses for L2Boosting (e.g., Bühlmann 2006)
and weak greedy algorithms (e.g., Temlyakov 2000; Champion et al. 2014) could be
a promising route to follow.

3.2 Algorithm 2

Recall that, in this context, each iteration picks an ft+1 ∈ P that satisfies

2Eξ(Ft (X),Y ) ft+1(X) + ‖ ft+1‖2μX
≤ 2Eξ(Ft (X),Y ) f (X) + ‖ f ‖2μX

for all f ∈ P.

Theorem 2 Assume that Assumptions A1–A3 are satisfied, and let (Ft )t be defined
by Algorithm 2 with 0 < ν < 1/(2L). Then

lim
t→∞C(Ft ) = inf

F∈lin(P )
C(F).

Proof See Supplementary Material Document. �

The architecture of the proof is similar to that of Theorem 1. (Note however that
this theorem requires the strong convexity Assumption A2). In particular, we need
the following important lemma, which states that the risk of the iterates decreases at
each step of the algorithm.

Lemma 2 Assume that Assumptions A1 and A3 are satisfied, and let 0 < ν <

1/(2L). Then, for each t ≥ 0,

C(Ft ) − C(Ft+1) ≥ ν

2
(1 − 2νL)‖ ft+1‖2μX

.

In particular,C(Ft ) ↓ infk Ck as t → ∞,
∑

t≥1 ‖ ft‖2μX
< ∞, and limt→∞ ‖ ft‖μX =0.
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Proof Let t ≥ 0. Applying technical Lemma 1 of the Supplementary Material Doc-
ument, we may write

C(Ft )

≥ C(Ft+1) − ν2L‖ ft+1‖2μX
− νEξ(Ft (X),Y ) ft+1(X)

= C(Ft+1) − ν2L‖ ft+1‖2μX
− ν

2

(
2Eξ(Ft (X),Y ) ft+1(X) + ‖ ft+1‖2μX

) + ν

2
‖ ft+1‖2μX

.

Upon noting that 2Eξ(Ft(X),Y ) ft+1(X) + ‖ ft+1‖2μX
≤ 0 (since 0 ∈ P), we con-

clude that
C(Ft ) ≥ C(Ft+1) + ν

2
(1 − 2νL)‖ ft+1‖2μX

.

�

Remark 1 The parameter ν can be regarded as controlling the learning rate of
the boosting procedure. The lower bound of Lemma 2 suggests the optimal value
ν� = 1/(4L). In practice, ν is often chosen “small enough”, which leads to a larger
number of iterations (and thusmore computing time) for the same training risk. All in
all, both ν and the number of iterations control prediction risk and these parameters
do not operate independently.

As in Algorithm 1, the sequence (Ft )t approaches F̄ = argminF∈L2(μX )C(F),

provided lin(P) = L2(μX ) andA′
3 is satisfied in place ofA3. This is summarized in

the following corollary. Its proof is similar to the proof of Corollary 1 and is therefore
omitted.

Corollary 2 Assume that lin(P) = L2(μX ). Assume, in addition, that Assumptions
A1, A2, and A′

3 are satisfied, and let (Ft )t be defined by Algorithm 2 with 0 < ν <

1/(2L). Then
lim
t→∞ ‖Ft − F̄‖μX = 0,

where
F̄ = argminF∈L2(μX )C(F).

Theorem 1/Corollary 1 and Theorem 2/Corollary 2 guarantee that, under appro-
priate assumptions, Algorithms 1 and 2 converge toward the infimum of the risk
functional. Given the unusual form of these algorithms, which have the flavor of
gradient descents while being different, these results are all but obvious and cannot
be deduced from general optimization principles. As far as we know, they are novel
in the gradient boosting literature and extend our understanding of the approach.

Perhaps the most natural framework of Algorithms 1 and 2 is when μX,Y = μn ,
the empirical measure. In this statistical context, both algorithms track the infimum
of the empirical risk functional Cn(F) = 1

n

∑n
i=1 ψ(F(Xi ),Yi ) over the linear com-

binations of weak learners in F (Algorithm 1) or in P (Algorithm 2). This task is
achieved by sequentially constructing linear combinations of base learners, of the
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form Ft = F0 + ∑t
k=1 wk fk with fk ∈ F forAlgorithm1, and Ft = F0 + ν

∑t
k=1 fk

with fk ∈ P for Algorithm 2. We stress that, in the empirical case, the boosted iter-
ates Ft and their eventual limit F̄n are measurable functions of the data set Dn . That
being said, Theorem 1 and Theorem 2 are numerical-analysis-type results, which
do not provide information on the statistical properties of the boosting predictor F̄n .
From this point of view, more or less catastrophic situations can happen, depending
on the “size” of lin(F ) (Algorithm 1) or lin(P) (Algorithm 2), which should not
be neither too small (to catch complex decisions) nor excessively large (to avoid
overfitting).

To be convinced of this, consider for example Algorithm 1 with ψ(x, y) = (y −
x)2 (least squares regression problem) and F = all binary trees with d + 1 leaves.
Denote by Pn the empirical measure based on the Xi only, 1 ≤ i ≤ n. Then, by
Theorem 1, limt→∞ Cn(Ft ) = Cn(F̄n), where

F̄n = argminF∈L2(Pn)Cn(F).

Assume, to simplify, that all Xi are different. It is then easy to see that the boosting
predictor F̄n takes the value Yi at each Xi and is arbitrarily defined elsewhere. Of
course, in general, such a function F̄n does not converge as n → ∞ toward the
regression function F�(x) = E(Y |X = x), and this is a typical situation where the
gradient boosting algorithms overfit. The overfitting issue of boosting procedures
has been recognized for a long time, and various approaches have been proposed
to combat it, in particular via early stopping (that is, stopping the iterations before
convergence; see, e.g., Bühlmann and Yu 2003; Mannor et al. 2003; Zhang and Yu
2005; Bickel et al. 2006; Bartlett and Traskin 2007).

Nevertheless, the natural question we would like to answer is whether there exists
a reasonable context in which the boosting predictors enjoy good statistical proper-
ties as the sample size grows, without resorting to any stopping strategy. The next
section provides a positive response. The major constraint we face, imposed by the
gradient-descent nature of the algorithms, is that we are required to perform a min-
imization over a vector space (lin(F ) for Algorithm 1 and lin(P) for Algorithm
2). In particular, there is no question of imposing constraints on the coefficients of
the linear combinations, which, for example, cannot reasonably be assumed to be
bounded. As we will see, the trick is to carefully constrain the “complexity” of the
vector spaces lin(F ) or lin(P) in a manner compatible with the algorithms. The
second message is the importance of having a strongly convex risk functional to
minimize, which, in some way, restrict the norm of the sequence (Ft )t≥0 of boosted
iterates. As we have pointed out several times, if the loss function is not natively
strongly convex in its first argument, then this type of regularization can be achieved
by resorting to an L2-type penalty.
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4 Large Sample Properties

We consider in this section a functional minimization problem whose solution can
be computed by gradient boosting and enjoys non-trivial statistical properties. The
context and notation are similar to that of the previous sections, but must be slightly
adapted to fit this new framework.

For simplicity, it will be assumed throughout that X is a compact subset of Rd .
We consider i.i.d. dataDn = {(X1,Y1), . . . , (Xn,Yn)} taking values inX × Y , and
let Pn be the empirical measure based on the Xi only, 1 ≤ i ≤ n. We denote by P
the common distribution of the Xi and assume that P has a density g with respect to
the Lebesgue measure λ on Rd , with

0 < inf
X

g ≤ sup
X

g < ∞.

We concentrate on Algorithm 1 and take as weak learners a finite classFn of simple
functions on X with ±1 values, which may possibly vary with the sample size n.
It is actually easy to verify that all subsequent results are valid for Algorithm 2 by
lettingPn = {λ f : f ∈ Fn, λ ∈ R}.

The typical example we have in mind forFn is a finite class of binary trees using
axis parallel cuts with k leaves. Of course, the parameter k has to be carefully chosen
as a function of the sample size to guarantee consistency, as we will see below.
The fact that the class Fn is supposed to be finite should not be too disturbing,
since in practice the optimization step (6) is typically performed over a finite family
of functions. This is for example the case when a CART-style top-down recursive
partitioning is used to compute the minimum at each iteration of the algorithm. In
this approach, the optimal tree in (6) is greedily searched for by passing from one
level of the node to the next one with cuts that are located between two data points.
So, even though the collectionFn may be very large, it is nevertheless fair to assume
that its cardinal is finite.

As before, it is assumed that the identically zero function belongs toFn . So, in this
framework, we see that there exists a (large) integer N = N (n) ≥ 1 and a partition of
X intomeasurable subsets An

j , 1 ≤ j ≤ N , such that any F ∈ lin(Fn) takes the form

F = ∑N
j=1 α j1An

j
, where (α1, . . . , αN ) ∈ RN . To avoid pathological situations, we

assume that there exists a positive sequence (vn)n such that min1≤ j≤N λ(An
j ) ≥ vn .

Of course, it is supposed that N → ∞ as n tends to infinity.
We let φ : R × Y → R+ be a loss function, assumed to be convex in its first

argument and to satisfy φ̄ := supy∈Y φ(0, y) < ∞. In linewith the previous sections,
we are interested in minimizing over lin(Fn) the empirical risk functional Cn(F)

defined by

Cn(F) = 1

n

n∑

i=1

ψ(F(Xi ),Yi ),
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where ψ(x, y) = φ(x, y) + γnx2 and (γn)n is a sequence of positive parameters
such that limn→∞ γn = 0. (Note that γn depends only on n and is therefore kept fixed
during the iterations of the algorithm.) Put differently,

Cn(F) = An(F) + γn‖F‖2Pn , (9)

where

An(F) = 1

n

n∑

i=1

φ(F(Xi ),Yi ).

Assumption A1 is obviously satisfied (with μX,Y = μn , in the notation of Sect. 3),
and the same is true for Assumption A2 by the α-strong convexity of the function
ψ(·, y) for each fixed y, with α independent of y.

Remark 2 If the function φ(·, y) is natively α-strongly convex with a parameter
α independent of y, then we may consider the simpler problem of minimizing the
functional An(F). Indeed, in this case there is no need to resort to the γn‖F‖2Pn
penalty term since Lemma 3 of the Supplementary Material Document allows to
bound ‖F‖2Pn . As we have seen in Sect. 2, this is for example the case in the least
squares problem, when φ(x, y) = (y − x)2. However, to keep a sufficient degree of
generality, we will consider in the following the more general optimization problem
(9).

Now, let
F̄n = argminF∈ lin(F n)

Cn(F).

We have learned in Theorem 1 that whenever AssumptionA3 is satisfied, the boosted
iterates (Ft )t of Algorithm 1 satisfy limt→∞ Cn(Ft ) = Cn(F̄n), i.e.,

lim
t→∞

(
An(Ft ) + γn‖Ft‖2Pn

) = An(F̄n) + γn‖F̄n‖2Pn .

For F ∈ L2(P), the population counterpart of An(F) is the convex functional
A(F) := Eφ(F(X1),Y1), which is assumed to be locally bounded, and thus con-
tinuous. Throughout, we denote by F� a minimizer of A(F) over L2(P), i.e.,

F� ∈ argminF∈L2(P)A(F).

Wehave for example F�(x) = E(Y |X = x) in the regressionproblemwithφ(x, y) =
(y − x)2 and F�(x) = log( η(x)

1−η(x) ) in the classification problem with φ(x, y) =
log2(1 + e−yx ), where η(x) = P(Y = 1|X = x).

Our goal in this section is to investigate the large sample properties of F̄n , i.e., to
analyze the statistical behavior of the boosting predictor F̄n as n → ∞. In particular,
a sensible objective is to show that A(F̄n) gets asymptotically close to the minimal
risk A(F�) as the sample size grows. This necessitates a proof, since all we know
for now is that
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An(F̄n) + γn‖F̄n‖2Pn − A(F�) = inf
F∈ lin(F n)

(
An(F) + γn‖F‖2Pn − A(F�)

)
,

which is our starting point. The following assumption on φ will be needed in the
analysis:

A4 For all p ≥ 0, there exists a constant ζ(p) > 0 such that, for all (x1, x2, y) ∈
R2 × Y with max(|x1|, |x2|) ≤ p,

|φ(x1, y) − φ(x2, y)| ≤ ζ(p)|x1 − x2|.

It is readily seen that all classical convex losses in regression and classification
satisfy this local Lipschitz assumption. Finally, we let An(x) = An

j whenever x ∈ An
j ,

and, for E ⊂ Rd ,
diam(E) = sup

x,x ′∈E
‖x − x ′‖.

Recall that φ̄ := supy∈Y φ(0, y) < ∞.

Theorem 3 Assume that Assumptions A3 (with ψ(x, y) = φ(x, y) + γnx2) and A4

are satisfied, and that F� is bounded. Assume, in addition, that diam(An(X)) → 0
in probability as n → ∞. Then, provided γn → 0, N → ∞, log N

nvn
→ 0, and

1√
nvnγn

ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have limn→∞ EA(F̄n) = A(F�).

Proof See Supplementary Material Document. �

Themainmessage of this theorem is that, under appropriate conditions on the loss
and provided the size of the weak learner classes are judiciously increased, gradient
boosting does not overfit. In other words, in this framework, stopping the iterations
is not necessary and the algorithms may be run indefinitely, without worrying about
early stopping issues.

In line with Remark 2, we leave it as an exercise to prove that if the function
φ(·, y) is already α-strongly convex with a parameter α independent of y, then a
similar result holds with the conditions N → ∞, log N

nvn
→ 0, and

1√
nvn

ζ

(√
a

vn infX g

)
→ 0,

where a = 2
α
supy∈Y |ξ(0, y)| +

√
2φ̄/α. In this case, we can take γn = 0 (i.e., no

penalty) and resort to Lemma 3 of the Supplementary Material Document to bound
the quantity ‖F‖2Pn .
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Fig. 1 Four examples of trees in the class Fn , in dimension d = 2, with kn = 4

Next, we point out that the conditions of Theorem 3 are mild and cover a wide
variety of losses and possible classes of weak learners. As an example, let X =
[0, 1]d and take for Fn the set of all binary trees on [0, 1]d with kn leaves, where
cuts are perpendicular to the axes and are located at the middle of the cells. Although
combinatorially rich, this family of trees is finite (see Fig. 1 for an illustration in
dimension d = 2).

It is easy to verify that any F ∈ lin(Fn) takes the form F = ∑N
j=1 α j1An

j
, where

N ≤ 2dkn and the An
j , 1 ≤ j ≤ N , form a regular grid over [0, 1]d . Thus, clearly,

vn ≥ 2−dkn . In addition, considering for example the loss φ(x, y) = (y − x)2, we
see that the conditions of Theorem 3 take the simple form

kn → ∞,
kn2dkn

n
→ 0, and

2dkn√
n

→ 0.
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Let us finally note that in the ±1-classification setting, each F defines a classifier gF
in a natural way, by

gF (x) =
{+1 if F(x) > 0

−1 otherwise,

and the main concern is not the behavior of the theoretical risk A(F) with respect
to A(F�), but rather the proximity between the probability of error L(gF ) :=
P(gF (X) = Y ) and the Bayes risk L� := infg:X →{−1,1} P(g(X) = Y ). For most
classification losses (Zhang 2004; Bartlett et al. 2006), the difference L(gF ) − L�

is small as long as A(F) − A(F�) is. In our framework, we conclude that for such
well-behaved losses, under the assumptions of Theorem 3,

lim
n→∞EL(gF̄n ) = L�.
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Nonparametric Model-Based Estimators
for the Cumulative Distribution Function
of a Right Censored Variable in a Small
Area

Sandrine Casanova and Eve Leconte

Abstract In survey analysis, the estimation of the cumulative distribution function
(cdf) is of great interest as it facilitates the derivation of mean/median estimators
for both populations and sub-populations (i.e. domains). We focus on small domains
and consider the case where the response variable is right censored. Under this
framework, we propose a nonparametric model-based estimator that extends the cdf
estimator of Casanova (2012) to the censored case: it uses auxiliary information in
the form of a continuous covariate and utilizes nonparametric quantile regression.
We then employ simulations to compare the constructed estimator with the model-
based cdf estimator of Casanova and Leconte (2015) and theKaplan–Meier estimator
(Kaplan and Meier 1958), both of which use only information contained within the
domain: the quantile-based estimator performs better than the former two for very
small domain sample sizes. Access times to the first job for young female graduates
in the Occitania region are used to illustrate the new methodology.

1 Introduction

In survey sampling, the classical literature studies estimation of totals or means,
but in many applications, the parameters of interest are more complex: they can be
quantiles (see e.g. Rueda et al. 2004) or other non-linear parameters derived from
the cumulative distribution function (cdf) of the response variable. We consider the
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estimation of the cdf in a possibly small domain when the variable of interest is
right censored. This is the case when the response variable is a duration which is
observed during a limited period of time, e.g. the access time to the first job for
female graduates, which is utilized in the example section. This variable is censored
for graduates who have not found a job at the end of the survey. The considered
domains are defined by the different types and levels of education.

When the size of the domain is large enough, the estimation of the parameter of
interest is based on the sampled individuals of the domain and the resulting direct
estimators are sufficiently accurate. However, in many practical applications, sizes
of the domain samples are not large enough. In this case, the estimation generally
uses auxiliary information of a covariate and, in addition to it, some information is
“borrowed” from the other domains.

In small area estimation, the classical technique which captures domain effects is
the linear mixed model (see Rao 2003). When the errors are assumed to be Gaussian,
estimates of the regression parameter, as well as predictions of random effects, are
obtained by maximizing the likelihood function. This leads to the empirical best
linear unbiased predictor (EBLUP) of the variable of interest. However, thesemodels
are very dependent on strong distributional assumptions such as the normality and
homoscedasticity of the error terms. In order to explore a non-linear relationship
between the variable of interest and the covariate, Salvati et al. (2010b) have proposed
a nonparametric version of the EBLUP for the small area mean using penalized
splines. Alternatively, Chambers and Tzavidis (2006) predict the mean in a small
area using parametric conditional M-quantiles. A nonparametric estimator of the
small area mean using M-quantiles via penalized splines can be found in Salvati et
al. (2011).

As far as cdf estimation in a small area is concerned, an estimator based on
conditional parametric M-quantiles can also be found in Chambers and Tzavidis
(2006). Casanova (2012) extended their technique to the nonparametric setting using
conditional M-quantiles via kernel regression. Alternatively, Salvati et al. (2010a)
propose to estimate the cdf in a small area by a weighted sum of the sample data
of the area of interest with calibrated sample weights based on the distribution of a
covariate.

Casanova and Leconte (2015) proposed a nonparametric model-based estimator
for the cdf of a right censored variable in a finite population, but to the best of our
knowledge, there is no literature about the estimation of the cdf in small domains
with right censored data. This can be due to the fact that methods that deal with
censored data were originally developed in the medical field, where survey sampling
is not usual.

In Sect. 2, we propose a nonparametric model-based estimator for the cdf in a
small area when the variable of interest is right censored. Estimation is performed
by adapting the technique proposed in Casanova (2012) to the censored case. In
Sect. 3, model-based simulations compare the new estimator to the two following
direct estimators: the naive Kaplan–Meier estimator (Kaplan and Meier 1958) and
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the model-based estimator of Casanova and Leconte (2015) applied to a domain.
Access times to the first job for young female graduates in the Occitania region are
used to illustrate the new methodology in Sect. 4. Concluding remarks are given in
Sect. 5.

2 Estimation of the Cdf of a Censored Variable in a Small
Area

After presenting the framework, we review two direct estimators of the cdf in a small
area in presence of censoring. We then develop a new small area indirect estimator.

2.1 Framework

Consider a finite population P of size N which is partitioned into d sub-populations
(i.e. domains) Ui of size Ni , i = 1, . . . , d. Let s be a sample of P of size n and let
si = s ∩Ui be a sample of the domain Ui with size ni . Let ti j be the value of the
variable of interest measured for the individual j of the domain Ui . The value of ti j
is supposed to be known only on si and possibly right censored by ci j . So, for sample
si , we observe yi j = min(ti j , ci j ) and δi j = 1I(ti j ≤ ci j ). Let xi j denote the value of
a continuous covariate X measured for the individual j of the domain Ui . The cdf

of the variable of interest T on the domain Ui is Fi (t) = 1

Ni

∑

j∈Ui

1I(ti j ≤ t).

2.2 Direct Estimators

We recall that direct estimators use only domain information.

2.2.1 The Kaplan–Meier Domain Estimator

It is well known that the empirical cdf is not a consistent estimator of the cdf when
the data are censored. On the other hand, we can naively but consistently estimate Fi

using the Kaplan–Meier estimator (Kaplan andMeier 1958) computed on the sample
si of the domain Ui . As the original Kaplan–Meier estimator is undetermined after
the last observed time if this latter is censored, we use Efron’s version (Efron 1967)
instead in order to obtain a distribution function as follows:
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F̂ i
KM (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 −
∏

j∈si

⎧
⎪⎪⎨

⎪⎪⎩
1 − 1

∑

r∈si
1I

(
yir ≥ yi j

)

⎫
⎪⎪⎬

⎪⎪⎭

1I
(
yi j ≤ t, δi j = 1

)

if t < y(ini ),

1 otherwise,
(1)

where y(ini ) denotes the last observed time of domain Ui .

2.2.2 The Casanova and Leconte (2015) Model-Based Domain
Estimator

Since the cdf Fi of the domain Ui can be rewritten as

Fi (t) = 1

Ni

⎛

⎝
∑

j∈si
1I(ti j ≤ t) +

∑

j∈Ui\si
1I(ti j ≤ t)

⎞

⎠ , (2)

we can probably improve its estimation by computingmodel-based estimators which
use auxiliary information to predict the values of the variable of interest for the non-
sampled individuals. In this context, an obvious estimator of the cdf in domainUi can
be derived from the estimator of the cdf in the population proposed by Casanova and
Leconte (2015) by replacing s and P by si and Ui , respectively, in all construction
steps of the estimator.

This model-based approach requires defining a superpopulation model. In a non-
parametric setting, we assume the following ξ model:

ti j = m(xi j ) + ei j , i = 1, . . . , d, j = 1, . . . , Ni ,

where the ei j are i.i.d. variables with cdf Gi and m(xi j ) is the conditional median of
T given X = xi j . Moreover, to obtain consistent and efficient estimators, we need to
assume that the sampling design is not informative (or ignorable) which means that
the same model holds for the sample and the population. This justifies the choice of
a nonparametric model for which the risk of misspecification is reduced.

Since IEξ

(
1I(ti j ≤ t)

) = P(ti j ≤ t) = Gi (t − m(xi j )), a prediction of 1I(ti j ≤ t)
can be obtained by estimating Gi (t − m(xi j )). The conditional median m(xi j ) can
be estimated by m̂(xi j ), obtained by inverting the smoothed version F̂ i

SGKM of the
generalized Kaplan–Meier estimator of the conditional cdf proposed by Leconte et
al. (2002). Let Ĝi

KM denote the Kaplan–Meier estimator of the cdf Gi of the errors,
computed with the residuals ε̂i j = yi j − m̂(xi j ), j ∈ si . Note that the population
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level bandwidths hT and hX have to be replaced by suitable domain level bandwidths
hiT and hiX . The resulting estimator, based on formula (2), is

F̂ i
M(t) = 1

Ni

⎛

⎝ni F̂
i
KM (t) +

∑

j∈Ui\si
Ĝi

KM

(
t − m̂(xi j )

)
⎞

⎠ . (3)

2.3 The New Small Area Estimator

When the size of the domain sample is small, the previous estimators may have a
large variance, and methods which use information from other domains are preferred
in order to improve the precision of estimation. Therefore, we propose the following
procedure: analogous to the Casanova and Leconte (2015) estimator, the first term
between the parentheses of formula (2) is estimated using the Kaplan–Meier esti-
mator on the sample si . In contrast, estimation of the second term of said equation
will use information of the global sample s (and not only the sample si ) in order to
predict 1I(ti j ≤ t) for the non-sampled individuals of domain Ui . In this framework,
we assume the superpopulation model ζ :

ti j = m(qi , xi j ) + εi j , i = 1, . . . , d, j = 1, . . . , Ni ,

where the εi j are i.i.d. variables with cdf Hi , qi is a coefficient in (0, 1) characterizing
the position of the domain Ui , and m(qi , xi j ) is the conditional quantile of order qi
of T given X = xi j . Each ti j value can be considered as the conditional quantile of T
given X = xi j for an order denoted q(ti j , xi j ). Therefore, following Chambers and
Tzavidis (2006), the coefficient qi of the domain Ui can be defined by the mean or
median of the conditional quantile orders q(ti j , xi j ) of the units j in domain Ui .

Note that the conditional quantile orders are determined at the population level
and we expect quantile orders of individuals of the same domain to have similar
values if part of the data’s variability is explained by the domain.

Like the Casanova and Leconte (2015) estimator, the conditional quantile orders
are estimated with the smoothed version of the generalized Kaplan–Meier estimator
on the sample s as follows:

q̂(ti j , xi j ) = F̂SGKM(yi j | xi j ).

Since the yi j values can be right censored, so can be the q̂(ti j , xi j ). So, to estimate
the global order qi of domain Ui by the mean or the median of the q̂(ti j , xi j ), we
first need to estimate their cdf while accounting for censoring. This can be easily
performed by the Kaplan–Meier estimator. As the median is easier to compute than
the mean in presence of censored data, we choose to estimate qi using the median
q̂i , obtained by inverting the Kaplan–Meier estimator.
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Since IEζ

(
1I(ti j ≤ t)

) = P(ti j ≤ t) = Hi (t − m(qi , xi j )), 1I(ti j ≤ t) can be pre-
dicted by estimating Hi (t − m(qi , xi j )). A straightforward estimator m̂(q̂i , xi j ) of
m(qi , xi j ) is the conditional quantile to xi j of order q̂i , which is the solution in θ

of F̂SGKM
(
θ | xi j

) = q̂i and is obtained by inversion of F̂SGKM. Notice that once
again, similar to the estimation of the quantile order qi , the whole sample is used
to compute this estimator, allowing it to “borrow strength” from the other domains.
Let us precise that the smoothed version of the Kaplan–Meier estimator on the sam-
ple s requires two suitable bandwidths hT and hX common to all domains. The cdf
Hi (t − m(qi , xi j )) can then be estimated by the Kaplan–Meier estimator computed
from the possibly right censored residuals ε̂i j = yi j − m̂(q̂i , xi j ), j ∈ si . We denote
this estimator by Ĥ i

KM and derive the following estimator of the cdf of T in the domain
Ui :

F̂ i
Q(t) = 1

Ni

⎛

⎝ni F̂
i
KM(t) +

∑

j∈Ui\si
Ĥ i

KM

(
t − m̂(q̂i , xi j )

)
⎞

⎠ . (4)

It is obvious that the obtained estimator is a distribution function.

3 Model-Based Simulations

Wepresent a simulation study to compare the performance of the three cdf estimators
showcased in Sect. 2 where the population is partitioned into domains which may
be small. We aim to estimate the cdf Fi in each domain. Therefore, we compute
the new estimator F̂ i

Q. Moreover, in order to measure the benefits of “borrowing

strength” from neighbours, we also compute the estimator F̂ i
M in each domain. The

Kaplan–Meier estimator F̂ i
KM of the cdf in each domain is also given as a naive

estimator.

3.1 Description

Wefirst generate 10 domain sizes Ni uniformly distributed over the interval (50, 150),
leading to a population size N = 901. These sizes are kept fixed over iterations.
Then, for each iteration, we generate the ti j values for each domain Ui according
to the accelerated failure time model log(ti j ) = 4 − 1.61xi j + ui + εi j , where the
covariates xi j are uniformly distributed over the interval (1, 4). The error term εi j
follows an extreme value distribution in order to obtain an exponential distribution
for the ti j . Note that for each domain, thismodel is a proportional hazardmodel with a
hazard ratio (HR) equal to 5 (i.e. exp(1.61)), which means that the ratio of the hazard
rates of two individuals whose covariates x differ from one unit is constant over time
and equal to 5. The domain effects ui follow a Gaussian distributionN (0, σ 2). Note
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that the variance of εi j is equal to 1.645, so that ρ = σ 2

σ 2+1.645 corresponds to the part
of variability due to the domains (ρ = 10%, 25% and 50% in the simulations). The
times ti j are censored by ci j where ci j is uniformly distributed on (0, c), c being
chosen in order to obtain population censoring rates τ of 10%, 25% and 50%.

For each domain, we then draw a simple random sample without replacement
with a sampling fraction of 10%, leading to domain samples si of sizes ni equal to
7, 9, 8, 7, 12, 9, 9, 8, 12 and 9 for the 10 domains. Samples with a sampling fraction
equal to 5% are also drawn (with samples sizes ni equal to 3, 5, 4, 4, 6, 5, 5, 4, 6 and
5). We perform L = 1000 iterations.

As far as smoothing is concerned, we choose the triweight kernel K (x) =
35
32

(
1 − x2

)3
1I(−1,1) (x). For each iteration and for each domain Ui , the bandwidths

hiT and hiX for the estimator F̂ i
M are chosen from a grid of bandwidths so that they

minimize the averaged square error (ASE) criterion defined as

ASE(F̂ i
M) = 1

5

5∑

k=1

(
F̂ i

M(t tk) − Fi (t tk)
)2

(5)

where the evaluation times t tk (k = 1, . . . , 5) are the 10th, 25th, 50th, 75th and 90th
percentiles of the distribution of T (computed from a generated population of size
901 000). The cdf Fi of domain Ui is computed for each iteration using all the ti j
times of domain Ui (values generated before censoring the data).

As for the estimator F̂ i
Q, the bandwidths hT and hX of the smoothed generalized

Kaplan–Meier estimator do not depend on the domain and have been chosen in order

tominimize the sum of the averaged square errors over the 10 domains
10∑

i=1

ASE(F̂ i
Q),

where ASE(F̂ i
Q) is defined in the same way as in formula (5). Notice that the estima-

tors m̂(xi j ) and m̂(q̂i , xi j ) used in formulas (3) and (4) respectively are obtained by
linear interpolation on a grid of 30 equally spaced values between the first and 75th
percentiles of the T variable in samples si and s, respectively.

3.2 Results

Following Salvati et al. (2010a), we compare the performance of the three estimators
of the cdf Fi of domainUi in terms of absolute relative bias (ARB) and relative root
mean squared error (RRMSE). Note that the cdf is different for each iteration as the
population is generated at each iteration l and is, therefore, denoted by Fi

l . For each
domainUi and each estimator EST in the set { KM, M, Q}, we compute the estimated
ARB
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̂ARB
(
F̂ i
EST(t)

)
=

(
L−1

L∑

l=1

Fi
l (t)

)−1

L−1

∣∣∣∣∣

S∑

l=1

(
F̂ i
EST,l(t) − Fi

l (t)
)∣∣∣∣∣

and the estimated RRMSE

̂RRMSE
(
F̂ i
EST(t)

)
=

(
L−1

L∑

l=1

Fi
l (t)

)−1
√√√√L−1

L∑

l=1

(
F̂ i
EST,l(t) − Fi

l (t)
)2

.

In practice, the above quantities were computed on the same grid of five time
values as the one used for the ASE in formula (5) and averaged over the 10 domains
for three censoring rates τ , two sampling fractions and three values of ρ, the part
of the variability due to domains. As the results are very similar regardless of the
different ρ values, we only present them for ρ = 25%. Note that at least one uncen-
sored event per domain sample is needed for the computation of the Kaplan–Meier
estimator. Therefore, the number of iterations for which it was possible to compute
the estimators depends on the censoring rate and the sampling fraction (only 489
iterations in the simulation study for 50% censoring and a sampling fraction of 5%).

Table 1 shows the area averages of the estimated MASE (mean of the estimated
ASE over the iterations) of the estimators for two sampling fractions and three cen-
soring rates. The model-based estimators F̂ i

M and F̂ i
Q have lower averaged MASE

than the Kaplan–Meier estimator for all combinations of parameters. When the sam-
pling fraction is small (i.e. 5%, leading to domain sample sizes ni smaller than 6),
the small area estimator F̂ i

Q always behaves better than the domain based estimator

F̂ i
M. On the other hand, when the sampling fraction equals 10%, the two estimators

perform very closely to one another.
As for the bias estimates, shown in Table 2, the direct Kaplan–Meier estimator

enjoys smaller absolute bias compared to the model-based estimators F̂ i
M and F̂ i

Q

for any censoring rate and any sampling fraction at almost all quantiles, which is
expected. On the contrary, the estimators F̂ i

M and F̂ i
Q always record a lower RRMSE

than the Kaplan–Meier estimator, with the difference decreasing for large quantiles
(see Table3). For a sampling fraction of 5%, the estimator F̂ i

Q is more efficient

Table 1 Estimated area averages of MASE computed for the three cdf estimators for a domain
effect measured by ρ = 25%

Sampling
fraction

τ a = 10% τ = 25% τ = 50%

KM M Q KM M Q KM M Q

5% 32.90 20.25 16.68 34.39 23.13 18.05 44.26 35.57 28.36

10% 16.39 9.07 10.59 18.85 11.19 12.52 30.13 23.72 23.39
aτ denotes the censoring rate
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Table 2 Estimated area averages of absolute relative bias (ARB, %) computed for the three cdf
estimators for a domain effect measured by ρ = 25%

Sampling fraction: 5%

Quantile τ a = 10% τ = 25% τ = 50%

KM M Q KM M Q KM M Q

0.10 2.75 25.40 26.57 2.75 17.28 15.60 7.26 14.84 5.97

0.25 1.89 5.80 12.67 2.14 5.50 11.89 5.50 11.15 9.11

0.50 1.11 5.19 12.27 1.54 6.24 9.87 12.39 16.30 10.34

0.75 0.77 4.96 2.45 4.91 8.99 9.28 29.12 28.96 29.12

0.90 1.70 3.83 2.98 9.60 9.27 9.55 9.04 9.04 9.04

Sampling fraction: 10%

Quantile τ = 10% τ = 25% τ = 50%

KM M Q KM M Q KM M Q

0.10 2.31 34.88 26.10 2.27 26.98 17.04 2.67 17.33 4.22

0.25 1.44 1.56 17.55 1.36 1.64 15.23 1.75 2.27 15.77

0.50 0.99 2.12 16.73 0.98 1.64 13.85 3.13 6.00 1.63

0.75 0.51 2.37 1.25 1.92 5.42 6.49 30.58 30.35 30.58

0.90 1.25 2.77 2.37 9.91 9.35 9.87 9.70 9.70 9.70
aτ denotes the censoring rate

Table 3 Estimated area averages of relative root mean square errors (RRMSE, %) computed for
the three cdf estimators for a domain effect measured by ρ = 25%

Sampling fraction: 5%

Quantile τ a = 10% τ = 25% τ = 50%

KM M Q KM M Q KM M Q

0.10 129.64 101.45 75.21 129.91 99.95 70.41 133.13 110.16 72.47

0.25 73.13 53.97 40.04 73.31 55.93 40.82 75.83 61.20 45.83

0.50 42.80 33.52 28.48 44.08 35.46 29.72 53.25 45.12 39.12

0.75 25.67 20.86 22.05 28.40 23.88 24.42 32.81 32.65 32.81

0.90 15.24 12.02 13.55 12.88 12.40 12.82 12.18 12.18 12.18

Sampling fraction: 10%

Quantile τ = 10% τ = 25% τ = 50%

KM M Q KM M Q KM M Q

0.10 90.70 65.95 61.33 90.84 60.93 57.38 91.60 58.40 55.55

0.25 52.23 29.10 34.18 52.39 29.47 33.96 54.01 33.70 36.90

0.50 30.05 22.35 25.02 30.83 23.58 24.53 37.12 29.87 27.71

0.75 17.88 15.37 15.99 21.06 17.57 18.72 34.45 34.22 34.45

0.90 11.52 9.49 10.50 13.25 12.42 13.20 12.90 12.90 12.90
aτ denotes the censoring rate
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than F̂ i
M up to the median and presents comparable RRMSE values for larger quan-

tiles. When the sampling fraction increases to 10%, the domain sample size becomes
sufficient and the estimators F̂ i

M and F̂ i
Q perform similarly.

4 Example

We apply the new methods to data from the CEREQ (a French center of study and
researchon employment and skills). TheCEREQsurveys younggraduates about their
professional careers three years after their diplomas (retrospective study about their
monthly position for the previous three years). In our application, we only focus on
the 10,135 girls from the Occitania region in France who left secondary education in
2010. The variable of interest T is the access time to the first job (in months), which
is censored for the graduates who were still unemployed at the end of the survey
(12.5% of the data). The aim of the CEREQ is to obtain statistics according to the
level and the type of education, which partitions the population into 34 domains
whose sizes vary from 6 to 1,443 girls. An unequal probability sampling led to a
sample of 306 young female graduates and the domain sample sizes vary from 1 to
37. The auxiliary variable, known for the whole population, is the unemployment
rate of the area where the graduate attended school. This variable is significantly
and negatively correlated with the probability of finding a job (Wald test in the Cox
model: p = 0.013). The bandwidths hiT and hiX of the F̂ i

M estimator were selected
by cross-validation techniques adapted to censoring (see formula (11) of Casanova
and Leconte 2015). On the other hand, the F̂ i

Q estimators require choosing a single
pair of bandwidths (hT , hX ) to accommodate all domains. To this aim, we select the
pair that minimizes the following cross-validation criterion taking into account right
censored data:

CVQ =
d∑

i=1

∑

j∈siu
ρq̂i

(
yi j − m̂− j (q̂i , xi j )

)

where siu is the subset of uncensored individuals of s
i , and m̂− j (q̂i , xi j ) is the estimator

of the conditional quantile of order q̂i based on the sample s excluding individual j
of siu . For q ∈ (0, 1), ρq is the loss function associated with the quantile of order q,
defined by

ρq(u) =
{

qu if u ≥ 0,
(q − 1)u if u < 0.

(6)

Figure 1 shows the curves of the three estimators F̂ i
KM, F̂

i
M and F̂ i

Q for four domains of
different sizes. The corresponding estimated quantiles of orders 0.25, 0.50 and 0.75
can be found in Table4. As expected, acquiring a bachelor’s degree or a certificate
of professional competence with apprenticeship leads to shorter access times to the
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Fig. 1 Probability to access to the first job estimated by the three estimators for four different
domains corresponding to a level and a type of education

Table 4 Estimated quantiles (in months) by the three methods for the four domains

Quantile
order

End of middle school Certificate of professional competence

KM M Q KM M Q

0.25 1.57 2.34 1.65 2.98 3.65 3.17

0.50 21.64 25.12 20.69 6.40 7.77 6.74

0.75 33.24 40.93 49.81 15.05 16.45 15.66

Quantile
order

Bachelor’s degree Certificate of professional competence (apprenticeship)

KM M Q KM M Q

0.25 1.90 1.32 2.56 0 0 0.15

0.50 4.48 5.54 4.42 4.01 5.53 4.25

0.75 8.87 9.17 8.71 18.86 16.89 17.70
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first job compared to the two other types of education presented above, with about
50% of female graduates with the two former qualifications finding a job in less than
5 months.

5 Concluding Remarks

Simulations show the gain in precision associated with predicting the variable of
interest for non-sampled individuals, as reflected by the superiority of the estimators
F̂ i

M and F̂ i
Q over the Kaplan–Meier estimator. For small area estimation, when the

domain sample is very small (i.e. of size less than or equal to 6), it is preferable to
borrow strength from neighbours and therefore, estimate the cdf in the domain by the
estimator F̂ i

Q. On the other hand, the median-based estimator F̂ i
M is sufficient when

the domain sample size is larger than 10.
The model-based approach is appropriate and will presumably lead to consistent

estimators when the sampling is not informative. However, when a more complex
sampling method is used or when the sampling is informative, a model-assisted
approach which takes into account the sampling weights would be more suitable. For
instance, following Chambers and Tzavidis (2006), computing the average order q̂i
of domainUi for the small area estimators could incorporate inclusion probabilities,
which would lead to a model-assisted alternative to the estimator F̂ i

Q.
The proposed estimators are based on the generalized Kaplan–Meier estimator

of the conditional cdf, introduced by Beran (1981). Other estimators could have
been used. In particular, Van Keilegom et al. (2001) defined an estimator of the
conditional cdf which behaves better than the original Beran estimator in the right
tail of the distribution even under heavy censoring. Alternatively, as proposed by
Gannoun et al. (2005) in the censored case, the conditional quantiles could have
been directly estimated by local linear polynomials.
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Relaxing Monotonicity in Endogenous
Selection Models and Application to
Surveys

Eric Gautier

Abstract This paper considers endogenous selection models, in particular,
nonparametric ones. Estimating the unconditional law of the outcomes is possible
when one uses instrumental variables. Using a selection equation which is additively
separable in a one dimensional unobservable has the sometimes undesirable property
of instrument monotonicity. We present models which allow for nonmonotonicity
and are based on nonparametric random coefficients indices. We discuss their non-
parametric identification and apply these results to inference on nonlinear statistics
such as the Gini index in surveys when the nonresponse is not missing at random.

1 Introduction

Empirical researchers often face amissing data problem. This is also called selection.
Due to missing data, the observed data on an outcome variable corresponds to draws
from the law of the outcome conditional on nonmissingness. Most of the time, the
law of interest is the unconditional one. But the researcher can also be interested
in the law of the outcome variable for the population that does not reveal the value
of the outcome. For example, surveys rely on a sample drawn at random and the
estimators require the observation of all sampled units. In practice, there is missing
data and those estimators cannot be computed. A common practice is to rely on
imputations. This means that the missing outcomes are replaced by artificial ones
so that the estimator can eventually be computed. In the presence of endogenous
selection, the law conditional on nonselection is the important one for imputation.

It is usual to assume that the data is Missing at Random (henceforth MAR, see
Little and Rubin 2002) in which case there are perfectly observed variables such
that the law of the outcome conditional on them and selection is the same as the
law of outcome conditional on them and nonselection. Under such an assumption,
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the estimable conditional law is the same as the one which is unconditional on
selection. As a consequence, the researcher does not need a model for the joint law
of the outcome and selection and the selection can be ignored. In survey sampling,
the sampling frame can be based on variables available for the whole population, for
example, if it involves stratification. In this case, those variables are natural candidates
for conditioning variables for MAR to hold. In practice, there is noncompliance. It
means that the researcher often does not have observations for all sampled units.
This is called missing data in survey statistics. Though the original sampling law is
known, the additional layer of missing data can be viewed as an additional selection
mechanism conditional on the first one. The law of this second selection mechanism
is unknown to the statistician. Oftentimes it can be suspected that units reveal the
value of a variable partly depending on the value of that variable and the MAR
assumption does not hold. This is a type of endogeneity issue commonly studied in
econometrics. For example, wages are only observed for those who work and those
who do not work might prefer not to work because their wage would be too low.
Firms only carry out investment decisions if the net discounted value is nonnegative.
An individual might be less willing to answer a question on his salary because it
is not a typical one (either low or high). We expect a strong heterogeneity in the
mechanism that drives individuals to not reveal the value of a variable.

When the MAR assumption no longer holds, the selection mechanism cannot be
ignored. Identification of the distribution unconditional on selection or the distribu-
tion conditional on nonselection usually relies on the specification of a model for the
vector formed by the outcome and a binary variable for selection. The alternative
approach is to follow the partial identification route and recognize that the param-
eters of interest which are functionals of these distributions lie in sets. The Tobit
and generalized Tobit models (also called Heckman selection model, see Heckman
1979) are classical parametric selection models to handle endogenous selection. The
generalized Tobit model involves a system of two equations: one for the outcome and
one for the selection. Each of these equations involves an error term and these errors
are dependent, hence endogeneity. Identification in such systems relies on some vari-
ables which appear in the selection equation and are not measurable with respect to
the sigma-field generated by the variables in the outcome equation and which do not
have an effect on the errors. So these variables have an effect on the selection but not
on the outcome. They are called instrumental variables or instruments.

This paper presents nonparametric models in Sects. 3 and 4. We explain in Sect. 4
that having a one-dimensional error term appearing in an additively separable form in
the selection equation implies so-called instrument monotonicity. Instrument mono-
tonicity has been introduced in Imbens and Angrist (1994). It has a strong identi-
fication power but at the same time leads to unrealistic selection equations as we
detail in Sect. 4. To overcome this issue, we present in Sect. 5 selection equations
where the error in the selection equation is multidimensional and appears in a non
additively separable fashion. The baseline specification is a model where the selec-
tion equation involves an index with random coefficients. We show that we can rely
on nonparametric models for these random coefficients. Finally, Sect. 6 presents a
method to obtain a confidence interval around a nonlinear statistic like the Gini index
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with survey data in the presence of non MAR missing data when we suspect that
some instruments are nonmonotonic. These confidence intervals account for both
the uncertainty due to survey sampling and the one due to missing data.

2 Preliminaries

2.1 Notations

Bold letters are used for vectors andmatrices and capital letters for random elements.
In the presence of an identically distributed sample,we add an index i for themarginal
random element of index i . 1{·} denotes the indicator function, ∂p the derivative with
respect to the variable p, 〈·, �〉 the inner product in the Euclidian space, ‖ · ‖ the
euclidian norm, σ the spherical measure on the unit sphere in the Euclidian space.
We denote it by S

d−1 when the Euclidian space is R
d . |Sd−1| is its area. We write a.e.

for almost everywhere. N0 is the set of nonnegative integers and N are the positive
integers.Quasi-analytic functions are functionswhich are infinitely differentiable and
are characterized by the value of a function and all its derivatives at a point. A quasi-
analytic class is defined via certain controls on the sup-norm of all the derivatives
(Laplacians for functions defined on the sphere) as explained for example in Gaillac
and Gautier (2019). Analytic functions are quasi-analytic.

All random elements are defined on the same probability space with probability
P and E is the expectation. The support of a function or random vector is denoted by
supp. We denote by supp(U |X = x) the support of the conditional law of U given
X = x when it makes sense. For a random vector �, f� is its density with respect to
a measure which will be clear in the text and d� is its dimension. We use the notation
f�|X=x for a conditional density and E[U |X = x] for the conditional expectation
function evaluated at x ∈ supp(X). Below we usually write for all x ∈ supp(X)

as if X were discrete. If X is continuous it should often be replaced by a.e. If X
has both a discrete and a continuous component then the “for all” statement should
hold for x in the part of the support which is discrete. Equalities between random
variables are understood almost surely. Random vectors appearing in models and
which realizations are not in the observed data are called unobservable.

2.2 Baseline Setup

In this paper, the researcher is interested in features of the law of a variable Y
given X = x, where x ∈ supp(X). She has a selected sample of observations of Y ,
observations of a vector of which X is a subvector, for the selected and unselected
samples, and R is a binary variable equal to 1 when Y is observed and else is 0.
In this paper, the selection is often interpreted as a response and nonselection as
nonresponse.
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The law of Y given X = x is (nonparametrically) identified if, for a large class
� of measurable functions φ, E[φ(Y )|X = x] can be characterized from the model
equation, the restrictions on the primitives (such as conditional independence when
using an instrumental variables strategy), and the distribution of the observed data.
It is possible to take for � the bounded measurable functions, the bounded and
continuous functions, the set of indicator functions 1{· ≤ t} for all t ∈ R, the set
of functions cos(t ·) and sin(t ·) for all t ∈ R (or certain countable subsets if Y
is bounded). It is possible to add the assumption that � only contains functions
which are nonnegative (a.e. if Y is continuous). For example, one can work with
the functions cos(t ·) + 1, and sin(t ·) + 1 for all t ∈ R. We call such class � an
identifying class.

One can deduce, from the law of Y given X = x, the law of a variable Y given
X = x, where x ∈ supp(X), and R = 0. This is the law of the outcome for the
nonrespondants. It is the useful one for imputation. For all x ∈ supp(X), we have

E[φ(Y )|X = x, R = 0] = E[φ(Y )|X = x] − E[φ(Y )R|X = x]
P(R = 0|X = x)

. (1)

This paper presents identification results for a more fundamental object which is
the joint distribution of the outcome and unobservable in the selection equation given
X = x, where x ∈ supp(X). One can clearly deduce from it by marginalization the
distribution of Y given X = x, where x ∈ supp(X).

2.3 NMAR Missing Data

Let W be a vector, of which X is a subvector, which is observed for the selected and
unselected samples. Inference on the conditional law of Y given X is possible if Y
and R are independent given W , namely if, for all bounded continuous function φ,

E[φ(Y )R|W ] = E[φ(Y )|W ]E[R|W ] (2)

in which case
E[φ(Y )|W ] = E[φ(Y )|W , R = 1] (3)

andwe conclude by the lawof iterated expectations. Condition (2) is calledMissing at
Random (MAR, see Little and Rubin 2002). When it holds without the conditioning
onW , it is calledMissing Completely at Random (MCAR). In econometricsW such
that (3) holds is called a control variable.

We consider cases where the researcher does not know that a specific vectorW is
such that (2) holds. Then R is partly based on Y , even conditionally. This situation is
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called NotMissing at Random (NMAR, see Little and Rubin 2002).1 In the language
of econometrics, this is called endogenous selection.

To handle NMAR missing data, it is usual to rely on a joint model for the deter-
mination of Y and R. This paper considers so-called triangular systems where a
model for R, called a selection equation, is specified and does not involve Y but the
dependence occurs via dependent latent (unobserved) variables. The identification
arguments below rely on a vector Z of so-called instrumental variables which are
observed for the selected and unselected samples. It plays a completely different role
as W and X .

3 Models with One Unobservable in the Endogenous
Selection

Important parametric models rely on Y = X�β + σ EY as a model equation for the
variable of interest, β and σ are unknown parameters, X and EY are independent,
and EY is a standard normal random variable. In the Tobit model, R = 1{Y > yL}
for a given threshold yL . In the Heckman selection model (see Heckman 1979)

R = 1{Z�γ − ER > 0}, (4)

(EY , ER) and (X�, Z�) are independent,

(EY , ER)� is a mean zero gaussian vector with covariance matrix

(
1 ρ

ρ 1

)
.

Equation (4) is the selection equation. The law of Y given X and Z, hence of Y given
X is identified and the model parameters can be estimated by maximum likelihood.
Some functionals of the conditional law ofY given X can be estimated for some semi-
parametric extensions. For example, the conditional mean function can be obtained
by estimating a regression model with an additional regressor which is a function
of Z�γ . This leads to the interpretation that the endogeneity can be understood as a
missing regressor problem.

A more general model is

R = 1{π(Z) > H}, (5)

Z is independent of (H, Y ) given X, (6)

For all x ∈ supp(X), the law of H given X = x is uniform on (0, 1), (7)

For all x ∈ supp(X), supp (π(Z)|X = x) = [0, 1]. (8)

1The terminology nonignorable is also used but is defined for parametric models and requires
parameter spaces to be rectangles. This is why we do not use this terminology in this paper.
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Equation (5) is the selection equation. Thismodel is quite general and clearlyπ(Z) =
E[R|X, Z] = E[R|Z]. Equation (5) is as general as a selection equation that would
be defined as R = 1{g(Z) > ER}, where g and the law of ER are unknown. Indeed,
one would obtain (5) from it by applying the nondecreasing CDF of ER on both sides
of the inequality g(Z) > ER . If we replace (6) by H and Y are independent given
X, Z, assumption MAR holds by taking W a vector which components are those
of X and Z. Condition (6) allows for dependence between H and Y and R to be
partly based on Y , even conditionally. The vector Z thus plays a very different role
from W in the MAR assumption. By (6), Z has a direct effect on R via π(Z) which
is non trivial but it does not have an effect on Y given X . This type of properties
for Z is what makes it a vector of instrumental variables. It provides an alternative
identification strategy. Equation (8) can be replaced by

For all x ∈ supp(X),

supp (π(Z)|X = x) contains a nonempty open set and,
for all φ ∈ �x, E[φ(Y )1{F(u) > H}|X = x] ∈ Cx

⎫⎬
⎭ , (9)

for a well chosen CDF F such that F(x) = ∫ x
−∞ f (t)dt , where f is integrable and

nonnegative a.e., and identifying classes �x and Cx a quasi-analytic classes of func-
tions (see Gaillac and Gautier 2019).

Note that, by (13) below, for (9) to hold it is necessary that f is positive a.e. Also,
for all x ∈ supp(X), the law of (Y, H) conditional on X = x is identified if

For all x ∈ supp(X), there exists an identifying class �x

and functions F and f as above such, that for all φ ∈ ⊕
x,

E[φ(Y )|X = x, H = F(·)] f (·) is identified

⎫⎬
⎭ (10)

We conclude this section with the following result:

Theorem 1 If (5)–(7) and either (8) or (9) hold, then one has (28). Moreover, for
all x ∈ supp(X),

E[φ(Y )|X = x] =
∫
R

∂uE[φ(Y )R|X = x, π(Z) = F(u)]du (11)

= E[φ(Y )R|X = x, π(Z) = 1]. (12)

Proof Based on (6), for all φ ∈ �, x∈supp(X), and u such that F(u)∈supp(π(Z)),

E[φ(Y )R|X = x, π(Z) = F(u)] = E[φ(Y )1{F(u) > H}|X = x]

so

E[φ(Y )|X = x, H = F(u)] f (u) = ∂uE[φ(Y )R|X = x, π(Z) = F(u)]. (13)
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The conclusion follows from either (8) or (9). By integration we obtain (11), hence

E[φ(Y )|X = x] = E[φ(Y )R|X = x, π(Z) = 1] − E[φ(Y )R|X = x, π(Z) = 0],

and (12) follows because E[φ(Y )R|X = x, π(Z) = 0] = 0. �

Remark 1 Similar formulas as (11) and (12) are given for a binary treatment effect
model in Heckman and Vytlacil (2005) for effects that depend on an average (i.e.
φ(y) = y for all y ∈ R) rather than the whole law as above. There the integrand is
called the local instrumental variable.

Condition (8) is strong. First, the support of Z should be infinite so in practice,
we think that at least a variable in Z is continuous. Second, the variation of Z should
be large enough to move the selection probability π(Z) from 0 to 1. This is a “large
support” assumption.Using (12) for identification is called “identification at infinity”.
Using it to construct an estimator does not make an efficient use of the data because
it would make use of the subsample for which π(Zi ) is close to 1. In contrast, (11)
can be used to form estimators which use all the data.

The techniques in Gaillac and Gautier (2019) allow for supports which are only
countable in (8). It is possible to use the techniques in Gaillac and Gautier (2019),
Gaillac and Gautier (2019) if we replace quasi-analytic with certain analytic classes.
The advantage is to be able to use stable Fourier methods for extrapolation to build
an estimator. Equation (8) were not required in the parametric Tobit and Heckman
selection models. Condition (9) is a nonparametric middle ground between a para-
metric assumption made for convenience and a nonparametric one which is often
too demanding for finding an instrument. Clearly, in this setup, building an estima-
tor from (12) is simply impossible while building an estimator using (11) and the
available data is possible.

4 Monotonicity

In this section,we show that the above nonparametric specification is not as general as
we would think. From a modelling perspective, it is related (equivalent, see Vytlacil
2002) to the so-called instrument monotonicity introduced in Imbens and Angrist
(1994).

For the sake of exposition, assume that Z is discrete. For z ∈ supp(Z) and indi-
viduals that we index by i ∈ I(z), such that Zi = z, we have Ri = 1{π(z) > Hi }.
Suppose now that we could change exogeneously (by experimental assignment) z to
z′ in supp(Z) leaving unchanged the unobserved characteristics Hi for i ∈ I(z). The
corresponding Ri of those individuals are shifted monotonically. Indeed, we have
either (1) π(z) ≤ π(z′) or (2) π(z) > π(z′). In case (1),

∀i ∈ I(z), 1{π(z) > Hi } ≤ 1{π(z′) > Hi }
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while in case (2),

∀i ∈ I(z), 1{π(z) > Hi } ≥ 1{π(z′) > Hi }.

This instrument monotonicity condition has been formalized in Imbens and Angrist
(1994).

Consider a missing data problem in a survey where dZ = 1, Z = Z is the identity
of a pollster, and R = 1 when the surveyed individual replies and else R = 0. The
identity of the pollster could be Mr A (z=0) or Mrs B (z=1). This qualifies for an
instrument because, usually, the identity of the pollster can have an effect on the
response but not on the value of the surveyed variable. If the missing data model is
any from Sect. 3 and pollster B has a higher response rate than pollster A, then in the
hypothetic situation where all individuals surveyed by Mr A had been surveyed by
Mrs B, then those who responded to Mr A respond to Mrs B and some who did not
respond to Mr A respond to Mrs B, but no one who responded to Mr A would not
respond toMrs B. This last type of individuals corresponds to the so-called defiers in
the terminology of Imbens and Angrist (1994): those for which Ri = 1 when z = 1
and Ri = 0 when z = 0. There, instrument monotonicity means that there are no
defiers.

Remark 2 The terminology also calls compliers those who did not respond toMr A
but who would respond to Mrs B, never takers those who would respond to neither,
and always takers those who would respond to both. �

The absence of defiers can be unrealistic. For example, some surveyed individuals
can answer a pollster because they feel confident with them. They can share the same
traits which the statistician does not observe. For example, in the conversation, they
could realize they share the same interest or went to the same school.

5 A Random Coefficients Model for the Selection Equation

Vytlacil (2002) showed that monotonicity is equivalent to modelling the selection
equation as an additively separable latent index model with a single unobservable.
In (5), the index is π(Z) − H and H is the unobservable. A nonadditively separable
model takes the form π(Z, H). Heckman and Vytlacil (2005) proposes for a non-
additively separable index with multiple unobservables a random coefficients binary
choice model. They call it a benchmark. A random coefficients latent index model
takes the form A + B�Z, where (A, B�) and Z are independent. This leads to

R = 1{A + B�Z > 0}. (14)

Themultiple unobservables are the coefficients (A, B�) and play the role of H above.
The model is nonadditively separable due to the products. The random intercept A
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absorbs the usual mean zero error and deterministic intercept. The random slopes B
can be interpreted as the taste for the characteristic z. The components of (A, B�)

can be dependent.
To gain intuition, assume that Z is discrete. For z ∈ supp(Z) and individuals

i ∈ I(z) such that Zi = z, we have

Ri = 1{Ai + B�
i z > 0}.

Suppose that the first component of B takes positive and negative valueswith positive
probability, that we change exogeneously z to z′ in supp(Z) by only changing the first
component, and that we leave unchanged the unobserved characteristics (Ai , B�

i )

for i ∈ I(z). This model allows for populations of compliers (those for which the
first component of Bi is positive) and defiers (those for which the first component
of Bi is negative).

A parametric model for a selection equation specifies a parametric law for
(A, B�). Aparametricmodel for a selectionmodel specifies a joint lawof (A, B�, Y )

given X, Z. The model parameters can be estimated by maximum likelihood. The
components of (A, B�, Y ) given X, Z could be modelled as dependent. (A, B�)

is a vector of latent variables and the likelihood involves integrals over R
dZ+1. As

for the usual Logit or Probit models, a scale normalization is usually introduced
for identification. Indeed 1{A + B�Z > 0} = 1{c(A + B�Z) > 0} for all c > 0. A
nonparametric model allows the law of (A, B�, Y, Z) given X = x to be a nonpara-
metric class. Parametric and nonparametric models are particularly interesting when
they allow for discrete mixtures to allow for different groups of individuals such as
the compliers, defiers, always takers and never takers. But estimating a parametric
model with latent variables which are drawn from multivariate mixtures can be a
difficult exercise. In contrast, nonparametric estimators can be easy to compute.

The approach in this paper to relaxmonotonicity is based onGautier andHoderlein
(2015). A few papers study in the treatment effects context which parameters can be
identified without monotonicity (e.g. De Chaisemartin 2017).

5.1 Scaling to Handle Genuine Non Instrument Monotonicity

In this section, we rely on the approach used in the first version of Gautier and
Hoderlein (2015) in the context of treatment effects models. This is based on the
normalization in Gautier and Kitamura (2013), Gautier and Le Pennec (2018). Let
d − 1 be the dimension of the vector of instrumental variables. For scale normaliza-
tion, we define

�� =
(

A, B�)
∥∥(

A, B�)∥∥1
{(

A, B�) �= 0
}
, S� =

(
1, Z�)

∥∥(
1, Z�)∥∥
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so that

R = 1{��S > 0}.

We introduce some additional notations. When f is an integrable function on S
d−1,

we denote by f̌ the function θ ∈ S
d−1 → f (−θ), by f − the function ( f − f̌ )/2. If

f ∈ L2(Sd−1) (i.e. is square integrable) is nonnegative a.e. and f f̌ = 0 a.e., then

f = 2 f −1
{

f − > 0
}
a.e. (15)

The hemispherical transform (see Rubin 1999) of an integrable function f on S
d−1

is defined as

∀s ∈ S
d−1, H[ f ](s) =

∫
θ∈S: 〈s,θ〉≥0

f (θ)dσ(θ).

This is a circular convolution in dimension d = 2

∀ϕ ∈ [0, 2π), H[ f ](ϕ) =
∫

ϕ∈[0,2π): cos(ϕ−θ)≥0
f (θ)dθ.

Wenow recall a few useful properties of the hemispherical transform (seeGautier and
Kitamura 2013 for more details). If f ∈ L2(Sd−1), thenH[ f ] is a continuous func-
tion andH[ f −] = H[ f ]−. The null space ofH consists of the integrable functions
which are even (by a density argument) and integrate to 0 on S

d−1. As a result

H[ f ] =
∫

θ∈Sd−1
f (θ)dσ(θ)/2 + H[ f −]. (16)

H is injective when acting on the cone of nonnegative almost everywhere functions
in L2(S) such that f f̌ = 0 a.e. (see Gautier and Kitamura 2013; Gautier and Le
Pennec 2018). This means that f cannot be nonzero at two antipodal points of S. We
denote by H−1 the unbounded inverse operator. We now present a formula for the
inverse. If g = H( f ), then

f −(γ ) =
∑
p∈N0

1

λ2p+1,d

∫
Sd−1

q2p+1,d(γ
�s)g(s)dσ(s) (17)

=
∑
p∈N0

1

λ2p+1,d

∫
Sd−1

q2p+1,d(γ
�s)g−(s)dσ(s), (18)

where
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λ1,d = |Sd−2|
d − 1

, ∀p ∈ N, λ2p+1,d = (−1)p|Sd−2|1 · 3 · · · (2p − 1)

(d − 1)(d + 1) · · · (d + 2p − 1)
,

L(k, d) = (2k + d − 2)(k + d − 2)!
k!(d − 2)!(k + d − 2)

, qk,d(t) := L(k, d)C (d−2)/2
k (t)

|Sd−1|C (d−2)/2
k (1)

,

for all μ > −1/2 and k ∈ N0, Cμ

k (t) are orthogonal polynomials on [−1, 1] for the
weight (1 − t2)μ−1/2dt . The Gegenbauer polynomials Cμ

k (t) can be obtained by the
recursion Cμ

0 (t) = 1, Cμ
1 (t) = 2μt for μ �= 0 while C0

1 (t) = 2t , and

(k + 2)Cμ

k+2(t) = 2(μ + k + 1)tCμ

k+1(t) − (2μ + k)Cμ

k (t).

Indeed, for all p ∈ N0, s → q2p+1,d(γ
�s) is odd.

Remark 3 Other inversion formulas whenH is restricted to odd functions or mea-
sures rather than the above cone are given in Rubin (1999).

We consider the following model restrictions, for all x ∈ supp(X),

P (� = 0|X = x) = 0, (19)

S is independent of
(
��, Y

)
given X, (20)

The conditional law of � given X = x is absolutely continuous

with respect to σ and the density belongs to L2(Sd−1), (21)

For a.e. γ ∈ S
d−1, f�|X=x(γ ) f̌�|X=x(γ ) = 0, (22)

supp (S|X = x) = {s ∈ S
d−1 : s1 ≥ 0}. (23)

Let gφ,x = H [
E [φ(Y )|X = x,� = ·] f�|X=x(·)

]
, where, by a slight abuse of nota-

tions, the root E [φ(Y )|X = x,� = ·] f�|X=x(·) is zero outside supp(�|X = x). By

the above properties ofH , we have g−
φ,x = H

[(
E [φ(Y )|X = x,�=·] f�|X=x(·)

)−]
.

Equation (23) can be replaced by, for identifying classes �x of functions which
are nonnegative a.e. and a quasi-analytic classes Cx ,

For all x ∈ supp(X),

supp (S|X = x) has a nonempty interior
For all φ ∈ �x, gφ,x ∈ Cx .

⎫⎬
⎭ (24)

This specification has the advantage that we do not assume that the researcher
knows that one coefficient has a sign. Indeed it is easy to see that (22) contains
such an assumption as a subcase. It allows for non instrument monotonicity for all
instruments. Condition (23) is demanding because it means that supp(Z|X = x)

is the whole space for all x ∈ supp(X). Hence we provide (24) which allows for
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an intermediate between nonparametric assumptions which are too demanding on
the instruments and a parametric model. For further reference, we use the notation
H+ = {s ∈ S

d−1 : s1 ≥ 0}.
Remark 4 Proceeding like inGaillac andGautier (2019),Gaillac andGautier (2019)
allows an index of the form π(Z, H) where Z are instrumental variables and H is
multidimensional of arbitrary dimension but has a sparse random series expansion
on some classes of functions and the conditional law of Z, given X = x, for all
x ∈ supp(X), can have a support which is a subspace of the whole space. This
means that a nonparametric random coefficients linear index already captures a large
class of nonadditively separable models with multiple unobservables.

Using successively (20), the law of iterated expectations and (21), and (16), we obtain
that, for all (s�, x�) ∈ supp(S�, X�),

E [φ(Y )R|X = x, S = s] = E
[
φ(Y )1{��s > 0}|X = x

]
(25)

= gφ,x(s), (26)

= 1

2
E [φ(Y )|X = x] + g−

φ,x(s). (27)

We obtain the following theorem which states that E [φ(Y )|X = x] can be identified
at infinity under (23).

Theorem 2 Assume (19)–(23). For all s̃ on the boundary of H+ and x ∈ supp(X),

E [φ(Y )|X = x] = lim
s→s̃, s∈H+ E [φ(Y )R|X = x, S = s] + lim

s→−s̃, s∈H+ E [φ(Y )R|X = x, S = s] .

Proof Let x ∈ supp(X). The result follows from (27) and the facts that g−
φ,x is odd

and continuous as recalled at the beginning of the paragraph.

By (15), for all x ∈ supp(X), the law of (Y,��) conditional on X = x is identified
if

For all x ∈ supp(X), there exists an identifying class �x of functions
which are nonnegative a.e. such that,
for all φ ∈ ⊕

x, (E[φ(Y )|X = x,� = ·] f�(·))− is identified.

⎫⎬
⎭ (28)

The next theorem shows that,whenφ is positive a.e., by integration,E [φ(Y )|X =
x] is nonparametrically identified with an alternative formula which does not involve
taking limits.

Theorem 3 Assume (19)–(22) and either (23) or (24). Equation (28) holds. More-
over, under (23), for all x ∈ supp(X), φ ∈ ⊕

x , γ ∈ S
d−1, and p ∈ N0,
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∫
Sd−1

q2p+1,d (γ �s)gφ,x(s)dσ(s) (29)

= 2E

[
q2p+1,d (γ �S)

fS|X=x(S)
φ(Y )R

∣∣∣∣∣ X = x

]
− E [φ(Y )|X = x]

∫
H+

q2p+1,d (γ �s)(s)dσ(s).

Proof Let x ∈ supp(X) and φ ∈ ⊕
x . Assuming (23), by Theorem 2, (27), and the

fact that g−
φ,x is odd, g−

φ,x is identified. Hence, (28) holds. By the right-hand side of
(25),

gφ,x(−s) = E [φ(Y )|X = x] − E [φ(Y )R|X = x, S = s] ,

which yields, for all p ∈ N0,

∫
Sd−1

q2p+1,d (γ �s)gφ,x(s)dσ(s) =2
∫

H+
q2p+1,d (γ �s)E [φ(Y )R|X = x, S = s] dσ(s)

+ E [φ(Y )|X = x]
∫

H+
q2p+1,d (−γ �s)(s)dσ(s),

hence the moreover part.
Assuming (24), by (26) gφ,x , hence g−

φ,x , is identified. Hence, (28) holds. �

Remark 1 By taking φ to 3 equal to 1, we obtain f�|X=x(γ ) for all x and a.e. γ

such that (x, γ ) ∈ supp(X,�). �

A simple estimator of (E[φ(Y )|X = x,� = ·] f�(·))− on a grid of γ on S
d−1 under

(23) takes the form
T∑

p=1

ĉ2p+1(γ )

λ2p+1,d
,

where ĉ2p+1(γ ) are estimators of the integrals in (29) and T is a smoothing parameter.
This yields E[φ(Y )|X = x,� = ·] f�(·) using a plug-in and (15). A useful choice
of φ for Algorithm 3 is 1{. ≤ t} for t on a grid on R.

Algorithm 1 ĉ2p+1(γ ), for all p = 1, . . . , T , are obtained as follows:

1. Compute E [φ(Y )|X = x] using a local polynomial estimator of the right-hand
side of the identity in Theorem 2 and compute numerically

∫
H+ q2p+1,d(γ

�s)(s)
dσ(s),

2. Form, for the observations i = 1, . . . , N in the sample,

q2p+1,d(γ
�Si )

f̂S|X=x(Si )
φ(Yi )Ri ,

where f̂S|X=x is a density estimator for directional data (see, e.g., Gautier and

Kitamura 2013), and estimate E

[
q2p+1,d (γ �S)

fS|X=x(S)
φ(Y )R

∣∣∣ X = x
]
using a local poly-

nomial estimator.
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In the approach in Gautier and Kitamura (2013), there is an additional damping
of the high frequencies by an infinitely differentiable filter with compact support.
The needlet estimator in Gautier and Le Pennec (2018) also builds on this idea. In
the case of the estimation of f�|X=x , Gautier and Le Pennec (2018) provides the
minimax lower bounds for more general losses and an adaptive estimator based on
thresholding the coefficients of a needlet expansion with a data driven level of hard
thresholding.

Building an estimator based on (24), Hilbert space techniques, and assuming
analyticity is an ongoing project.

To performAlgorithm3, it is not useful to estimate thewholeE[φ(Y )|X = x,� =
·] f�(·). Rather, the estimator E [φ(Y )|X = x] and local polynomial estimators are
enough to obtain the elements in (1).

5.2 Alternative Scaling Under a Weak Version of
Monotonicity

In this section, we still assume (14) and Z is independent of
(

A, B�, Y
)
given X

((30) under the previous normalization). We maintain as well

For all x ∈ supp(X), ∃Px ∈ GL(d − 1) : (
P�

x B
)
1 > 0 a.s., (30)

where GL(d − 1) the general linear group over R
d−1.

Under this assumption we can rewrite the model as follows. We denote by V =
(P−1

x Z)1, Z = (P−1
x Z)2,...,d−1,  = −A/

(
P�

x B
)
1, and � = − (

P�
x B

)
2,...,d−1 /(

P�
x B

)
1. This yields

A + B�Z > 0 ⇔ V −  − �
�
Z > 0,

hence
R = 1{V −  − �

�
Z > 0} (31)

and
(V, Z

�
) is independent of (,�

�
, Y ) given X . (32)

By (32), (31) is equivalent to the fact that, for all x ∈ supp(X) and z ∈ supp(Z),

v → P(R = 1|X = x, Z = Px(v, z�)�) = P( + �
�
z < v|X = x)

is a cumulative distribution, so the researcher can determine, from the distribution
of the data, such an invertible matrix Px .



Relaxing Monotonicity in Endogenous Selection Models … 73

The vector (1 −  − �
�
)� of random coefficients in the linear index V −  −

�
�
Z clearly satisfies (22). For this reason, the specification of the previous section is

more general. There is instrumentmonotonicity in V , though not for Z. This is aweak
type of monotonicity because it is possible that there is instrument monotonicity for
none of the instrumental variables in the original scale. This is the approach presented
in the other versions of Gautier and Hoderlein (2015). It is shown in Gautier and
Hoderlein (2015) that the equation

R = 1l

{
V + f0

(
Z̃
) −  −

d−2∑
l=1

�l fl
(
Z̃l

)
> 0

}
,

where d ≥ 3, f0, . . . , fd−2 are unknown functions, can be transformed by
reparametrization into (31) and the unknown functions are identified by similar argu-
ments as for the additive model for a regression function.

We consider as well the following restrictions:

For all (x�, z�) ∈ supp(X�, Z
�
), f,�|X=x and f

+�
�
z|X=x

exist, (33)

and either

∀(x, z) ∈ supp(X, Z), supp
(
V |X = x, Z = z

) ⊇ supp( + �
�
z|X = x),

∀x ∈ supp(X), supp(Z|X = x) = R
d−2,

}

(34)
or, for identifying classes �x and quasi-analytic classes Ca

x,z and Cb
s,x , denoting by

aφ,x,z = E[φ(Y )| + �
�
z = ·, X = x] f

+�
�
z|X=x

(·),
bφ,s,x = E[eisei(�

�·)sφ(Y )|X = x],

For all (x�, z�) ∈ supp(X�, Z
�
), supp

(
V |X = x, Z = z

)
and supp(Z|X = x) have nonempty interiors,
For all φ ∈ ⊕

x, aφ,x,z ∈ Ca
x,z and for all s ∈ R, bφ,s,x ∈ Cb

s,x .

⎫⎬
⎭ (35)

Clearly, for aφ,x,z ∈ Cx to hold it is necessary that f
+�

�
z|X=x

is positive a.e.. A
simple sufficient condition for bφ,s,x to be analytic is

For all x ∈ supp(X), ∃R > 0 : E
[
exp

(
R

∥∥�
∥∥)∣∣ X = x

]
< ∞,

This condition (which imply that � does not have heavy tails) and the support con-
ditions in (24) are slightly stronger than necessary (see Gaillac and Gautier 2019).

Theorem 4 Maintain (31)–(33) and either (34) or (35). For all x ∈ supp(X), the

law of (Y,,�
�
) conditional on X = x is identified.
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Proof Let (x, z) ∈ supp(X, Z) and φ ∈ �x . For all v in the interior of supp(V |X =
x, Z = z), we have

∂vE
[
φ(Y )R| X = x, V = v, Z = z

] = E

[
φ(Y )| X = x, + �

�
z = v

]
f
+�

�
z|X=x

(v).

So, by the assumptions, the above right-hand side is identified for all v ∈ R. Hence,
for all s ∈ R,

bφ,s,x =
∫
R

eisv
E

[
φ(Y )| X = x, + �

�
z = v

]
f
+�

�
z|X=x

(v)dv (36)

is identified on supp(Z|X = x). We conclude using either the large support assump-
tion or the now usual argument involving quasi-analyticity. �

Based on (36), it is not difficult to obtain an estimator of bφ,s,x under (34) and then
the root E[φ(Y )|X = x,,� = ·] f,�|X=x(·).
Algorithm 2 1. Compute a local polynomial estimator of ∂vE[

φ(Y )R| X = x, V = v, Z = z
]
,

2. Take a smooth numerical approximation of the Fourier transform of it,
3. Use a smoothed multivariate inverse Fourier transform and a change of variable

(s, s z) → (s, z).

Alternatively, (Gautier and Hoderlein, 2015) uses a smooth regularized inverse of the
Radon transform and an integration by part. It is also possible to turn the identification
argument based on (35) into an estimation procedure as in (Gaillac and Gautier,
2019).

To perform Algorithm 3, it is not useful to estimate the whole E[φ(Y )|X =
x,,� = ·] f,�|X=x(·). Rather, one can estimate E [φ(Y )|X = x] by steps 1 and
2 (for s = 0) of Algorithm 2 and use local polynomial estimators of the remaining
elements in (1).

Remark 5 Proceeding like in (Gaillac and Gautier, 2019), Gaillac and Gautier
(2019) allows to work with an index of the form π(Z, H) − V where H is multidi-
mensional of arbitrary dimension and π(Z, H) has a sparse random series expansion
on some classes of functions and the conditional laws of Z and V , given X = x, for
all x ∈ supp(X), can have a support which is a subspace of the whole space.

Remark 6 In a binary treatment effect model, the outcome can be written as
Y = (1 − R)Y0 + RY1. Y0 and Y1 are the potential outcomes without and with
treatment. They are unobservable. A selection model can be viewed as a degen-
erate case where Y0 = 0 a.s. Quantities similar to the root in Theorem 3 have
been introduced in Gautier and Hoderlein (2015). They are for the marginals of
the potential outcomes E

[
φ(Y j )|X = x, = θ,� = γ

]
for j ∈ {0, 1}. An exten-

sion of the Marginal Treatment Effect in Heckman and Vytlacil (2005) to multi-
ple unobservables and for laws is the Conditional on Unobservables Distribution
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of Treatment Effects E
[
φ(Y1 − Y0)|X = x, = θ,� = γ

]
. Gautier and Hoderlein

(2015) considers kernel estimators which rely on regularized inverses of the Radon
transform. �

6 Application to Missing Data in Surveys

Whenmaking inferencewith survey data, the researcher has available data on a vector
of characteristics for units belonging to a random subset S of a larger finite popu-
lation U. The law used to draw S can depend on variables available for the whole
population, for example, from a census. We assume that the researcher is interested
in a parameter g which could be computed if we had the values of a variable yi for all
units of index i ∈ U. This can be an inequality index, for example, the Gini index,
and yi the wealth of household i . In the absence of missing data, the statistician can
produce a confidence interval for g, making use of the data for the units i ∈ S and
his available knowledge on the law S. We assume that the cardinality of S is fixed
and equal to n. When g is a total, it is usual to rely on an unbiased estimator, an esti-
mator of its variance, and a Gaussian approximation. For more complex parameters,
linearization is often used to approximate moments. The estimator usually rely on
the survey weights πi = 1/P(i ∈ S). For example an estimator of the Gini index is

ĝ ((yi )i∈S) =
∑n

i=1(2r̂(i) − 1)πi yi∑n
i=1 πi

∑n
i=1 πi yi

− 1, (37)

where r̂(i) = ∑n
j=1 w j1l

{
y j ≤ yi

}
. The estimators of the variance of the estimators

are more complex to obtain and we assume there is a numerical procedure to obtain
them. Inference is based on the approximation

ĝ ((yi )i∈S) ≈ g + √
v̂ar (ĝ) ((yi )i∈S)ε, (38)

where ε is a standard normal random variable and v̂ar (ĝ) ((yi )i∈S) is an estimator
of the variance of ĝ ((yi )i∈S).

In practice, this is not possible when some of the yi s are missing. There is a
distinction between total nonresponse, where the researcher discards the data for
some units i ∈ S or it is not available, and partial nonresponse. Let us ignore total
nonresponse which is usually dealt with using reweighting and calibration and focus
on partial nonresponse. We consider a case where yi can be missing for some units
i ∈ S, while all other variables are available for all units i ∈ S. We rely on a classical
formalism where the vector of surveyed variables and of those used to draw S � U,
for each unit i ∈ U, are random draws from a superpopulation. In this formalism,
the parameter yi for all indices i of households in the population and g are random
and we shall now use capital letters for them. Let Si and Ri be random variables,
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where Si = 1 if i ∈ S and Ri = 1 if unit i reveals the value of Yi given Si = 1, and
X i and Zi be random vectors which will play a different role.

It is classical to rely on imputations to handle themissing data. This means that we
replace missing data by artificial values obtained from a model forming predictions
or simulating from a probability law and inject them in a formula like (37). In Gautier
(2005), we discuss the use of the Heckman selection model when we suspect that
the data is not missing at random. This relies on a parametric model for the partially
missing outcome which is prone to criticism. Also, as this paper has shown, such a
model relies on instrument monotonicity which is an assumption which is too strong
to be realistic.

It is difficult to analyze theoretically the effect of such imputations. For example,
when the statistic is nonlinear in the yi s (e.g. (37)) then using predictions can lead
to distorted statistics. It is also tricky to make proper inference when one relies on
imputations. One way to proceed is to rely on a hierarchical model as in Gautier
(2011). There the imputation model is parametric and we adopted the Bayesian
paradigm for two reasons. The first is to account for parameter uncertainty and
the second is to replace maximum likelihood with high dimensional integrals by a
Monte CarloMarkov Chain Algorithm (a Gibbs sampler). The hierarchical approach
also allows layers such as to model model uncertainty. The Markov chain produces
sequences of values for each Yi for i ∈ S \ R in the posterior distribution given
(W i )i∈S, the choice of which is discussed afterwards. Subsequently we get a path of

G̃ = Ĝ
(
(Yi )i∈S

) +
√

v̂ar
(
Ĝ

) (
(Yi )i∈S

)
ε (39)

where ε is a standard normal random variable independent from (Yi )i∈S given
(W i )i∈S. Equation (39) is derived from (38). The variables (W i )i∈S are those making
the missing mechanism corresponding to Ri relative to Yi MAR.2 The last T values(
G̃t

)T0+T

t=T0+1 of the sample path for G allows to form credible sets C by adjusting

the set so that the frequency that
{
G̃t ∈ C

}
exceeds 1 − α, where α is a confidence

level. T0 is the so-called burn-in. These confidence sets account for error due to sur-
vey sampling, parameter uncertainty, and nonresponse. They can be chosen from the
quantiles of the distribution, to minimize the volume of the set, etc.

We now consider our nonparametric models of endogenous selection which allow
for nonmonotonicity of the instrumental variables to handle a missing mechanism
corresponding to R which is NMAR. For simplicity, we assume away parameter
uncertainty, which would be taken into account more easily if we adopted a Bayesian
framework and total nonresponse. The variables X i in Sect. 5 can be variables that
are good predictors for Yi . They are not needed to obtain valid inference but can be
useful to make confidence intervals smaller. However, the selection corresponding
to the binary variables Ri relative to the outcomes Yi given Si = 1 follow a NMAR
mechanism. The (multiple) imputation approach becomes: for t = 1, . . . , T

2They can be those used by the survey statistician to draw S if any (and usually made available) to
handle a total nonresponse which is MAR via imputations.
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1. Draw an i.i.d. sample of Y t
i for i ∈ S \ R from the law of Y given X = xi , S = 1,

and R = 0, an independent standard normal εt , and set Y t
i = yi for i ∈ R where

yi are the observations in the selected sample
2. Compute

G̃t = Ĝ
((

Y t
i

)
i∈S

) +
√

v̂ar
(
Ĝ

) ((
Y t

i

)
i∈S

)
εt . (40)

The confidence interval is formed from the sample
(
G̃t

)
t=1,...,T for a given confidence

level.
In practice, assuming away the conditioning on X , the draws from the law of Y

given S = 1, and R = 0 can be obtained (approximately) by

Algorithm 3 1. Take φ = 1{. ≤ t} for a grid of t ,
2. Estimate the left-hand side of (1) using plug-in estimators of the elements on the

right-hand side from the available data (corresponding to S = 1),
3. Draw from a uniform random variable on [0, 1],
4. Apply a numerical approximation of the inverse CDF from step 2. �
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B-Spline Estimation in a Survey
Sampling Framework

Camelia Goga

Abstract Nonparametric regression models have been usedmore andmore over the
last years to model survey data and incorporate efficiently auxiliary information in
order to improve the estimation of totals, means or other study parameters such as
Gini index or poverty rate. B-spline nonparametric regression has the benefit of being
very flexible in modeling nonlinear survey data while keeping many similarities and
properties of the classical linear regression. This method proved to be efficient for
deriving a unique system ofweights which allowed to estimate in an efficient way and
simultaneously many study parameters. Applications on real and simulated survey
data showed its high efficiency. This paper aims at giving a review of applications of
the B-spline nonparametric regression in a survey sampling framework and design-
based approach.Handling itemnonresponse by B-splinemodeling is also considered.
This review includes also new properties and improved consistency rates of the
suggested penalized and unpenalized B-spline estimators.

1 Introduction

Consider a finite population U = {1, . . . , k, . . . , N }. We focus on the estimation of
the total ty = ∑

k∈U yk of a study variableY over the population U with yk the non-
random value of Y for the kth unit. More general study parameters such as the Gini
index or the functional median will be considered in Sect. 3. Let s ⊂ U be a prob-
ability sample selected from U according to a sampling design p(·). More exactly,
p(·) is a probability distribution defined on the set S of all possible subsets of U and
p(s) is the probability of selecting the sample s. Given p(·), each unit k from the
population has a known inclusion probability πk = Pr(k ∈ s) = ∑

k�s p(s) > 0 and
a corresponding sampling design weight dk = 1/πk; here k � s denotes that the sum
is over those samples s that contain the given k.
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Without auxiliary information, the total ty can be estimated by the well-known
Horvitz–Thompson (HT) estimator (Horvitz and Thompson 1952)

t̂yd =
∑

k∈s

dk yk =
∑

k∈s

yk

πk
. (1)

If the first-order inclusion probabilities are all positive, πk > 0, then the HT estima-
tor is unbiased for ty with respect to the sampling design p(·), namely Ep(t̂yd) = ty,

where Ep is the expectation with respect to the sampling design. Its variance
with respect to p(·) is given by Vp(t̂yd) = ∑

k∈U

∑
l∈U (πkl − πkπl)dkdl yk yl , where

πkl = Pr(k, l ∈ s) is the second-order inclusion probability. If πkl > 0 for all k �= l,
then Vp(t̂yd) can be estimated unbiasedly by the HT variance estimator V̂p(t̂yd) =∑

k∈s

∑
l∈s(πkl − πkπl)dkdl yk yl/πkl .

If auxiliary information {xk}k∈U is available, then it is of interest to improve theHT
estimator of ty by considering sampling designs based on this auxiliary information
such as stratified or proportional to size sampling designs. The auxiliary information
may also be used for building estimatorsmore efficient than theHTestimator.Mainly,
there are two ways to incorporate auxiliary information depending on whether or not
a model is fitted to the data. In the model-assisted approach (Särndal et al. 1992),
we assume that the {yk}k∈U values are independent realizations from an infinite
superpopulation and the working model ξ relating the auxiliary information xk to yk

as follows:

ξ : yk = f (xk) + εk, k ∈ U, (2)

with Eξ (εk) = 0 and Vξ (εk) = σ 2
k > 0. If f (xk) was known for all k ∈ U , then ty

would be estimated by the generalized difference estimator (Cassel et al. 1976)

tdiffy,x = t̂yd −
(

∑

k∈s

dk f (xk) −
∑

k∈U

f (xk)

)

, (3)

which is the difference between theHT estimator t̂yd and the bias of t̂yd − ty under the
model ξ. The estimator (3) can also be seen as the prediction of ty under the model ξ
plus a design-bias adjustment. In practice, we never know the true f, thus we have to
build an estimator of it by using a two-step procedure: we first estimate f by f̃ under
the model ξ and using the data {(yk, xk)}k∈U , and next, we estimate f̃ by f̂ under
the sampling design and using the survey data {(yk, xk)}k∈s . Plugging f̂ in (3) yields
the model-assisted estimator of ty, t̂ma

yw = t̂yd − (
∑

k∈s dk f̂ (xk) − ∑
k∈U f̂ (xk)). If

f (xk) = xT
k β, then t̂ma

yw is the well-known generalized regression estimator (GREG)
extensively used in practice and described by Särndal et al. (1992)

t̂gregyw = t̂yd −
(

∑

k∈s

dkxk −
∑

k∈U

xk

)T

β̂, (4)



B-Spline Estimation in a Survey Sampling Framework 81

where β̂ = (
∑

k∈s dkxkxT
k /σ 2

k )−1 ∑
k∈s dkxk yk/σ

2
k is the design-based least square

estimator of β. The GREG estimator is efficient if the linear model fits the data well
but, if the model is misspecified, the GREG estimator exhibits no improvement over
the HT estimator and may even lead to a loss of efficiency. One way of guarding
against model failure is to use nonparametric regression which does not require a
predefined parametric mathematical expression for f. In a model-assisted approach,
Breidt and Opsomer (2000) proposed local linear estimators and Breidt et al. (2005)
considered penalized spline regression with a piecewise polynomial basis and fixed
knots andMcConville and Breidt (2013) extended the theoretical justification for that
estimator, by allowing the number of knots to increase: Goga (2005) used B-spline
nonparametric regression and Goga and Ruiz-Gazen (2014) used penalized B-spline
regression.

We intend to give a review of the use of nonparametric B-spline estimation in
a survey sampling framework and adopting a design-based inference point of view.
This review includes the estimation of totals (Sect. 2) and nonlinear study parameters
(Sect. 3) with model-assisted and calibration techniques. Some new properties and
improved consistency rates of the suggested estimators are presented. When some
sampled individuals do not respond, we deal with nonresponse, and Sect. 4 describes
briefly how we can improve the estimation of finite population totals in the presence
of item nonresponse by considering B-spline imputation models.

2 B-Spline Model-Assisted Estimator for Finite Population
Totals

Consider the superpopulation model given in (2) with f an unknown function and
a univariate x-variable. Without loss of generality, we suppose that xk ∈ [0, 1]. We
suppose also that xk is known for all k ∈ U.

To estimate the unknown regression function f , we use spline approximation. For
a fixedm > 1, the set SK ,m of spline functions of orderm with K equidistant interiors
knots 0 = ξ0 < ξ1 < . . . < ξK < ξK+1 = 1 is the set of piecewise polynomials of
degree m − 1 that are smoothly connected at the knots

SK ,m = {t ∈ Cm−2[0, 1] : t (z) is a polynomial of degree (m-1) on each interval[ξi , ξi+1]}.

For m = 1, SK ,m is the set of step functions with jumps at knots. For each fixed set
of knots, SK ,m is a linear space of functions of dimension q = K + m. A basis for
this linear space is provided by the B-spline functions {B j (·)}q

j=1 defined by B j (x) =
(ξ j − ξ j−m)

∑m
l=0(ξ j−l − x)m−1

+ /�m
r=0,r �=l(ξ j−l − ξ j−r ) with (ξ j−l − x)m−1

+ =
(ξ j−l − x)m−1 if ξ j−l ≥ x and zero, otherwise (Schumaker 1981; Dierckx 1993).
Each function B j (·) has the knots ξ j−m, . . . , ξ j with ξr = ξmin(max(r,0),K+1) for
r = j − m, . . . , j (Zhou et al. 1998) which means that its support consists of a
small, fixed, finite number of intervals between knots. Figure1 exhibits the six B-
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Fig. 1 B-spline basis functions for K = 3 interior knots and m = 3

spline basis functions for K = 3 interior knots andm = 3.Other important properties
of B-splines are:

B j (x) ≥ 0 for all x ∈ [0, 1]

and

q∑

j=1

B j (x) = 1 , x ∈ [0, 1]. (5)

The above property proved particularly useful in a survey sampling framework. The
B-spline estimation of f is given by

f̃ (xk) = bT (xk)θ̃ , k ∈ U, (6)

where bT (xk) = (B1(xk), . . . , Bq(xk)) and θ̃ is the ordinary least square minimizer
of

θ̃ = arg min
θ∈Rq

∑

k∈U

(yk − bT (xk)θ)2 = (BT
UBU )−1BT

UyU , (7)
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whereBU is the N × q dimensional matrix with bT (xk) as rows,BU = (bT (xk))k∈U ,

and yU the N × 1 dimensional vector of population y-values, yU = (yk)k∈U . There
is no general rule for choosing the number of knots but it should be large enough to
have enough points between knots. Ruppert et al. (2003) recommend that no more
than 30–40 knots should be used and they give a simple rule for choosing K . As
for the degree m, Ruppert et al. (2003) recommend m = 3 or m = 4. One way to
overcome the issue of knot number, is to consider many knots and to constrain their
influence by introducing a penalty. The penalized spline estimator of f (xk) is given
by f̃λ(xk) = bT (xk)θ̃λ with θ̃λ the least square minimizer of

θ̃λ = arg min
θ∈Rq

∑

k∈U

(yk − bT (xk)θ)2 + λ

∫ 1

0
[(bT (t)θ)(�)]2dt, (8)

where (�) represents the �-th derivate with � ≤ m − 1. The solution of (8) is a ridge-
type estimator

θ̃λ =
(

∑

k∈U

b(xk)bT (xk) + λD�

)−1
∑

k∈U

b(xk)yk = (BT
UBU + λD�)

−1BT
UyU , (9)

where D� is the squared L2 norm applied to the �-th derivative of bT θ . Because the
derivative of a B-spline function of order m may be written as a linear combination
of B-spline functions of order m − 1, for equidistant knots, we obtain that D� =
K 2�∇T

� R∇�, where the matrix R has elements Ri j = ∫ 1
0 B(m−�)

i (t)B(m−�)
j (t)dt with

B(m−�)
i as the B-spline function of order m − � and ∇� as the matrix corresponding

to the �-th order difference operator (Claeskens et al. 2009).
The amount of smoothing is controlled by λ > 0. The case λ = 0 results in an

unpenalized B-spline estimator whose properties have been extensively studied in
the literature, see Agarwal and Studden (1980), Burman (1991), Zhou et al. (1998),
amongothers.A reviewof spline use in statistics is given inBesse andThomas-Agnan
(1989). The case λ → ∞ is equivalent to fitting a (� − 1)-th degree polynomial. The
theoretical properties of penalized splines with λ > 0, have been studied by Cardot
(2002), Hall and Opsomer (2005), Kauermann et al. (2009), and Claeskens et al.
(2009).

2.1 B-Spline Model-Assisted Estimation

In a survey sampling framework, the yk’s values are available only for the sampled
individuals, so f̃ (xk) given in (6) cannot be used in practice. We estimate it by

f̂ (xk) = bT (xk)θ̂ , k ∈ U, (10)
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where θ̂ is the minimizer of the weighted least square sum

θ̂ = arg min
θ∈Rq

∑

k∈s

dk(yk − bT (xk)θ)2

= (BT
s �−1

s Bs)
−1BT

s �−1
s ys =

(
∑

k∈s

dkb(xk)bT (xk)

)−1
∑

k∈s

dkb(xk)yk, (11)

where BT
s = (bT (xk))k∈s, ys = (yk)k∈s and �s = diag(πk)k∈s and provided that the

matrix BT
s �−1

s Bs is invertible. The sample-based estimator θ̂ can be viewed as a
substitution estimator of θ̃ given in (7) since every finite population total from the
expression of θ̃ is substituted by its HT estimator.

The B-spline model-assisted estimator for estimating the total ty has been sug-
gested by Goga (2005) and obtained by plugging f̂ (xk) in (3)

t̂bs =
∑

k∈s

dk(yk − f̂ (xk)) +
∑

k∈U

f̂ (xk)

=
∑

k∈s

dk yk −
(

∑

k∈s

dkb(xk) −
∑

k∈U

b(xk)

)T

θ̂ . (12)

It is very important to note that, even if a nonparametric model (2) has been
assumed, the B-spline model-assisted estimator t̂bs shares many properties of the
GREG estimator. First of all, we can see from relation (12) that t̂bs may be written as
a GREG estimator that uses the auxiliary information contained in vectors b(xk) =
(B j (xk))

q
j=1. In practice, we choose the number of knots K and the degree m of

splines and the estimator t̂bs can be seen as a GREG-type estimator with q = K + m
regressors; q should not be too large with respect to the sample size n.Note, however,
that the B-splinemodel-assisted estimator, aswell as any other nonparametricmodel-
assisted estimator, requires that the values xk’s to be known for all the population
units. From an asymptotic point of view, the size of b(xk) and θ̂ is now q → ∞,

which is different from the linear GREG estimator, which considered that the number
of regressors was fixed. However, these new regressors are uniformly bounded since
||b(x)|| ≤ 1 (Burman 1991) for all x ∈ [0, 1]; this property proved very useful in the
technical proofs.

Another interesting property of t̂bs is the fact that the HT estimator of the residuals
yk − f̂ (xk) is zero

∑

k∈s

dk f̂ (xk) = 1T
s �−1

s Bs θ̂ = 1T
q B

T
s �−1

s Bs θ̂ = 1T
q B

T
s �−1

s ys = 1T
s �−1

s ys =
∑

k∈s

dk yk ,

(13)

where 1s, 1q are vectors of ones of dimension n and respectively q. To obtain (13),
we have used twice the fact that 1T

q B
T
s = 1T

s obtained from the property of B-spline
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functions that
∑q

j=1 B j (x) = 1. We then obtain that the estimator t̂bs is equal to the

finite population total of the estimated predictions f̂ (xk), a form usually called the
projection estimator

t̂bs =
∑

k∈U

f̂ (xk) =
∑

k∈U

b′(xk)θ̂ . (14)

In a linearmodeling context, a similar property is shared by the usualGREGestimator
given in (4) if the model variance of y satisfies the property σ 2

k = λT xk for λ a vector
of constants. This is true, for example, for σk = σ for all k ∈ U and if intercept
is included in the model. With B-spline nonparametric modeling, the property of
B-spline functions (5) is equivalent in a way to the presence of the intercept in the
model.

Moreover, the B-spline model-assisted estimator from (12) may be written as a
weighted sum of the yk’s values as follows:

t̂bs =
∑

k∈s

wbs
ks yk, (15)

with nonparametric weights given by

wbs
ks = dk − dkbT (xk)

(
∑

l∈s

dlb(xl)bT (xl)

)−1 (
∑

l∈s

dlb(xl) −
∑

l∈U

b(xl)

)

. (16)

We have

dkbT (xk)

(
∑

l∈s

dlb(xl)bT (xl)

)−1
∑

l∈s

dlb(xl) · 1 = dkbT (xk)1q = dk, k ∈ s,

by the fact that 1 = bT (xl)1q for all l ∈ U. So, the B-spline weights may be written
as

wbs
ks = dkbT (xk)

(
∑

l∈s

dlb(xl)bT (xl)

)−1 (
∑

l∈U

b(xl)

)

, k ∈ s, (17)

Theweights given in (16) areGREG-typeweights based on the regressors (b(xk))k∈U

and they are always equal to weights given in (17) which correspond to the projection
form of t̂bs given in (14). The weights wbs

ks do not depend on the study variable y, so
they can be used to estimate totals of other variables than y or evenmore complicated
study parameters as described in Sect. 3.

The B-splinemodel-assisted estimator is asymptotically design-unbiased andcon-
sistent for ty (Goga 2005). However, as expected, the convergence rate of t̂bs depends
on the number of knots K → ∞.Wepropose here a different decomposition of θ̂ − θ̃
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which allows getting a better convergence rate of t̂bs − ty than the one given in Goga
(2005). This decomposition is the following:

θ̂ − θ̃ = T̂−1

(
∑

k∈s

dk Ek −
∑

k∈U

Ek

)

, (18)

where T̂ = ∑
k∈s dkb(xk)bT (xk) and Ek = b(xk)(yk − bT (xk)θ̃) with

∑
k∈U Ek =

0. Under the assumptions given in the Appendix, we obtain

1

N2Ep

⎛

⎝
∑

k∈s

dk Ek −
∑

k∈U

Ek

⎞

⎠

2

≤
(
1 − c̃

N c̃
+ n maxk �=l∈U |πkl − πkπl |

nc̃2

)
1

N

∑

k∈U

||Ek ||2.

(19)

We have ||b(xk)|| ≤ 1 for all k ∈ U, so

1

N

∑

k∈U

||Ek ||2 ≤ 2

N

∑

k∈U

y2k + 2

N

∑

k∈U

|bT (xk)θ̃ |2 ≤ 2

N

∑

k∈U

y2k + 2||θ̃ ||2|| 1
N
BT B|| ≤ C,

with a constant C > 0 not depending on n and K , and consequently, N−1(
∑

k∈s dk

Ek − ∑
k∈U Ek) = Op(n−1/2). We have used the fact that N−1 ∑

k∈U |bT (xk)θ̃ |2 =
θ̃

T
(N−1 ∑

k∈U b(xk)bT (xk))θ̃ ≤ ||θ̃ ||2||N−1BTB|| = O(1) by the fact that ||θ̃ || =
O(K 1/2) (Goga 2005) and ||N−1BTB|| = O(K −1) (Zhou et al. 1998). We have also
N T̂−1 = Op(K ) (Goga 2005) which gives

θ̂ − θ̃ = Op(K n−1/2).

This consistency rate is K 1/2 smaller than the one obtained in Goga (2005). So, if
K = O(nα) with 0 < α < 1/2, then θ̂ − θ̃ = op(1). Now, we can write

N−1(t̂bs − ty) = N−1(t̂diffbs − ty) + N−1

⎛

⎝
∑

k∈s

dkb(xk) −
∑

k∈U

b(xk)

⎞

⎠

T

(θ̂ − θ̃), (20)

where t̃diffbs = ∑
k∈s dk yk −

(∑
k∈s dk f̃ (xk) − ∑

k∈U f̃ (xk)
)
is the pseudo general-

ized B-spline difference estimator. Using the same arguments as in (19), we can
prove that N−1(t̂yd − ty) = Op(n−1/2) as well as N−1(t̃diffbs − ty) = Op

(
n−1/2

)
.The

pseudo generalized B-spline difference estimator t̃diffbs is design-unbiased for ty and
consistent with the parametric rate n−1/2 and no longer K n−1/2 as given in Goga
(2005). This improved result was obtained by considering a similar decomposition as

in (19) and that N−1 ∑
k∈U f̃ 2(xk) = θ̃

T
(N−1BTB)θ̃ ≤ ||θ̃ ||2||N−1BTB|| = O(1).

We get
N−1(t̂bs − ty) = N−1(t̃diffbs − ty) + Op(K n−1).
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If again K = O(nα) with 0 < α < 1/2, then the B-spline model-assisted estimator
is asymptotically consistent for ty, namely N−1(t̂bs − ty) = Op(n−1/2) and asymp-
totically equivalent to the B-spline generalized difference estimator in the sense
that N−1(t̂bs − ty) = N−1(t̃diffbs − ty) + op(n−1/2). This means that the asymptotic
design-based variance of t̂bs is the design-based variance of t̃diffbs ,

AVp(t̂bs) =
∑

k∈U

∑

l∈U

(πkl − πkπl)dkdl(yk − f̃ (xk))(yl − f̃ (xl)).

Goga and Ruiz-Gazen (2014) considered penalized B-spline model-assisted estima-
tor given by

t̂bs,λ =
∑

k∈s

dk(yk − f̂λ(xk)) +
∑

k∈U

f̂λ(xk)

=
∑

k∈s

dk yk −
(

∑

k∈s

dkb(xk) −
∑

k∈U

b(xk)

)T

θ̂λ,

where θ̂λ = (
∑

k∈s dkb(xk)bT (xk) + λD�)
−1(

∑
k∈s dkb(xk)yk) is obtained from (8)

by estimating each total by its HT estimator. The penalized estimator t̂bs,λ can be also
written as aweighted sumof yk’s valueswithweightswbs

ks(λ) similar to (16).However,
it is very important to notice that the weights wbs

ks(λ) can be written in the projection

form (17), namely wbs
ks(λ) = dkbT (xk)

(∑
l∈s dlb(xl)bT (xl) + λD�

)−1 (∑
l∈U b(xl)

)

which means that the penalized estimator t̂bs,λ is also a projection estimator

t̂bs,λ =
∑

k∈U

f̂λ(xk) =
∑

k∈U

bT (xk)θ̂λ.

Again, this property is due to the fact that bT (xk)1q = 1 for all k ∈ U andD�1q = 0q .

We get
∑

l∈s dlb(xl) · 1 = (∑
l∈s dlb(xl)bT (xl) + λD�

)
1q and

dkbT (xk)

(
∑

l∈s

dlb(xl)bT (xl) + λD�

)−1
∑

l∈s

dlb(xl) = dkbT (xk)1q = dk, k ∈ s.

An improved consistency rate is obtained again by using as for the unpenalized case
the decomposition

θ̂λ − θ̃λ = T̂−1
λ

(
∑

k∈s

dk Ek,λ −
∑

k∈U

Ek,λ

)

,

where T̂λ = ∑
k∈s dkb(xk)bT (xk) + λD� and Ek,λ = b(xk)(yk − bT (xk)θ̃λ) with

∑
k∈U Ek,λ = λD�θ̃λ. Using the same lines as in (19) and assumptions from the

Appendix, we obtain again that N−1(
∑

k∈s dk Ek,λ − ∑
k∈U Ek,λ) = Op(n−1/2) since
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N−1 ∑
k∈U ||Ek,λ||2 ≤ 2

∑
k∈U y2k /N + 2||θ̃λ||2||N−1BT

UBU || = O(1) by using the
fact that ||θ̃λ|| = O(K 1/2) (Goga and Ruiz-Gazen 2014). We also have N T̂−1

λ =
Op(K ) (Goga and Ruiz-Gazen 2014), so

θ̂λ − θ̃λ = Op(K n−1/2).

Using the same decomposition as in (20), we get

N−1(t̂bs,λ − ty) = N−1(t̃diffbs,λ − ty) + Op(K n−1),

where t̃diffbs,λ = ∑
k∈s dk yk −

(∑
k∈s dk f̃λ(xk) − ∑

k∈U f̃λ(xk)
)
is the penalized B-

spline difference estimator which is again design-unbiased and n−1/2 design-
consistent, N−1(t̃diffbs,λ − ty) = Op(n−1/2) by using the same arguments as in the
unpenalized case. If K = O(nα) with 0 < α < 1/2, then the penalized B-spline
model-assisted estimator t̂bs,λ is asymptotically consistent for ty and asymptotically
equivalent to t̃diffbs,λ. So, the asymptotic variance of t̂bs,λ is the variance of the HT

estimator of residuals yk − f̃λ(xk) as in (21) for f̃ (xk) replaced by f̃λ(xk).

2.2 B-Spline Calibration Estimator

The calibration approach (Deville and Särndal 1992) is a method widely used in
national statistical agencies. It consists of finding new weights (wcal

ks )k∈s that are as
close as possible to the sampling weights (dk)k∈s and such that

∑
k∈s wcal

ks xk perfectly
estimates the known population total of auxiliary information

∑
k∈U xk . The cali-

brated estimator
∑

k∈s wcal
ks yk is highly efficient for estimating ty if the relationship

f between y and x is close to a linear relationship but its efficiency may be worse
than the HT estimator if f is nonlinear. In order to overcome this issue, Goga and
Ruiz-Gazen (2019) suggest the B-spline calibration: they suggest finding the calibra-
tion weights (wcal

ks )k∈s that minimize a distance measure ϒs to the sampling weights
(dk)k∈s and subject to the following calibration constraints:

∑

k∈s

wcal
ks b(xk) =

∑

k∈U

b(xk). (21)

Constraints are now on the B-splines function values {B j (xk)}q
j=1 and not directly

on xk as it is the case in the classical calibration as suggested by Deville and Särndal
(1992), we need for that to know xk for all k ∈ U. However, polynomials x� belong
to the space spanned by {B j (·)}q

j=1 for all � = 0, . . . , q − 1. As a result, weights
satisfying (21) will also satisfy
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∑

k∈s

wcal
ks = N ,

∑

k∈s

wcal
ks xk =

∑

k∈U

xk,

∑

k∈s

wcal
ks x�

k =
∑

k∈U

x�
k , � = 2, . . . , q − 1.

The calibration constraints on the first moments of x may be interpreted as a property
of consistency with known totals, the population size N and that of the auxiliary
information x , propertymostly looked for in national statistical agencies.Considering
calibration on higher powers of x is strongly advised by Särndal (2007) in order
to cover a larger class of relationships such as higher order polynomials between
y and x . We argue that considering calibration of B-spline functions as in (21)
allows estimating totals of y’s efficiently when the relationship f between y and x
is polynomial or even more general than polynomials since the calibration weights
(wcal

ks )k∈s will also satisfy the calibration constraints

∑

k∈s

wcal
ks f̂ (xk) =

∑

k∈U

f̂ (xk),

where f̂ is the estimated prediction of the unknown f given in (10). The method we
suggest is different from the model-calibration suggested by Montanari and Ranalli
(2005), who considered calibration on estimated predictions and obtained weights
depending on the study variable which does not happen in our case. The method
we suggest can be extended easily to multivariate auxiliary information and additive
models by adding additional constraints in (21).

We can consider different distance functions ϒs as suggested in
Deville and Särndal (1992). The resulting estimators are asymptotically equiva-
lent to the estimator obtained by minimizing the chi-squared distance function
ϒs(w) = ∑

k∈s(wk − dk)
2/qkdk where the qk’s are known positive constants used

to control the variability of the observations and are unrelated to dk . Most of the
time, qk = 1 for all k ∈ U or qk = 1/σ 2

k with σ 2
k = Vξ (εk), where εk are the errors

in model (2). With the chi-square distance ϒs , the resulting calibration weights are
given by

wcal
ks = dk − qkdkb

T (xk)

⎛

⎝
∑

l∈s

ql dlb(xl )b
T (xl )

⎞

⎠

−1 ⎛

⎝
∑

l∈s

dlb(xl ) −
∑

l∈U

b(xl )

⎞

⎠ , k ∈ s

and the calibration estimator t̂calyw is given by a GREG-type estimator

t̂calyw =
∑

k∈s

dk yk −
(

∑

k∈s

dkb(xk) −
∑

k∈U

b(xk)

)T

θ̂(q)

where θ̂(q) = (
∑

k∈s dkqkb(xk)bT (xk))
−1 ∑

k∈s dkqkb(xk)yk .
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The B-spline calibration estimator t̂calyw from (22) is similar to the B-spline model-
assisted estimator t̂bs from (12) and they are equal if qk = 1 for all k ∈ U.

It can be shown by using the same arguments as in Sect. 2.1 that the B-
spline calibration estimator t̂calyw is asymptotically equivalent to the generalized dif-

ference estimator
∑

k∈s dk yk − (∑
k∈s dkb(xk) − ∑

k∈U b(xk)
)T

θ̃(q) with θ̃(q) =
(
∑

k∈U qkb(xk)bT (xk))
−1 ∑

k∈U qkb(xk)yk and its asymptotic variance is similar to
(21), namely it is equal to the variance of the HT estimator

∑
k∈s(yk − bT (xk)θ̃(q)).

3 B-Spline Model-Assisted Estimator for Complex
Parameters

The estimation of nonlinear parameters � in finite populations has become a cru-
cial problem in many recent surveys. For example, in the European Statistics on
Income and Living Conditions (EU-SILC) survey, several indicators for studying
social inequalities and poverty are considered; these include the Gini index, the at-
risk-of-poverty rate, the quintile share ratio and the low-income proportion. Thus,
deriving estimators and confidence intervals for such indicators is particularly useful.

Consider now a parameter � which is more complicated than a total or a mean.
Broadly speaking, linearization techniques consist in obtaining an expansion of an
estimator �̂ of � as follows:

�̂ − � �
∑

k∈s

dkuk −
∑

k∈U

uk = t̂ud − tu, (22)

where uk is a kind of artificial variable called the linearized variable of � by Deville
(1999b). Theway it is derived depends on the type of linearizationmethod usedwhich
could include Taylor series (Särndal et al. 1992), estimating equations (Binder 1983)
or influence function (Deville 1999b) approaches. The right hand-side of (22) is the
difference between the HT estimator and the corresponding population total of the
variable uk over the population U . Consequently, the variance of the right hand-side
is easily obtained and given by

∑

k∈U

∑

l∈U

(πkl − πkπl)dkdlukul . (23)

We can see from above that we will achieve a small approximate variance and good
precision for �̂ if we estimate tu = ∑

k∈U uk in an efficient way, namely the variance
given in (23) is small. However, linearized variables may have complicated mathe-
matical expressions and it is not obvious how to improve efficiently the estimation
of tu . In particular, fitting a linear model onto a linearized variable may not be the
most appropriate choice.
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An example of such a situation is the estimation from survey data of the Gini coef-
ficient (Gini 1914) as considered in Goga and Ruiz-Gazen (2014). Gini coefficient
is one of the most famous concentration measures often of interest in economical
studies. In finite populations, the Gini index (Nygard and Sandström 1985) is given
by (after neglecting the term 1/N )

G =
∑

k∈U yk (2F(yk) − 1)

ty
,

where F(y) = ∑
k∈U 1{yk≤y}/N is the finite population empirical distribution func-

tion. The expression of the linearized variable uk,G of the Gini index (Binder and
Kovacevic 1995; Deville 1999a) is given by

uk,G = 2F(yk)
yk − yk,<

ty
− yk

1 + G

ty
+ 1 − G

N
, k ∈ U,

where yk,< is the mean of y j lower than yk and ty the total of the yk on U . Goga
and Ruiz-Gazen (2014) considered a dataset of size 1000, extracted from the French
Labor Force Survey; yk (the wages of person k in 2000) was the study variable and
xk (the wages of person k in 1999) the auxiliary variable. In the left (resp. right)
graphic of Fig. 2, the study variable yk is plotted (resp. the linearized variable uk)
on the y-axis and the auxiliary variable xk is plotted on the x-axis. The relationship
between y and x is almost linear; however, the relationship between the linearized
variable uG and x is no longer linear. Therefore, nonparametric models should be
preferred to parametric models to estimate the Gini index.

Let the superpopulation model ξ ′ relating the auxiliary information xk to the
linearized variable uk given by
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Fig. 2 Left plot: yk : the wages of person k in 2000 against zk : the wages of person k in 1999. Right
plot: uk : linearized variable of the Gini index for the wages in 2000 for person k against zk : the
wages of person k in 1999
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ξ ′ : uk = g(xk) + ηk, k ∈ U, (24)

where g is unknown and ηk are centered and uncorrelated. Note that it is not really
a model since we do not observe the linearized variables uk . It can be viewed as a
tool used to construct new weights for estimating tu = ∑

k∈U uk efficiently and so by
(22), for estimating efficiently G. From Sect. 2.1, we obtain that the nonparametric
weights (wbs

ks)k∈s are given by the same relation (16). This fact is not really surprising
since these weights have been obtained in the case of the estimation of the finite
population total of y but they do not depend on y, so they can be used to estimate
nonlinear parameters such as the Gini index

Ĝ
bs =

∑
k∈s wbs

ks yk

(
2F̂bs(yk) − 1

)

∑
k∈s wbs

ks yk
,

where F̂bs(yk) = ∑
l∈s wbs

ls 1{yl≤yk }/
∑

l∈s wbs
ls is the nonparametric estimator of F.

The asymptotic variance of Ĝnp is given by Goga and Ruiz-Gazen (2014)

AVp(Ĝ
np) =

∑

k∈U

∑

k∈U

(πkl − πkπl)dkdl(uk − g̃(xk))(ul − g̃(xl)),

where g̃(xk) is similar to (6) but computed from the data {(xk, uk)}k∈U . The asymp-
totic variance is, in fact, the HT variance for the residuals uk − g̃(xk) of the linearized
variable uk under the model ξ ′ given in (24). The smaller the residuals uk − g̃(xk),

k ∈ U are, the better the estimator Ĝnp for G is. Considering nonparametric models
ξ ′ as in (24) and B-spline regression provide good prediction for rather complicated
uk and lead to low residuals uk − g̃(xk). Nevertheless, unlike the GREG estimators
derived under a linear model, nonparametric model-assisted estimators need xk to
be known for all the individuals from the population. Goga and Ruiz-Gazen (2014)
suggested a variance estimator and gave assumptions under which the suggested
variance estimator is consistent. They also conducted a large simulation study on
data extracted from the French Labour Force which showed that the suggested esti-
mator had a large efficiency gain for estimating nonlinear parameters such as the Gini
index or the low-income proportion compared to usual estimators such as the HT
estimator, the linear GREG or the poststratified estimator. They noticed that m = 3
was the best choice, especially for sample sizes smaller than 1000. Moreover, for
m = 3 the coverage rates were good and results do not depend heavily on the number
of knots and are similar for K between 2 and 4.

We consider here the estimation with B-splines of another nonlinear parameter,
the functional median. Consider that the study variableY is now a curve or functional
belonging to L2[0,T ], Yk(t) is the value ofY recorded for the k-th individual at the
instant t. For example, national companies of electricity such as the French company
EDF (Electricité de France) or the Irish company have installed smart meters in
households and companies over the past years. These meters are capable to record
and send the electricity consumption at a very fine scale. The electricity consumption
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is considered in this situation as a functional variable. With high dimensional data, it
is not uncommon to have outlying curves, such as consumers with very high levels
of electricity consumption. In such a situation, it is advisable to consider indicators
which are more robust to outlying data than the mean profile, and the median is one
of them. With a finite population point of view and functional data, the median curve
calculated from the elements {Yk}k∈U belonging to L2[0,T ] is defined by Gervini
(2008)

m N = argminy∈L2[0,T ]
∑

k∈U ||Yk − y||

and estimated from survey data by Chaouch and Goga (2012)

m̂n = argminy∈L2[0,T ]
∑

k∈s

dk ||Yk − y||.

If Yk, k ∈ s are not on a straight line and m̂n �= Yk , then the design-based estimator
m̂n is the unique solution of the estimating equation

∑

k∈s

dk
Yk − m̂n

||Yk − m̂n|| = 0. (25)

Under broad assumptions, we linearize m̂n (Deville 1999b; Chaouch andGoga 2012)
as follows:

m̂n = m N +
∑

k∈s

dkuk,m N −
∑

k∈U

uk,m N + op(n
−1/2), (26)

where uk,m N = −1 ((Yk − m N )/||Yk − m N ||) is the linearized variable of m N and
 = ∑

k∈U ||Yk − m N ||−1
[
I − (Yk − m N ) ⊗ (Yk − m N )||Yk − m N ||−2

]
is the Jaco-

bian operator of
∑

k∈U (Yk − m N )/||Yk − m N ||. Chaouch and Goga (2012) consid-
ered the estimation of the functional median with various sampling designs such as
the simple random sampling without replacement (SRSWOR), the stratified sam-
pling (STRAT) and proportional to size sampling designs on a population test of
load electricity curves recorded every thirty minutes during two consecutive weeks.
We consider here a set of about N = 15000 electricity curves. We plot in Fig. 3a
the electricity load curves recorded during one week (D = 336 discretized points)
for a sample of ten firms, the median curve computed from the population is plot-
ted in red. The electricity consumption recorded during the first week was used as
auxiliary information to improve the estimation ofm N at the sampling stage by strati-
fying the population or by selecting firms with a probability proportional to their past
consumption. STRAT performed better than the SRSWOR for estimating m N .How-
ever, even if the relationship between Yk and the considered xk was linear and going
through the origin, proportional to size sampling design, performed very poorly for
the estimation of the median m N , in fact, it was even worse than the SRSWOR, while
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Fig. 3 a Electricity consumption curves for ten individuals, population median curve is plotted in
red. bMean curve of the test population in black and median curve of the test population in red

this design performed very good for the estimation of the total or mean consumption
curve (Cardot et al. 2012).We suggest in the next B-spline model-assisted estimators
to ameliorate the estimation of the median m N obtained with the SRSWOR design
or with proportional to size and without replacement sampling design (πps).

Consider that a sample of size n is selected according to a SRSWOR design from
the population of size N , so the inclusion probabilities are πk = n/N for all k ∈ U.

The estimator m̂n without auxiliary information is obtained from (25) for dk = N/n.

Let xk be themean consumptionduring thefirstweek, xk = ∑D
t=1 Xk(td)/D, k ∈ U

which will be used as auxiliary information for improving the estimation of m N

when firms are selected according to SRSWOR. In order to do that, we use the
nonparametric weights (wbs

ks)k∈s given in (17) to obtain the B-spline model-assisted
estimator m̂bs

n

∑

k∈s

wbs
ks

Yk − m̂bs
n

||Yk − m̂bs
n || = 0.

To check the performance of m̂bs
n and compare it to m̂n , we select I = 1000 samples

of size n = 2000 according to SRSWOR. In each sample, we compute m̂n by using
the sampling weights dk and m̂bs

n with the B-spline weightswbs
ks .We compute for each

sample the absolue errors, R(m̂n) = ∫ T
0 |m̂n − m N | � ∑D

d=1 |m̂n(td) − m N (td)|/D
where D = 336 the number of discretized points. Figure4a gives the distribution of
these I absolue errors computed for both strategies. We can notice that considering
B-spline estimation (m = 3 and K = 8 interior knots) of m N leads to a substantial
improvement of the median estimation.

Consider now the estimation of m N with a πps design. This design consists of
selecting firms without replacement with probabilities of inclusion πk proportional
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Fig. 4 a: Boxplots of absolue errors of I estimations of the median for the SRSWOR design and
sampling weights (left boxplot) and B-spline weights (right boxplot); b: Boxplots of absolue errors
of I estimations of the median for the πps design and sampling weights (left boxplot) and B-spline
weights (right boxplot)

to xk,, i.e., πk = nxk/
∑

k∈U xk for all k ∈ U. The estimator m̂n with a πps sampling
is obtained by solving (25) for dk = 1/πk .

This design performs very poorly for the estimation of the median curve, usually
the estimation of the median curve with πps fails for high and low values of the
median. In order to understand the reason of it, consider the linearization of m̂n

given in (26) with asymptotic HT variance given in the general formula (23) which,
for πps designs, is equal to Yates and Grundy (1953)

AVp(m̂n)(t) = −2−1
∑

k∈U

∑

l∈U

(πkl − πkπl)
(
dkuk,m N (t) − dlul,m N (t)

)2
, t ∈ [0, T ].

This means that the πps sampling is efficient for estimating m N if uk(t) is approxi-
mately proportional to xk which is not the case here since the relationship between
the linearized variable uk,m N and πk is not linear. However, the πps design is
highly efficient for estimating the total consumption curve during the second week
tY = ∑

k∈U Yk because, for all instants t from the secondweek,Yk(t) is approximately
proportional to the consumption from the previous week, so Yk(t) is approximately
proportional to πk (Cardot et al. 2012). In order to improve the estimation of the
median with a πps design, we suggest an estimator of m N which consists of modi-
fying the sampling weights dk = 1/πk by using a superpopulation model explaining
the relationship between uk and πk as follows:

uk,m N (t) = g(πk, t) + ηkt , k ∈ U
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where g is unknown and the errors ηkt are centered. The function g can be esti-
mated by using the B-spline regression as proposed by Goga and Ruiz-Gazen (2014)
and described before. This leads to consider relation (17) for the auxiliary infor-
mation given now by πk leading to the following smoothed weights: wbs

ks(π) =
dkbT (πk)

(∑
k∈s dkb(πk)bT (πk)

)−1 ∑
k∈U b(πk), k ∈ s. The improved estimator of

themedian is obtained from (25) by replacing dk with theweightswbs
ks(π). In amodel-

based setting, Zheng and Little (2003, 2005) used a similar idea and penalized spline
in order to estimate finite population totals with πps sampling designs.

Consider again the same population test and draw now I = 1000 πps samples.
For each sample, we compute m̂n by using the sampling weights dk and the B-spline
weights wbs

ks(π) and compute again the absolute errors, R(m̂n) � ∑D
d=1 |m̂n(td) −

m N (td)|/D. Figure4b gives the distribution of these I absolute errors computed for
both strategies.We note again amarked improvement of the estimation of themedian
for the πps sampling design by using B-spline model-assisted estimator. This can
be explained by the fact that the nonparametric weights wbs

ks(π) are more adapted to
estimate m N than the πps weights.

4 B-Spline Imputation for Handling Item Nonresponse

The theory presented in the above sections supposed that all the sampled individuals
respond, so we have full sample data {yk}k∈s . In practice however, due to various
reasons, some individuals do not respond to the survey questionnaire (unit nonre-
sponse) or respond only partially (item nonresponse). Unit nonresponse is treated by
weighting methods while item nonresponse is treated by imputation. We focus here
on item nonresponse and the estimation of finite population total ty .

Let sr be the subset of the original sample s containing the individuals that
responded to item y and sm = s − sr , the subset of s containing the nonrespon-
dents. To estimate ty, we use an imputed estimator t̂I which is obtained from the
HT estimator given in (1) by replacing or imputing the missing values yk, k ∈ sm by
values ŷk

t̂I =
∑

k∈sr

dk yk +
∑

k∈sm

dk ŷk

The imputed values are obtained by fitting an imputationmodel. It is usually assumed
that the response mechanism is MAR (missing at random), namely the distribution
ofY is the samewithin respondents and nonrespondents given fully observed covari-
ates. Under the MAR assumption and provided that the auxiliary information xk is
available for all k ∈ s, the respondent data {(yk, xk)}k∈r may be used to build impu-
tation models and to predict yk for the nonrespondents. Goga et al. (2020) suggested
a B-spline imputation procedure. We consider the model (2) as the imputation model
and we estimate f by B-splines from the respondent data, the imputed value ŷk is
given by
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ŷk = bT θ̂ r , k ∈ sm

where θ̂ r = (
∑

k∈sr
dkb(xk)bT (xk))

−1 ∑
k∈sr

dkb(xk)yk . Using the same techniques
as in Sect. 2, we can show that

∑
k∈sr

dk(yk − ŷk) = 0 so the imputed estimator can
be also written in a projection form, namely t̂I = ∑

k∈s dk ŷk . Under the assump-
tions described in the Appendix and assuming that the response probabilities are all
bounded away from 0, the imputed estimator is consistent for ty but with a consis-
tency rate which is slower than in the full response case. The imputed estimator can
be written as a weighted sum of yk’s values with weights not depending on Y, so
the approach supposed by Beaumont and Bissonnette (2011) can be used to compute
and estimate the variance of t̂I . Goga et al. (2020) also suggest random B-spline
imputation which consists in replacing the missing yk by

ŷk = f̂ (xk) + ε∗
k , k ∈ sm

where ε∗
k is a residual selected at random from the set of standardized residuals

observed from the responding units, {ẽk; k ∈ sr }, with probability P(ε∗
k = ẽk) =

π−1
k /

∑
l∈sr

π−1
l , where ẽk = ek − ēr and ek = yk − f̂ (xk) with ēr = ∑

k∈sr
dkek/∑

k∈sr
dk . Simulation studies conducted by Goga et al. (2020) show that the deter-

minist and random B-spline imputation estimators perform much better than those
obtained through regression imputation and nonparametric nearest neighbor impu-
tation. In particular, the imputation estimator based on random B-spline imputation
performs very well for the quantile estimation. The suggested method can be easily
generalized to multiple auxiliary information by considering additive models.

Appendix

Assumptions on the Sampling Design and the Study Variable

We assume the following assumptions classical in survey sampling theory (Breidt
and Opsomer 2000; Goga 2005).

• Assume that lim
N→∞ N−1n = π ∈ (0, 1).

• Assume that mink∈U πk ≥ c̃ and mink,l∈U πkl ≥ c∗ with c̃ and c∗ some positive
constants and limN→∞n maxk �=l∈U |πkl − πkπl | < C1 < ∞, with C1 a positive
constant.

• Assume that lim
N→∞ N−1

∑

k∈U

y2k < ∞.

We assume the following assumptions classical in nonparametric regression (Agar-
wal and Studden 1980; Burman 1991; Zhou et al. 1998; Claeskens et al. 2009).
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Assumptions on B-Splines

• Assume that there exists a distribution function Q(x)with strictly positive density
on [0, 1] such that supx∈[0,1] |QN (x) − Q(x)| = o(K −1), with QN (x) the empir-
ical distribution of (xi )

N
i=1.• Assume that the number of interior knots K satisfies K = o(N ).

• Assume that K� = (K + m − �)(λC̃)1/(2�)N−1/(2�) < 1 where C̃ = C{1 + o(1)}
with C a constant depending only on � and the design density.
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Computational Outlier Detection
Methods in Sliced Inverse Regression

Hadrien Lorenzo and Jérôme Saracco

Abstract Sliced inverse regression (SIR) focuses on the relationship between a
dependent variable y and a p-dimensional explanatory variable x in a semiparamet-
ric regression model, in which, the link relies on an index x ′β and link function f .
SIR allows estimating the direction of β that forms the effective dimension reduction
(EDR) space. Based on the estimated index, the link function f can then be nonpara-
metrically estimated using kernel estimator. This two-step approach is sensitive to
the presence of outliers in the data. The aim of this paper is to propose computational
methods to detect outliers in that kind of single-index regressionmodel. Three outlier
detection methods are proposed and their numerical behaviors are illustrated on a
simulated sample. To discriminate outliers from “normal” observations, they use IB
(in-bags) or OOB (out-of-bags) prediction errors from subsampling or resampling
approaches. These methods, implemented in R, are compared with each other in a
simulation study. An application on a real data is also provided.

1 Introduction

On one hand, classical linear regression ormore generally parametric regression have
achieved resounding success in many real problems whose goal is to investigate the
relationship between a response variable y ∈ R and a covariate x ∈ R

p. However,
it can be argued that assuming specific structural constraints on the link function
of y on x is too stringent. On the other hand, nonparametric regression is clearly a
more flexible approach, but it is well-known that it typically suffers from the curse of
dimensionality, i.e., a poor rate of convergence when the dimension p of x increases.
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To address these problems from purely parametric or nonparametric approaches,
several authors studied single-indexormultiple-indexmodels. This kindof regression
model can be viewed as an alternative semiparametric approach based on sufficient
dimension reduction. So, in a dimension reduction setting, many authors suppose
that x can be replaced by a linear combination of its components, β ′x , without losing
information on the conditional distribution of y given x . One way to express this
assumption is

y ⊥ x | β ′x (1)

where the notation v1 ⊥ v2 | v3 means that the random variable v1 is independent of
the random variable v2 given any values for the random variable v3. One can write
(1) as, for instance, the following single-index model with an additive error:

y = f (β ′x) + ε, (2)

where f is an unknown real-valued function, the distribution of ε is arbitrary and
unknown, and ε ⊥ x . Since f is unknown, the p-dimensional parameter β is not
totally identifiable, but the subspace spanned by β is identifiable. This subspace is
referred to as the effective dimension reduction (EDR) subspace following Duan and
Li (1991) in their original presentation of sliced inverse regression (SIR). Li (1991)
consider a multiple-index regression model. The Euclidean parameter β is now a
p × K matrix: β = [β1, . . . , βK ] where the vectors βk are assumed to be linearly
independent. The EDR subspace is then the K -dimensional linear subspace of Rp

spanned by the βk’s.
Note that the dimension reduction is very useful in an exploratory stage of data

analysis since model (1) relies on very few structural assumptions. For instance, it
is not assumed that the indices act additively as often assumed in multiple-index
models. It is likewise not necessary to assume that the error term is additive on the
mean (as for the model (2)), thus heteroscedastic models are potentially included in
this modeling. Note also that sufficient dimension reduction of the regression leads
to a summary plot of y versus estimated indices which provides useful graphical
modeling information.

In a second step, to study the relationship between the response variable and
the few estimated indices, standard nonparametric approaches (such as kernel or
spline smoothing) can be used. This stage usually involves additional assumptions
such as an additive error term (as in model (2)) to get consistent properties of the
corresponding estimate of the link function f .

In the statistical literature, different methods have been developed with the aim
of estimating the EDR subspace. SIR, SIR-II, SIRα , SAVE (sliced average variance
estimation), and pHd (principal Hessian directions) approaches are the most popular,
see Azais et al. (2012), Cai et al. (2020), Chavent et al. (2014), Chen and Li (1998),
Cook (2000), Gannoun and Saracco (2003), Hsing (1999), Jlassi and Saracco (2019),
Li (2018, 1992), Li et al. (2003), Li and Zhu (2007), Saracco (1997, 2005), Yin and
Seymour (2005), Zhu et al. (2006), Zhu and Zhu (2007) among others. The important
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question of the determination of theEDRspace dimension in SIR and relatedmethods
has also beenmuch studied, see for example Ferré (1998), Liquet and Saracco (2008).

SIR is known to be a relevant technique for the purpose of dimension reduction.
Several properties of SIR have been extensively studied and numerous extensions
have been already proposed. However, little attention has been paid to the sensitivity
of SIR to outliers or to robustness aspects. Since SIR theory is based on conditional
expectation and covariance matrix properties (see Sect. 2 for details), it is obvious
that SIR can be severely influenced by outliers in the data, see Gather et al. (2002) or
Cook and Critchley (2000) for instance. In Prendergast (2006, 2007), the detection
of influential observations on the estimation of the dimension reduction subspaces
returned by SIR, SIR-II, and SAVE have been studied using the notion of influence
functions of single observations. However, the proposed empirical influence values
are very sensitive to the choice of the number H of slices (introduced in the next
section) in detecting influential observations,whichmakes this approach complicated
to use in practice. Robust SIR methods were then developed and only focused on the
estimation of the EDR space (regardless of the estimation of the link function f ).
For example, in Chiancone et al. (2017), the inverse regression formulation of SIR
is, therefore, extended to non-Gaussian errors with heavy-tailed distributions (Stu-
dent). The underlying Expectation-Maximization algorithm was tested in presence
of outliers and provided good numerical results. Dong et al. (2015) also mentioned
that classical sufficient dimension reduction methods are sensitive to outliers present
in predictors, and may not perform well when the distribution of the predictors is
heavy-tailed. Two robust inverse regression methods which are insensitive to data
contamination (weighted inverse regression estimation and sliced inverse median
estimation) were then introduced and they demonstrated very interesting numerical
performances in the presence of potential outliers. In the same spirit, Babos and
Artemiou (2020) proposed sliced inverse median difference regression to robustify
SIR methodology at the presence of outliers. In Dikheel (2014), robust SIR exten-
sions were presented through robust estimates of the covariance matrix.

The goal of this paper is to propose computational methods to detect outliers in a
single-index regression model, comprising EDR space estimation using SIR and link
function estimation based on kernel smoothing. In practice, it is always interesting
to detect outliers (rather than only developing robust methods), to isolate them, and
to understand why these observations are aberrant (wrong numerical values, unusual
individuals, …). Once the dataset has been cleaned, it is then possible to implement
the usual methodology, SIR followed by a nonparametric estimation of f .

In Sect. 2, a brief overview on usual SIR is given. Three outlier detection meth-
ods, namedMONO, TTR, and BOOT hereafter, are presented in Sect. 3. They use IB
(in-bags) or OOB (out-of-bags) prediction errors from subsampling or resampling
approaches in order to discriminate outliers from“normal” observations. Thesemeth-
ods have been implemented in R. How these methodologies work is described on a
simulated example in Sect. 4. Section5 provides a more extensive simulation study
that compares the numerical performances of the proposed methods. A real dataset
is also used to illustrate these approaches in Sect. 6. Finally, concluding remarks are
given in Sect. 7.
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2 A Brief Review on Usual SIR

In order to estimate the EDR space, various methods based on the use of inverse
regression are widely available in the literature. In order for inverse regression to be
useful in estimating the EDR space, some of them, like SIR or SAVE or principal
Hessian direction, need additional conditions on the marginal distribution of the
covariate x . In this paper, we focus the usual SIR approach which relies on the
following linearity condition (LC) on x :

For all b ∈ R
p,E

[
b′x | β ′x

]
is linear in x ′β. (3)

Note that the LC is required to hold only for the true Euclidean parameter β. Since β

is unknown, it is not possible, in practice, to verify a priori this assumption. There-
fore, we can assume that LC holds for all possible values of β, this is equivalent to
assume an elliptical symmetry of the distribution of x : for instance, the well-known
multivariate normal distribution satisfies this condition. Finally, following Hall and
Li (1993), the LC is not a severe restriction because this LC holds to a good approxi-
mation in many problems as the dimension p of the predictors increases. Interesting
discussions on the LC can also be found inChen andLi (1998), Li (2018) for instance.

Let us now consider a monotone transformation T . Under model (1) and LC,
Duan and Li (1991) showed that the centered inverse regression curve satisfies

E[x | T (y)] − μ ∈ Span(�β), (4)

where μ := E[x] and � := V(x). Therefore, the space spanned by the centered
inverse curve, {E[x | T (y)] − E[x] : y ∈ Y} where Y is the support of response
variable y, is a subspace of the EDR space, but it does not guarantee equality. A
pathological model, often called symmetric dependent model, has been identified in
the literature, and this is the model for which the centered inverse regression curve is
degenerated. To solve this problem, specific methods (based on higher order inverse
moments), such as SIR-II, SIRα or SAVE, have been developed.

When the model is not pathological (which is often the case in practice), the
centered inverse regression curve can be used to recover the EDR space from (4).
Indeed, a direct consequence of this result is that the covariance matrix of this curve,

� := V(E[x | T (y)]),

is degenerate in any direction�-orthogonal to β (i.e., to the βk’s for a multiple-index
model). Therefore, the eigenvectors associatedwith the nonnull eigenvalues of�−1�

are EDR directions, which means that they span the EDR space E .
In the slicing step of SIR, the range of y is partitioned into H nonoverlapping slices

{s1, . . . , sH }. With such slicing, the covariance matrix � can be straightforwardly
written as
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� :=
H∑

h=1

ph(mh − μ)(mh − μ)′

where ph = P(y ∈ sh) and mh = E[x | y ∈ sh].
Let us now consider a random sample {(xi , yi ), i = 1, . . . , n} generated from the

single-index regression model (2). By substituting the empirical versions ofμ,�, ph
and mh for their theoretical counterparts, we obtain an estimated basis of E spanned
by the eigenvector b̂ SIR associated with the largest eigenvalue of the estimate �̂−1

n �̂n

of �−1� where

�̂n = 1

n

n∑

i=1

(xi − x̄n)(xi − x̄n)
′ and �̂n =

H∑

h=1

p̂h,n(m̂h,n − x̄n)(m̂h,n − x̄n)
′,

with x̄n = 1
n

∑n
i=1 xi , n̂h,n = ∑n

i=1 I[yi∈sh ], p̂h,n = n̂h,n

n , m̂h,n = 1
n̂h,n

∑
i∈sh xi , the

notation I[.] standing for indicator function. This approach is the one proposed by
Duan andLi (1991), Li (1991)when they initially introduced the SIR approach. Since
the early 1990s, the SIR method has been extensively studied by many authors, see,
for instance, all the references mentioned in the introduction.

The link function f of model (2) can then be estimated by the usual kernel
estimator (see for example Schimek 2013) based on the sample {(x ′

i b̂ SIR, yi ), i =
1, . . . , n} where the x ′

i b̂ SIR’s are the values of the estimated index. For a given value
x0 of x , the kernel estimation of f (β ′x0) is given by

f̂n(b̂
′
SIRx0) =

∑n
i=1 K

(
x ′
i b̂ SIR−x ′

0 b̂ SIR

hn

)
yi

∑n
i=1 K

(
x ′
i b̂ SIR−x ′

0 b̂ SIR

hn

) ,

where K is the kernel and hn is the bandwidth. The kernel is usually a positive
symmetric weighting function with an integral equal to 1. In the rest of the paper, the
chosen kernel is the density of the normal distribution N(0, 1), called the Gaussian
kernel. The bandwidth hn > 0 is called the smoothing parameter in kernel regression
because it controls variance and bias of the estimator. This parameter must, therefore,
be correctly tuned using cross-validation for instance:

h opt
n = arg min

hn>0

1

n

n∑

i=1

(
yi − f̂ (−i)

n (b̂′
SIRx0)

)2
,

where f̂ (−i)
n (b̂′

SIRx0) stands for the estimation of f (β ′x0) based on the sample
{(x ′

j b̂ SIR, y j ), j �= i}.
When the underlying regression model is a multiple-index model, the estimated

EDR space is spanned by the eigenvectors associated with the largest K eigenvalues
of the estimate �̂−1

n �̂n . Let B̂ SIR be the p × K matrix of these K eigenvectors.
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The estimated indices x ′
i B̂ SIR’s are now K -dimensional and the kernel estimation

of f (β ′x0) is then based on multivariate kernel. For example, K can be the density
of the multivariate normal distributionN(0K , IK ) where 0K (resp. IK ) stands for the
null vector of dimension K (resp. the identity matrix of order K ), and the associated
smoothing parameter hn can be K -dimensional. Another way is to consider the
following kernel estimator:

f̂n(B̂
′
SIRx0) =

∑n
i=1 K

( ||x ′
i B̂ SIR−x ′

0 B̂ SIR||
hn

)
yi

∑n
i=1 K

( ||x ′
i B̂ SIR−x ′

0 B̂ SIR||
hn

) ,

where ||.|| stands for a chosen norm in RK and the bandwidth hn is unidimensional.

3 Outlier Detection Methods in SIR

Three outlier detection methods for single-index regression model (2) are presented.
Let us consider a sample S = {(xi , yi ), i = 1, . . . , n} of n individuals among which
some may be outliers.

For each of the three methods, the parameter β (more properly, the EDR direction
b) is estimated by the usual SIR method (with the number of slices H = 10) and the
link function f is estimated using the kernel estimator with the Gaussian kernel and
the bandwidth tuned via cross-validation.

3.1 A Naive Method

This naive method relies on the following three steps:

Step 1. Estimation the EDR direction from the sample S.
The usual SIR provides the estimate b̂ SIR of b. The corresponding indices
{b̂′

SIRxi , i = 1, . . . , n} are then calculated.
Step 2. Estimation of the adjusted value f (β ′xi )’s.

From the sample {(b̂′
SIRxi , yi ), i = 1, . . . , n, the adjusted values are obtained via

the kernel estimator based on the Gaussian kernel and the bandwidth tuned via
cross-validation. Let ŷi = f̂n(b̂′

SIRxi ) for i = 1, . . . , n.
Step 3. Evaluation of the error associated with the model estimation and outlier

detection.
The errors considered are naturally the residuals: for i = 1, . . . , n, êi = yi − ŷi .
The detection of potential outliers is simply based on the definition of outliers in
the boxplot of the absolute error |êi |’s, i.e., the outliers correspond to individuals
whose values are greater than the value of the 3rd quartile plus 1.5 times the
interquartile interval.
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Note that, in the same spirit, the bootstrap histogram of “mean—trimmed mean”
for a suitable trimming number was proposed by Singh and Xie (2003) as a
nonparametric graphical tool for detecting outlier(s) in a dataset. The bootlier
plot was introduced and it is shown that the multimodality in the bootlier plot is
caused by outlier(s) in the sample.

This naive method is called MONO hereafter. The name MONO stands for a single
use of the initial sample S and a single estimate of the underlying single-index
model. In the numerical example of Sect. 4, Fig. 1 allows to visualize the position of
the outliers in the corresponding boxplot.

3.2 TTR Method

This method relies on training sample and test sample replications for evaluating the
“stability” of the estimated model, hence the name TTR of the method for Training
Test Replications.

The TTR approach works in two major steps. Let R be the number of replications
chosen by the user. In practice, R = 2000 is more than enough for reasonable sam-
ple sizes, i.e., n ≤ 500. Let α ∈ [0, 1] be the proportion of the sample which will
constitute the test sample. In the rest of the paper, the parameter is fixed to α = 0.1,
thus 90% of the sample S is used as the training sample S train and the remaining 10%
of the sample S constitutes the test sample S test. Note that individuals are drawn with
equal weight and without replacement.

Step 1. For each replication r (with r = 1, . . . , R)

1.a. Split the initial sample S into a training sample S(r)
train and a test sample S(r)

test

containing, respectively, (1 − α)% and α% of the individuals.
1.b. Using S(r)

train, calculate the estimated EDR direction b̂(r)
SIR and the associated

indices {(b̂(r)
SIR)

′xi , i ∈ S(r)
train}.

1.c. For all the individuals i∗ ∈ S(r)
test , calculate the error of prediction of the

response variable y as follows:

ê(r)
i∗ = yi∗ − f̂ (r)

n

(
(b̂(r)

SIR)
′xi∗

)
,

where the estimate f̂ (r)
n (.) is based on the sample {((b̂(r)

SIR)
′xi , yi ), i ∈ S(r)

train}.
Step 2. Evaluation of the error means.

For each i∗ = 1, . . . , n, calculate the associated errormean over the R replications
(when the individual i∗ is present in the corresponding test sample):

ei∗ =
∑R

r=1

∣∣∣ ê(r)
i∗

∣∣∣ I[i∗∈S(r)
test]

∑R
r=1 I[i∗∈S(r)

test]
.
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Step 3. Detection of the outliers via a change point detection.
The idea is to find a single change point position in the sequence of the errors’
means {e(i∗), i∗ = 1, . . . , n} ordered by decreasing values (where the subscript
(i∗) enclosed in parentheses indicates the i∗th order statistic of the sample).
Indeed, if there are no outliers in the data, no change points should clearly appear in
this sequence of ordered absolute mean errors. On the other hand, in the presence
of outliers, the corresponding mean absolute errors should naturally be signifi-
cantly larger than the errors associated with other individuals. Thus, looking for
a single change point in mean and variance in this sequence should intuitively
allow us to separate outliers from other observations.
Many authors have proposed a single search method to detect change points.
Recently,Killick andEckley (2014) havedeveloped theRpackagechangepoint
that helps to detect the location of different change points. For single or multi-
ple change point detection, the approach allows estimating the points at which
the statistical properties of a sequence of observations change. Within this pack-
age, several changes in mean methods are available as well as methods focus-
ing on detection of change in variance and methods searching a change in
both mean and variance. Briefly, let us give an overview of the underlying
approach. Let z1:n = (z1, . . . , zn) be the ordered sequence of the errors’ means
and τi :m = (τ1, . . . , τm) the positions of the m change points (each change point
position is between 1 and n − 1, τ0 = 0 and τm+1 = n). The idea is to minimize

m+1∑

i=1

[C(z(τi−1+1):τi )] + γ g(m) (5)

where C is a cost function (for instance negative log-likelihood ratio test statistic)
and γ g(m) is a penalty to guard against over fitting. This package implements
several algorithms to minimize (5): binary segmentation (Edwards and Cavalli-
Sforza 1965), segment neighborhood (Auger and Lawrence 1989) and pruned
exact linear time (PELT) (Killick et al. 2012).Here thechangepoint package is
used to detect only one change point (m = 1) inmean and variancewith the binary
segmentation algorithm in the ordered sequence of means {e(i∗), i∗ = 1, . . . , n}.
In the numerical example of Sect. 4, Fig. 2 (top left) visualizes the position of the
estimated single change point.
An individual associated with an ordered error’s mean before the single change
point position is then considered as an outlier.

Remark In the associated R code, the bandwidth is tuned only once in step 1.c
for the kernel estimation of each iteration. This “optimal” bandwidth is obtained
via cross-validation using the whole sample of the yi ’s versus the estimated indices
x ′
i b̂ SIR. This is a reasonable choice if one assumes that there are no outliers in the xi ’s
and thus in the x ′

i b̂’s or in the x ′
i b̂

(r)’s. Note that the presence of visible outliers in
the xi ’s would have been detected in a preliminary step and the dataset would then
have been cleaned. This choice of only one tuned bandwidth clearly saves calculation
time for the TTR method. Finally, note also that, in each iteration of step 3 for the
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TTR method, it is easy to integrate an automatic optimal bandwidth selection in the
R code. The same strategy is used for the BOOT method in step 1.c presented in the
following section:

3.3 BOOT Method

The MONO method deals with in-bag (IB) errors and the TTR method with out-
of-bag (OOB) errors. While MONO risks overfitting, TTR risks significance loss of
statistical power (since the training sample is a subsample of the initial sample) but
cannot quantify the impact of IB individuals. The current BOOT method uses IB
errors in that objective.

Isolated individuals that are not outliers, in the plot of the estimated index versus
the response y are usually hard to predict especially if those individuals are not in
the training dataset. However, if any of those individuals are included in the training
dataset, it has a beneficial effect on the built model. Indeed, those individuals are,
therefore, better predicted while the nonisolated individuals are still well predicted
since those isolated individuals are in line with the regression model. For those
isolated individuals, the OOB error is then high while the IB error is potentially
low. They are denoted as “borderline” observations in the following: On the other
hand, the “outliers” are always badly predicted with high IB and OOB errors and the
“normal” individuals are always well predicted with low IB and OOB errors (see an
illustration of these comments in Fig. 4 that gives examples of those three types of
observations).

The BOOT method is based on two simple decision rules to discriminate
between these three types of individuals (“normal” observation, “borderline” obser-
vation,“outlier”) using the IB error and its logarithmic transformation. This method
relies on bootstrap samples of S. Let B be the number of bootstraps chosen by the
user. In practice B = 2000 is more than enough for reasonable sample sizes, i.e.,
n ≤ 500. Note that individuals are drawn with equal weight and with replacement.

Step 1. For b = 1, . . . , B,

1.a. Draw a bootstrap sample S(b) from the initial sample S. Let n(b)
i denote the

number of times the observation i is present in the bootstrap sample S(b).

1.b. Using S(b), calculate the corresponding estimated EDR direction b̂(b)
SIR and the

associated indices {(b̂(b)
SIR)

′xi , i ∈ S(b)}.
1.c. For all the individuals i ∈ S(b), calculate the IB error of prediction of the

response variable y as follows:

ê(b)
i = yi − f̂ (b)

n

(
(b̂(b)

SIR)
′xi

)
,

where the estimate f̂ (b)
n (.) is based on the sample {((b̂(b)

SIR)
′xi , yi ), i ∈ S(b)}.
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Note that, even if they are not used in Steps 2 and 3, the OBB errors (for
all the individuals i /∈ S(b)) have also been calculated since they are used in
graphical representations (see Fig. 4).

Step 2. Evaluation of the error means.

For each i = 1, . . . , n, calculate the associated error mean over the B replications
(when the individual i is present at least once in the corresponding bootstrap
sample)

e(i) =
∑B

b=1

∣∣∣ ê(b)
i

∣∣∣ I[i such that n(b)
i ≥1]

∑B
b=1 I[i such that n(b)

i ≥1]
.

Step 3. Detection of outliers and “borderline” observations

The idea here is to first identify among the errors {e(i), i = 1, . . . , n} those which
are particularly high and which will naturally correspond to these “big” outliers.
For this purpose, the log scale was used to detect these outliers. Then, in a second
step, the usual scale is used in order to identify other possible “small” remaining
outliers which are then called “borderline” observations.

3.a. The detection of potential outliers is based on the definition of outliers in
the boxplot1 of the log

(
e(i)

)
’s. The corresponding observations are plotted in

blue in Fig. 3 (on the left).
3.b. The detection of potential “borderline” observations is based on the definition

of outliers in the boxplot of the e(i)’s, these “current outliers” are plotted with
orange triangle in Fig. 3 (in the middle). The “borderline” observations are
thus defined as the current detected outliers not identified as outliers in the
previous step 3.a. (plotted with blue circle behind the orange triangle in this
graphic). The corresponding “borderline” observations are, therefore, those
represented only in orange on the graphic in Fig. 3 (on the right).

Remark In Step 3.a., the log transformation is used by default to detect the
potential outliers. However, the relevant transformation of the considered errors,
e(i), i = 1, . . . , n, is probably not always log but that it may depend on the link
function f itself and on the distribution of ε in the regression model (2).

4 A Numerical Example

Let us consider a simulated sample to clearly illustrate how the previous three outlier
detectionmethods (MONO, TTR, and BOOT)work. Note that steps 3 of the different
methods (MONO, TTR, and BOOT) are interchangeable with each other, and thus
they can be used after any of the error calculation steps (steps 1 and 2). In this

1Already described in the presentation of the MONO method.
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section, and Sect. 5, only the MONO, TTR, and BOOT methods are compared with
each other, not ideally all possible combinations. Thus, we are well aware that this
will make it difficult to identify whether the success of the method is due mainly
to the different error calculation processes (steps 1 and 2) or to the technique of
detecting “abnormally large” errors (step 3).

4.1 Description of the Simulated Dataset

The following single-index regression model is used in all numerical studies in
Sects. 4 and 5:

y = (x ′β)3

100
+ ε, (6)

where β = (2, 2, 1,−2,−3, 0, . . . , 0)′ ∈ R
p, x follows the p-dimensional uniform

distribution on [−2; 2]p, and ε ∼ N(0, σ 2 = 0.25) is independent of x . In a first
step, ñ = 200 observations {(xi , yi ), i = 1, . . . , ñ} are generated from model (6)
with p = 5. Then in a second step, ˜̃n = 10 new individuals are generated as follows:
for i = ñ + 1, . . . , ñ + ˜̃n
• xi is drawn from the uniform distribution on [−2; 2]p,
• yi is drawn (independently from xi ) from the uniform distribution on the support
of the first ñ values of y.

These ˜̃n new observations are then “potential” outliers for the model (6) since their
yi ’s are not linked to the xi ’s via this model. Note that these observations are not
outliers regarding the distribution of the xi ’s (resp. of the yi ’s). The term “potential”
refers to the fact that an observation (xi , yi ) (for an i ∈ {ñ + 1, . . . , ñ + ˜̃n} may be
close, just by chance, to the “true” structure of the data (based on the underlying
model (6)). The objective is to detect these potential ˜̃n outliers in the sample S =
{(xi , yi ), i = 1, . . . , n}where n = ñ + ˜̃n and then to estimate as best as possible the
relationship between y and x through the single-index x ′β.

4.2 Numerical Results

In a first step, based on the available sample S = {(xi , yi ), i = 1, . . . , n}, the EDR
direction b is estimated by b̂ SIR using the usual SIRmethod (with the number of slices
H = 10) and the link function f is estimated by f̂n(.) using the kernel estimator
with the Gaussian kernel and the bandwidth tuned via cross-validation. The distance
between the true EDR space and the estimated one is defined as

d2(E, Ê) = 1 − Trace(PE PÊ )

K
∈ [0, 1],
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Fig. 1 MONO method description. Left graphic provides the boxplot of the absolute errors, the
detected outliers are in blue.On the plot of the estimated indices x ′

i b̂ SIR versus the yi ’s (right graphic),

these outliers are also plotted in blue, red points correspond to the ˜̃n (true) potential outliers. The
kernel estimations of the link function are superimposed for both the original dataset (in light blue)
and the dataset without the detected outliers (in dark blue)

where PE = β(β ′β)−1β ′ (resp. PÊ ) is the orthogonal projector onto E (resp. Ê) with
K the dimension of the EDR space (here K = 1 for a single-indexmodel). The closer
this distance is to zero, the better the estimation Ê of E . On the simulated sample,
we have d2(E, Ê) = 0.0093. The corresponding MSE (mean squared error) defined
as

MSE = 1

n

n∑

i=1

(
yi − f̂n(x

′
i b̂ SIR)

)2

is equal to MSE = 12.99.
Using the naive MONO method, 15 outliers have been detected, see Fig. 1 (left)

for the boxplot of the absolute residual errors (with outliers in blue) and Fig. 1 (right)
for the visualization of these outliers on the plot of the estimated indices x ′

i b̂ SIR

versus the yi ’s. Note that all the ˜̃n = 10 generated outliers have been identified.
Among these 15 detected outliers, 5 are false positive, however, the individual 21
(at the top right of the plot of Fig. 1 (right)) can be considered as an “extreme”
observation. An “extreme” observation may obviously be detected as an outlier by
the method because the nonparametric estimation of f by the kernel method is based
on local smoothing. Thus, since an “extreme” observation is too isolated in the plot
of the estimated indices (x ′

i b̂ SIR, i = 1, . . . , n) versus the yi ’s, its kernel prediction is
difficult due to the lack of observations around it (this is the problem of data sparsity
in nonparametric regression). Using the initial sample without these 15 outliers, the
associated MSE is now equal to 0.24, and we have d2(E, Ê) = 0.00361. These two
quantities clearly show the benefits of removing the detected outliers.

Using the TTR method with R = 3000, 11 outliers have been detected, see Fig. 2
(top left) for the detection of the unique change point position in the sequence of
the ordered errors’ means, {e(i∗), i∗ = 1, . . . , n}. Figure2 (top right) provides the
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Fig. 2 TTR method description. Top-left graphic shows the ordered means errors with the red
vertical line providing the estimated single change point position.On the plot of the estimated indices
x ′
i b̂ SIR versus the yi ’s (top-right graphic), these outliers are also plotted in blue, red points correspond

to the ˜̃n (true) potential outliers. The kernel estimations of the link function are superimposed for
both the original dataset (in light blue) and the dataset without the detected outliers (in dark blue)

visualization of these outliers on the plot of the estimated indices x ′
i b̂ SIR versus the

yi ’s. Among these 11 outliers, only 2 are false positive: observations 10 and 21 (at
the bottom left and at the top right of the plot of Fig. 2 (top right)) can naturally
be considered as “extreme” observations but they are still selected as outliers for
the same reasons of nonparametric kernel estimation as those mentioned for the
MONO method. Note also that observation 206 (in red) has not been detected as an
outlier by TTR method, but its projection is very close to the “true data” (in black,
i.e., that is those generated by the underlying model), and thus this observation is
not really a significant outlier. Using the initial sample without these 11 outliers,
the associated MSE is now equal to 0.29, and we have d2(E, Ê) = 0.00367. The
benefits of removing these detected outliers are again very clear. Figure2 (bottom)
provides the plot of the estimated indices x ′

i b̂ SIR versus the yi ’s considering the dataset
without the detected outliers. The kernel estimation of the link function (in blue) is
superimposed on the plot. One can observe the very good fit of the data to the
underlying model.

Using the BOOT method with B = 3000, 9 out of the ˜̃n = 10 outliers were
detected, and 4 “bordeline” observations have been identified. Figure3 (right) pro-
vides the visualization of the outliers (in blue) and of the “borderline” observations
(in orange) on the plot of the yi ’s versus the estimated indices x ′

i b̂ SIR. The boxplot
on the right allows to detect the outliers, while the boxplot in the middle identifies
the “borderline” observations. The individual 206 (simulated as an outlier) is here
detected as a “borderline” observation. Note that there is no false positive. Graphics
in Fig. 4 provide the plot of the n(b)

i ’s versus the |e(b)
i |’s (for b = 1, . . . , B) for three

individuals. The horizontal line on each plot represents the corresponding error mean

|e(i)| over the B replications (when the individual i was present at least once in the
corresponding bootstrap sample). One can observe that
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logmean absolute errors (defining outliers, in blue) and of the mean absolute errors (defining “bor-
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outliers and “borderline” observations in dark blue)
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provides a density estimation of the |e(i)|’s with these three individuals showed through colored

vertical lines. Since the OOB errors (for n(b)
i = 0) are not used, individual i = 21 (in orange) is not

considered as outlier but as “borderline” observation
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• for observation 1 (which is a “normal” observation), the corresponding mean |e(1)|
is low,

• for observation 21 (which is characterized as a “borderline” observation), the cor-

respondingmean |e(21)| is intermediate. Themodel learns its position andmodifies
its tail, which explains the fall in error between n(b)

(21) = 0 and n(b)
(21) = 1,

• for observation 209 (which was detected as an outlier), the corresponding mean

|e(209)| is clearly higher than the previous ones, no matter the number of times that
observation is present in the bootstrap sample.

Using the initial sample without these 9 outliers and 4 “borderline” observations, the
associated MSE is now equal to 0.32 and we have d2(E, Ê) = 0.00172, which high-
lights the high effectiveness of the BOOT method. Finally, let us remark that, in the
computation of the mean descriptors, we chose to consider only the (absolute) error
values for which each individual is represented at least once in the bootstrap sample
as to prevail from selecting “extreme” observations, as discussed in the comments
of the previous two methods.

5 Simulation Results

In this simulation study, N = 100 replications of samples from model (6) have been
generated with various values of the sample size ñ (= 100, 200, 300), various values
of the dimension p (=5, 20) of the covariate x , and two numbers of potential outliers
˜̃n (= 3, 10). For each generated sample and each outlier detection method (MONO,
TTR with R = 2000 and BOOT with B = 2000), the following quantities were
calculated:

• the quality of the estimated EDR direction d2(E, Ê) where Ê is the estimated
EDR space based on the complete sample (unique for all the three methods),

• the MSE evaluated on the complete sample (unique for all the three methods),
• the number of detected outliers (and the number of “borderline” observations for
the BOOT method),

• the number of false positives,
• the quality of the estimated EDR direction d2(E, Ê�) where Ê� is the estimated
EDR space based on the sample without the outliers (and the “borderline” obser-
vations) detected by the method �,

• the MSE evaluated on the sample without the detected outliers (and the “border-
line” observations for BOOT method).

To visualize and easily compare all these indicators, boxplots were used. According
to results available in Fig. 5, all the three methods allow to reduce the distance to
the true model. All methods, and even the model based on the complete dataset (in
yellow), naturally perform better if the size of the available sample (ñ + ˜̃n) increases.
If the number of outliers is ˜̃n = 10, the model based on the complete dataset shows
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Fig. 5 Boxplots the quality measures of the estimated EDR space based on the
√
d2(E, Ê�) values,

for simulated datasets with p = 20 and ˜̃n ∈ {3, 10}. “All” stands for the estimation of the EDR using
the complete sample

Fig. 6 Root MSE for the different methods. Visualizations of the errors for the complete dataset
model (in yellow) and for the three outlier detection methods have been split into two graphics since
scales are different. Here p = 5 and ˜̃n = 10 have been detailed

poorer results whatever the number ñ. Note that, for a given number ˜̃n of outliers, the
proportion of outliers naturally decreases as the sample size increases. BOOT seems
to suffer from a large proportion of outliers only when the sample size is small.

Figure6 shows the MSE’s for all the proposed methods for p = 5 and ˜̃n = 10.
Other simulations have been conducted and results are not provided because of
redundancy in the associated comments. Errors are larger for the complete dataset
model (in yellow) than for any of the threemethods but tend to decrease as ñ increases,
and thus the proportion of outliers decreases. TTR seems to provide the best results
for large sample sizes (and thus for low proportions of outliers), while BOOT shows
larger errors, especially when ñ is small (and thus when the proportion of outliers is
high). An explanation of the phenomenon is that MSE is computed on the sample
without the outliers. In that context, theMONO and TTRmethods that select extreme
(or “borderline”) observations as outliers tend to get smaller MSE. On the contrary,
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Fig. 7 Number of detected outliers (left column) and number of false positive detections (right
column) for different values of p, ñ and ˜̃n = 10

theBOOTapproach does not exclude these “borderline” observationswhich aremore
difficult to predict correctly, leading to a larger MSE. The MSE descriptor must be
interpreted with this remark in mind, as well as by taking into account the number
of false positives of each method, which is done, thanks to Fig. 7.

Whatever the sets of parameters in Fig. 7, BOOT is the only method that seems
to be able to select the true outliers without selecting too many false positives (i.e.,
individuals detected as outliers when they are not). BOOT seems to be the most
efficient method by showing the lowest number of false positives for all ñ. The
number of false positives stays somewhat constant over the sample size ñ for BOOT
but increases with ñ for the other two methods. MONO and TTR methods seem to
have a sensibility to ñ with an increase of the numbers of detected outliers and false
positives as the sample size increases (and thus as the proportion of outliers decreases
since their number ˜̃n is fixed at 10).

6 A Real Data Application

Daily measurements of meteorological variables and ozone concentration are avail-
able in the dataset “ozone” (Source:Cornillon et al. 2012).More precisely, this dataset
contains n = 112 daily measurements of meteorological variables (wind speed, tem-
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perature, rainfall, cloudiness) and ozone concentration recorded in Rennes (France)
in summer 2001. In this study, an individual is a day. Eleven numerical variables are
measured with no missing values:

• maxO3: maximum of daily ozone concentration measured in gr/m3,
• T9, T12, T15: daily temperatures measured in degree Celsius at 9, 12, and
15h (called “temperature” variables hereafter),

• Ne9, Ne12, Ne15: cloudinessmeasured at 9, 12, and 15h (called “cloudiness”
variables hereafter),

• Vx9, Vx12, Vx15: wind speed (E-W component) measured at 9, 12, and 15h
(called “wind” variables hereafter),

• maxO3v: maximum concentration of ozone measured the day before.

The initial objective is to explain the maximum of daily ozone concentration (the
response variable y is thus maxO3) by the p = 10 variables available (T9, T12,
T15, Ne9, Ne12, Ne15, Vx9, Vx12, Vx15, maxO3v). Hereafter, let
x be the vector of these ten covariates. To do this, the semiparametric regression
model (2) is used and the EDR space E = Span(β) is estimated by the usual SIR
method (with the number of slices H = 10), while the link function f is estimated
using the kernel estimator with the Gaussian kernel and the bandwidth tuned via
cross-validation. Our aim is here to detect the presence or absence of outliers in this
dataset. The proposed three outlier detectionmethods (MONO, TTRwith R = 1000,
and BOOT with B = 1000) are compared.

The naive MONO method does not detect outliers. The TTR method provides 9
outliers and the BOOT method identifies 4 “borderline” observations and no outlier
(see the corresponding plots in Fig. 8, respectively, at the top left and at the top right).
Among the 9 TTR’s outliers, 4 of them are the BOOT’s “borderline” observations.
These 4 observations correspond to specific days in terms of road traffic, since these
are days of major departures or returns from summer holidays in France. It is known
that ozone pollution is also due to car traffic, but the built model is based only on
weather data and does not take into account this important source of pollution. It
is, therefore, quite natural that these 4 days correspond to individuals outside the
model’s standards. The 5 other specific TTR’s outlier observations are closer to the
scatterplot structure and they correspond to the days of early June, mid-June (music
festival on the first day of summer), late July (end of a week), and mid September.

In order to improve the final model, the method introduced by Jlassi and Saracco
(2019) for selecting the relevant variables based on variable importance is now
applied on the sample without the outliers (TTR method) or the “borderline” obser-
vations (BOOT method). Only the following p∗ = 4 covariates are then selected: a
temperature variable, T12, a cloudiness variable, Ne9, a wind variable, Vx9, and
the maximum concentration of ozone measured the day before, maxO3v. This is
not surprising since the 3 variables of temperature (resp. cloudiness, wind speed) are
strongly correlatedwith each other. The correspondingEDRdirections are very close:
b̂ TTR

SIR = (0.778,−0.565, 0.258, 0.094)′ and b̂ BOOT
SIR = (0.660,−0.724, 0.175, 0.094)′.

Finally, for the outlier detection method TTR (resp. BOOT), the plot of the esti-
mated indices x ′

i b̂
TTR
SIR (resp. x ′

i b̂
BOOT
SIR ) versus the yi ’s for the corresponding samples
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Fig. 8 Study of Ozone dataset. Top Left: Selected outliers with TTR method. Top Right: Selected
“borderline” observations with BOOT method. Bottom Left: plot of the yi ’s (values of maxO3)
versus the final estimated indices based on the n∗

TTR = n − 9 observations, i.e., removing the 9
selected outliers. BottomRight: plot of the yi ’s (values of maxO3) versus the final estimated indices
based on the n∗

BOOT = n − 4, removing the 4 selected “borderline” observations. The corresponding
estimated link functions (solid blue curve) are superimposed on the last two plots

without outliers (resp. “borderline” observations) and the associated estimated link
function (solid blue curve) are provided in Fig. 8 (at the bottom, on the right, resp. on
the right). These two graphics are very similar and show an increasing link between
the estimated index and the response variable maxO3. Then, it is possible to inter-
pret the coefficients of the estimated EDR direction b̂ TTR

SIR (or similarly b̂ BOOT)
SIR using

their signs. The variable T12 (resp. Vx9 and maxO3v) has a positive coefficient
which means that an increase in daily temperatures at 12 h (resp. of the wind speed
at 9h, or of maximum concentration of ozone measured the day before) implies an
increase of the estimated index and this then implies (not surprisingly) an increase
of a maximum of daily ozone concentration. On the contrary, the variable Ne09 has
a negative coefficient and then an increase of its values leads to a decrease in the
maximum of daily ozone concentration, which is relevant from an air pollution point
of view.

7 Concluding Remarks and Extensions

Three computational outlier detection approaches for sliced inverse regression have
been presented. In this work, the original idea is to consider potential outliers that
are outliers only in the SIR model and that are not detectable outliers by studying
only their distribution in x or y. Thus, considering the plot of the estimated indices
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versus the dependent variable, only outliers can appear in y. The case of outliers
in x or in y is not considered here since the corresponding observations should be
detectable as outliers in an early stage before the SIR modeling step, and the dataset
should then be cleaned up accordingly. The MONO, TTR, and BOOT approaches
were implemented in R and the code is available on https://github.com/hlorenzo/
outlierSIR.

The philosophy of these approaches relies neither on the SIR method used in the
first estimation step nor on the nonparametric regression used in the second estimation
step. For example, instead of the usual SIR method, it is possible to use the SIR-II,
SIRα or SAVE methods among others. Moreover, the proposed approaches are also
easily generalizable to themultiple-indexmodel framework, i.e., when the dimension
of the EDR space is equal to K > 1. All SIR-related methods, as well as nonpara-
metric regression methods (like multivariate kernels), work well in this framework .
However, the nonparametric regression methods might suffer from the well-known
curse of dimensionality. Note that the choice of the dimension K of this EDR sub-
space should be then discussed. Finally, these outlier detection approaches can also
be extended to a q-dimensional response variable y. Several authors developed SIR-
based methods to estimate the EDR space that is common to the q components of
the multivariate response variable, see, for instance, Barreda et al. (2007), Coudret
et al. (2014), Li et al. (2003), Lue (2009), Saracco (2005) among others. However,
the concept of an outlier in this multivariate framework must be first clarified since
it is not entirely natural.
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Uncoupled Isotonic Regression with
Discrete Errors

Jan Meis and Enno Mammen

Abstract In Rigollet andWeed (2019), an estimator was proposed for the uncoupled
isotonic regression problem. It was shown that a so-called minimum Wasserstein
deconvolution estimator achieves the rate log log n/ log n. Furthermore, it was shown
that for normally distributed errors, this rate is optimal. In this note, wewill show that
for error distributions supported on a finite set of points, this rate can be improved to
the order of n−1/(2p) for Lp-risks. We also show that this rate is optimal and cannot
be improved for Bernoulli errors.

1 Introduction

In this note, we consider the nonparametric uncoupled isotonic regression problem.
This estimation is related to nonparametric isotonic regression, where one observes
Y1, ...,Yn and x1, ..., xn in the model

Yi = m(xi ) + εi , (1)

with x1, ..., xn deterministic points in [0, 1] and independent zero mean error vari-
ables ε1, ..., εn . In uncoupled isotonic regression, one does not observe the link
between xi and Yi . That means, instead of Y1, ...,Yn and x1, ..., xn , one observes
Yτ(1), ...,Yτ(n) and x1, ..., xn where (τ (1), ..., τ (n)) is an unobserved permutation of
{1, ..., n}. In this model, identification of the function m is guaranteed if the dis-
tribution D of the error variables ε1, ..., εn is known and fulfils certain regularity
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Fig. 1 For m(x) = (2x − 1)3 (solid line), the figure shows the naive estimator (dotted line) based
on ordering the observations Y1, ..., Yn . Here the error variables εi have a discrete distribution with
P(εi = −0.4) = P(εi = 0.4} = 1/2

conditions. Naively ordering the observations in an increasing manner does not lead
to a consistent estimator, as illustrated in Fig. 1. Estimation in uncoupled isotonic
regression is much harder than estimation in coupled isotonic regression where the
permutation τ is known. This has been pointed out in Rigollet and Weed (2019),
where an upper and lower bound has been established for uncoupled isotonic regres-
sion. They stated upper bounds of the order log log n/ log n for the Lp error of esti-
mates of m. Furthermore, they give a lower bound for Gaussian errors of the same
order.Wewill come back to a comparison with coupled isotonic regression in Sect. 3.

In this note, we will show that much faster rates can be achieved in case of other
error distributions. More precisely, we will show that in case of error distributions
supported on a finite set of points, the function m can be estimated with rate n−1/2

measured by the L1 norm. We do not discuss practical applications of uncoupled
isotonic regression. For such discussions, we refer to Rigollet and Weed (2019)
where also further references to uncoupled isotonic regression can be found. See also
Balabdaoui et al. (2020) where a strongly related estimation problem is discussed
and Pananjady and Samworth (2020) where a multivariate generalization is studied.

As in Rigollet and Weed (2019), our estimator is based on minimumWasserstein
deconvolution. For our discussion below, we need the following definitions. First,
we recall the definition of theWasserstein-distance between probability distributions
μ and ν on R.

Definition 1 For 1 ≤ p < ∞, the Wasserstein-distance Wp(μ, ν) between two
probability distributions μ and ν with finite p-th moments on R is defined as

Wp
p(μ, ν) = inf

γ

∫
|x − y|p dγ (x, y),
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where the infimum is taken over all distributions γ on R
2 with one-dimensional

marginals μ and ν.

For probabilitymeasures onR, theirWasserstein-distance can be easily calculated
by the following formulas, see e.g. Bobkov and Ledoux (2019).

Proposition 1 Let μ, ν be probability measures on R with distribution functions F
and G, respectively. If μ and ν have finite p-th moment, then

W p
p (μ, ν) =

∫ 1

0
|F−1(x) − G−1(x)|p dx,

where F−1 and G−1 are the inverse distribution functions.

From this characterization, the following formula follows directly for p = 1.

Proposition 2 Let μ, ν be probability measures on R with distribution functions F
and G, respectively. If μ and ν have finite first absolute moment, then

W1(μ, ν) =
∫ ∞

−∞
|F(x) − G(x)| dx .

For the definition of minimumWasserstein deconvolution, we need the following
definition. Below, we will assume that the values x1, ..., xn lie in a bounded subset
of the real line. Without loss of generality, we assume that they lie in [0, 1]. We also
assume that x1 ≤ ... ≤ xn . For functions f : [0, 1] → R and p ≥ 1, we define the
empirical norm ‖ f ‖p by

‖ f ‖p
p = 1

n

n∑
i=1

| f (xi )|p.

Definition 2 For fixed values x1, ..., xn ∈ [0, 1] and any non-decreasing function
g : [0, 1] → R, the discrete measure πg is defined as

πg = 1

n

n∑
i=1

δg(xi ),

where δz is the Dirac measure on the point z ∈ R.
Additionally, for Y1, ...,Yn from our model (1), we define π̂ as

π̂ := 1

n

n∑
i=1

δYi .

With this inmind,we can nowdefine the estimator based onminimumWasserstein
deconvolution (cf. Rigollet and Weed 2019).
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Definition 3 For V > 0 and q ≥ 1, the minimum Wasserstein deconvolution esti-
mator is given by

m̂ ∈ argming∈FV
Wq(πg ∗ D, π̂),

whereFV is the class of non-decreasing functions from [0, 1] toR that are absolutely
bounded by V , and πg ∗ D denotes the convolutions of the measures πg and D.

We suppose that in our model (1), the function m lies in FV . In Rigollet and Weed
(2019), it was shown that the minimum Wasserstein deconvolution estimator with
the choice q = 2 achieves the minimax optimal rate log log n/ log n with respect
to all Lp norms with p ≥ 1. In this note, we will show for p ≥ 1 that for discrete
errors with a finite set of points as support, the optimal rate of convergence is of
order n−1/(2p) with respect to the Lp norm. Furthermore, we will see that this rate of
convergence is achieved by the minimumWasserstein deconvolution estimator with
the choice q = 1.

2 Estimation in Uncoupled Regression with Discrete Errors

From now on, we denote by m̂ the minimum Wasserstein deconvolution estimator
with the choice q = 1. We get the following result for m̂.

Theorem 1 Suppose thatD is a discrete measure supported on a finite set of points.
Then the minimum Wasserstein deconvolution estimator m̂ with q = 1 defined in
Definition3 fulfils the inequality

sup
m∈FV

E‖m − m̂‖1 ≤ C(V,D)√
n

,

where C(V,D) is a constant that depends only on V and D.

Theorem1 is our main result. Before we come to a further discussion of the
theorem, we will now give the proof. For the proof of the theorem, we will make use
of the following propositions.

Proposition 3 Let μ, ν be probability measures supported on [0, V ] and suppose
that D is a discrete measure supported on a finite set of points. Then

W1(μ, ν) ≤ C∗(V,D)W1(μ ∗ D, ν ∗ D),

where C∗(V,D) is a constant only dependent on V and D.

The following proposition is a modification of Proposition 3.1 in Rigollet and
Weed (2019).
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Proposition 4 For the minimum Wasserstein-distance estimator defined in Defini-
tion3 with q = 1, it holds that

E[W1(πm̂ ∗ D, πm ∗ D)] ≤ 4V + 2√
n

.

We now come to the proof of Theorem1.

Proof (of Theorem1) According to Proposition 2.3 in Rigollet andWeed (2019), for
non-decreasing functions f, g ∈Lp([0, 1]), it holds that ‖ f − g‖p = Wp(π f , πg).
Application with p = 1 gives that

‖m − m̂‖1 = W1(πm, πm̂).

By Proposition3, this can be bounded from above by

C∗(V,D)W1(πm ∗ D, πm̂ ∗ D).

By application of Proposition4, we can bound the expectation of this term and we
get that

E‖m − m̂‖1 ≤ C∗(V,D)√
n

(4V + 2).

Thus, Theorem1 holds with C(V,D) = C∗(V,D)(4V + 2). �

From Theorem1, we get the following corollary.

Corollary 1 Suppose thatD is a discrete measure supported on a finite set of points.
Then the minimum Wasserstein deconvolution estimator m̂ with q = 1 defined in
Definition3 fulfils the inequality

sup
m∈FV

E‖m − m̂‖p ≤ sup
m∈FV

(
E‖m − m̂‖p

p

)1/p ≤ (2V )(p−1)/pC(V,D)1/pn−1/(2p),

where C(V,D) is the constant from Theorem1 and where p ≥ 1.

Proof Because m and m̂ are absolutely bounded by V , it holds that

E‖m − m̂‖p
p ≤ (2V )p−1

E‖m − m̂‖1.

The corollary follows by application of Theorem1. �

We now argue that the rates of convergence in Corollary1 are minimax optimal.
For this purpose, we suppose that the error variables are a Bernoulli sequence, i.e. the
error variables fulfil P(εi = 1) = P(εi = −1) = 1/2. We suppose that xi = i/n for
i = 1, ..., n. Furthermore, we consider the following binary testing problemm = m0

versus m = m1 where
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m0(x) = −1 + 2 · 1x> 1
2
,

m1(x) = −1 + 2 · 1x> 1
2 −n−1/2 .

Note that in this model Yi takes only values in {−2, 0, 2}. For all i with Yi = −2, it
holds that m(xi ) = −1 and for all i with Yi = 2 we have m(xi ) = 1. We define

N1 = #{i : Yi = −2},
N2 = #{i : Yi = 2}.

One can easily verify that (N1, N2) is a sufficient statistic in our testing problem. The
variables N1 and N2 are independent and haveBinomial distributionswith parameters
( 12 , npn) and ( 12 , n(1 − pn)), respectively, under the model m0 and with parameter
( 12 , nqn) and ( 12 , n(1 − qn)), respectively, under the model m1. Here pn is chosen
such that npn is the largest natural number with pn ≤ 1

2 and qn is chosen such that
nqn is the largest natural number with qn ≤ 1

2 − n−1/2. Under the model m0, the
statistic

√
8n−1/2(N1 − n/4, N2 − n/4) has a limiting normal distribution with zero

mean and identity covariance matrix. Under the modelm1, the statistic has a limiting
normal distribution with mean (−√

2,
√
2)T and identity covariance matrix. Thus

we have a testing problem that does not degenerate in the limit. Furthermore note
that we have

‖m0 − m1‖p = (
(pn − qn)2

p
)1/p = 2n−1/(2p)(1 + o(1)). (2)

By standard minimax theory arguments, we arrive at the following theorem.

Theorem 2 Suppose that D has Bernoulli distribution, that 0 ≤ x1 < ... < xn ≤ 1
and that V ≥ 1. Then it holds that

inf
m̂n

sup
m∈FV

E‖m − m̂n‖p ≥ Cpn
−1/(2p),

where the infimum is taken over all estimators and where Cp is a constant depending
on p.

At first sight, it may be surprising that the minimax rates depend so strongly on
p. But it can be easily explained by the construction of our testing problem for the
proof of Theorem2. The functions m0 and m1 take only values in {−1, 1} and they
differ on an interval of decreasing length n−1/2. For such two functions, the order of
their Lp-distance strongly depends on p, see (2).
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3 Comparison with Coupled Isotonic Regression

The rates of convergence in Theorem1 and inCorollary1might seem startling at first,
especially considering that it is faster than the rate of convergence for the general
coupled isotonic regression problem, which is of order n−1/3 (see Brunk 1970 for
a first pointwise result, Van de Geer 1990, Nemirovskij et al. 1985 and Durot 2007
for results on global Lp-bounds and see Zhang 2002 for non-asymptotic risk bounds
and for a summary on the history of error bounds in isotonic regression). The key
difference here is that the uncoupled problem generally requires the error distribution
D to be known explicitly, while solutions of the coupled problem generally assume
no explicit knowledge ofD. For a discussion of uncoupled isotonic regression with
unknown error distribution, we refer to Balabdaoui et al. (2020). There is a well-
established strand of literature on coupled isotonic regression and related estimation
problems under shape constraints, starting in the fifties of the last century. For a
detailed recent discussion of nonparametric estimation under shape constraints, see
also Groeneboom and Jongbloed (2014).

To put the 1/
√
n rate into context, we shall investigate the behaviour of the coupled

isotonic regression problem with Bernoulli noise. For this, we will examine a certain
“reasonably well behaved” class of functions:

Definition 4 Let M be a class of monotone functions from [0, 1] to [0, V ]. We
say that M is (δ, ε)−Lipschitz continuous, if | f (x) − f (y)| < ε for all f ∈ M and
x, y ∈ [0, 1] with |x − y| < δ.

Proposition 5 Consider the coupled isotonic regression problem modelled by Yi =
m(xi ) + εi , where ε0, ..., εn are i.i.d.withP(εi = −1) = P(εi = 1) = 1

2 and xi deter-
ministicwith xi = i/n. If M is (δ, 1)−Lipschitz continuous for some δ > 0, then there
is an estimator m̂ such that for n > 1

δ
it holds that

sup
m∈M

E‖m − m̂‖1 ≤
(
1

2

)n

,

where ‖ f − g‖1 = ∑n
i=0

1
n+1

∣∣ f (
i
n

) − g
(
i
n

)∣∣ denotes the empirical L1 norm on an
equidistant n + 1 point partition of [0, 1].
Proof Suppose 1

n < δ. Imagine we know the value of m
(
i
n

)
for some i ∈ {0, ..., n}.

Since i+1
n − i

n < δ andm is monotone, we know thatm
(
i+1
n

) ∈ [m (
i
n

)
,m

(
i
n

) + 1).
Thus, we can deduce the value of εi+1 = sign

(
Yi+1 − m

(
i
n

))
and therefore the value

of m
(
i+1
n

)
. Inductively we can use this method to reconstruct every value of m.

Consider now two values Yi and Yi+1 for some i . If Yi+1 − Yi > 1, we can deduce
that εi = −1 and εi+1 = 1 and thus we know the values of m

(
i
n

)
and m

(
i+1
n

)
. If

Yi+1 < Yi , we can deduce that εi+1 = −1 and εi = 1, and again we can recover the
values of m

(
i
n

)
and m

(
i+1
n

)
. Therefore, the only cases where none of the values of

m
(
i
n

)
can be reliably recovered are the cases where Yi < Yi+1 and Yi+1 − Yi < 1

hold for all i = 0, ...., n − 1. There are precisely two such cases: The case where
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Fig. 2 Minimum Wasserstein deconvolution estimator for n = 25. The left plot shows the under-
lying curve m (solid line) and the minimumWasserstein deconvolution estimator (dotted line). The
plot shows one simulated estimator. The right plot shows a histogram of the L1 errors of 100 sim-
ulated estimators. The dotted vertical line shows the mean value of the L1 errors of the simulated
minimum Wasserstein deconvolution estimators

ε0 = ... = εn = −1 and the case where ε0 = ... = εn = 1. Whenever we are in these
cases, we put m̂

(
i
n

) := Yi , and otherwise we put m̂ := m. We get

E‖m − m̂‖1 ≤ 1 · (P(ε0, ..., εn = −1) + P(ε0, ..., εn = 1)) =
(
1

2

)n

.

�

There is a relation between theBernoulli noise case described above and themodel
of normally distributed noise covered in Rigollet and Weed (2019). In both cases,
the uncoupled isotonic regression problems seem to be “logarithmically-worse" than
their coupled counterparts. By logarithmically-worse, we mean that if rn is an upper
bound for the rate of convergence of the coupled problem, the upper bound for the
uncoupled problem is worse than 1

− log(rn)
: In the Bernoulli case, we have something

along the lines of exp(−n) as an upper bound for the coupled problem and 1√
n
for

the uncoupled problem, while in the normally distributed case, we have (
log(n)

n )1/3 as

a bound for the coupled case and log(log(n))

log(n)
as a bound for the uncoupled case.

We conclude this section by showing some simulations for the scenario we intro-
duced in Fig. 1. In Figs. 2, 3 and 4, we show the performance of a discretized version
of the minimum Wasserstein estimator for varying n. This computational estimator
was originally introduced in Sect. 2.2 of Rigollet andWeed (2019) and an implemen-
tation of the algorithm to compute this estimator is available at https://github.com/
jan-imbi/UncoupledIsoReg in the programming language R.

Againwe use error variableswithP(ε = 0.4) = P(ε = −0.4) = 1
2 . For numerical

reasons, the space of functions over which we optimize theWasserstein-distance was
discretized, which is why the plots of our estimates show discontinuities.

https://github.com/jan-imbi/UncoupledIsoReg
https://github.com/jan-imbi/UncoupledIsoReg
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Fig. 3 Minimum Wasserstein deconvolution estimator as in Fig. 2 but for n = 100

Fig. 4 Minimum Wasserstein deconvolution estimator as in Fig. 2 but for n = 400

4 Additional Proofs

Proof (of Proposition3) Put p j = P(εi = u j ) for j = 1, ..., J , where {u1, ..., uJ }
with u1 < ... < uJ is the support of εi and J is the number of elements of the support.
Denoting by F the cumulative distribution function of μ and by G the cumulative
distribution function of ν, we get from Proposition2 with �(x) = F(x) − G(x) and
	(x) = ∑J

j=1 p j�(x − u j ) that

W1(μ, ν) =
∫ ∞

−∞
|�(x)| dx, (3)

W1(μ ∗ D, ν ∗ D) =
∫ ∞

−∞
|	(x)| dx . (4)

We now use that �(x − uJ ) = 0 for x < uJ and for x > uJ + V and that for K ≥ 1
and 0 ≤ x − uJ ≤ V
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�(x − uJ ) = 1

pJ
	(x) − 1

pJ

J−1∑
j=1

p j�(x − u j ) (5)

= 1

pJ
	(x) − 1

p2J

J−1∑
j=1

p j	(x + uJ − u j )

+ 1

p2J

J−1∑
j=1

J−1∑
k=1

p j pk�(x − u j + uJ − uk)

= 1

pJ
	(x) − 1

p2J

J−1∑
j=1

p j	(x + uJ − u j ) ± ...

+(−1)K
1

pK+1
J

J−1∑
j1,..., jK=1

p j1 · ... · p jK 	(x + uJ − u j1 + ... + uJ − u jK )

−(−1)K
1

pK+1
J

J−1∑
j1,..., jK+1=1

p j1 · ... · p jK+1�(x + KuJ − u j1 − ... − u jK+1).

If we choose K with K ≥ V
uJ−uJ−1

− 1, we get for 1 ≤ j1, ..., jK+1 ≤ J − 1 that for
0 ≤ x − uJ ≤ V

x + KuJ − u j1 − ... − u jK+1 ≥ (K + 1)(uJ − uJ−1)

≥ V .

This implies that for such values of x, j1, ..., jK+1 and K ,

�(x + KuJ − u j1 − ... − u jK+1) = 0.

Thus we get from (5) that

�(x − u J ) = 1

pJ
	(x) − 1

p2J

J−1∑
j=1

p j	(x + u J − u j ) ± ... (6)

+(−1)K
1

pK+1
J

J−1∑
j1,..., jK=1

p j1 · ... · p jK 	(x + u J − u j1 + ... + u J − u jK ).

By application of (3) and (6), we get that
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W1(μ, ν) =
∫ ∞

−∞
|�(x)| dx

=
∫ ∞

−∞
|�(x − uJ )| dx

≤ 1

pJ

∫ ∞

−∞
|	(x)| dx + 1

p2J

J−1∑
j=1

p j

∫ ∞

−∞

∣∣	(x + uJ − u j )
∣∣ dx + ...

+ 1

pK+1
J

J−1∑
j1,..., jK=1

p j1 · ... · p jK

×
∫ ∞

−∞

∣∣	(x + uJ − u j1 + ... + uJ − u jK )
∣∣ dx

=
⎛
⎝ 1

pJ
+ ... + 1

pK+1
J

J−1∑
j1,..., jK=1

p j1 · ... · p jK

⎞
⎠

∫ ∞

−∞
|	(x)| dx

≤
(

1

pJ
+ ... + 1

pK+1
J

)∫ ∞

−∞
|	(x)| dx

≤ C∗(V,D)W1(μ ∗ D, ν ∗ D)

with

C∗(V,D) =
1

pK+2
J

− 1
pJ

1
pJ

− 1
,

where in the last step (4) has been used. This concludes the proof of Proposition 3.
�

Proof (of Proposition4) In the proof of the proposition,wemake use of the following
classical result (see (Bobkov and Ledoux 2019, Theorem 3.2)): �

Lemma 1 Let X1, ..., Xn be iid from μ and denote by μ̂n = 1
n

∑n
i=1 δXi the empir-

ical measure associated with this sample. Let F : R → R denote the cumulative
distribution function of μ, and Fn : R → R the empirical cumulative distribution
function of μn. It holds that

E[W1(μ, μ̂n)] ≤ 1√
n

∫ √
F(x)(1 − F(x)) dλ(x).

Because F(x) (1 − F(x)) is bounded by 1
4 and the domain of integration is

bounded by the support ofμ, we get from Lemma1 that forμ supported on [−V, V ],
it holds that

E[W1(μ, μ̂n)] ≤ V√
n
. (7)
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By application of the triangle inequality for Wasserstein distances and the choice
of m̂ as the argmin from Definition 3, we get that

W1(πm̂ ∗ D, πm ∗ D) ≤ W1(πm̂ ∗ D, π̂) + W1(π̂, πm ∗ D) ≤ 2W1(πm ∗ D, π̂).

We want to finish the argument by applying (7), but we need to employ the follow-
ing trick to justify this: Recall that π̂ is supported on {m(x1) + ε1, ...,m(xn) + εn}.
Note that m(x1) + ε1,m(x2) + ε2, ...,m(xn) + εn is not an iid sample from πm ∗ D
because the xi are not random. However, if we define w1, ..., wn to be an iid sample
from πm , independent of ε1, ..., εn , then w1 + ε1, ..., wn + εn is an iid sample from
πm ∗ D. Denote by w(1), ..., w(n) the order statistic of w1, ..., wn . By the triangle
inequality, we get

W1(πm ∗ D, π̂) ≤ W1

(
πm ∗ D,

1

n

n∑
i=1

δw(i)+εi

)
+ W1

(
1

n

n∑
i=1

δw(i)+εi , π̂

)
.

For the first summand, notice that w(i) + εi is in general not distributed according to
πm ∗ D. However, we can still apply (7) by the following argument: Since the order-
ing of the w(i) does not depend on the εi and because the wi and εi are independent,
we have that

E[W1(πm ∗ D,
1

n

n∑
i=1

δw(i)+εi )] = E[W1(πm ∗ D,
1

n

n∑
i=1

δwi+εi )].

Therefore, W1(πm ∗ D, 1
n

∑n
i=1 δw(i)+εi ) can indeed be bounded by V+1√

n
.

For W1(
1
n

∑n
i=1 δw(i)+εi , π̂), the coupling

γ := 1

n

n∑
i=1

δ(w(i)+εi ,Yi )

yields

W1(
1

n

n∑
i=1

δw(i)+εi , π̂) ≤ 1

n

n∑
i=1

∣∣w(i) + εi − m(xi ) − εi
∣∣ = W1(πm,

1

n

n∑
i=1

δwi ).

Here, the last equality follows from Proposition1 applied to discrete measuresμ and
ν equal to the empirical measures πm and 1

n

∑n
i=1 δwi , respectively. Since the wi are

iid from πm for i = 1, ..., n, this term can also be bounded by V√
n
according to (7).

�
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Quantiles and Expectiles



Partially Linear Expectile Regression
Using Local Polynomial Fitting

Cécile Adam and Irène Gijbels

Abstract This chapter deals with partially linear expectile regression using local
polynomial fitting as a basic smoothing technique in the various steps. The advan-
tage of the estimation method is that an explicit expression for an optimal choice
of the bandwidth (matrix) can be established, and based on this, a rule-of-thumb
bandwidth selector is presented. A small simulation study demonstrates that the esti-
mation method with this data-driven choice of the bandwidth performs very well.
An illustration with a real data example is provided.

1 Introduction

In mean regression, the interest is in finding the impact that a vector of covari-
ates X = (X1, . . . , Xd)

T has, on average, on the variable of interest Y , i.e. the
object of interest is E(Y |X). The mean is however only one characteristic of
the conditional distribution function FY |X of Y given X. Conditional quantiles
qα(x) = inf y{y ∈ R : FY |X(y|x) ≥ α}, with α ∈ (0, 1), provide a full description of
the conditional distribution function of Y given x. This property is shared by condi-
tional expectiles, which are however quite different in nature. Expectiles are obtained
byminimizing an asymmetricallyweighted squared error criterion,whereas quantiles
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result from minimizing an asymmetrically weighted absolute error criterion. Conse-
quently, conditional expectiles are sensitive to outlying observations, but exactly this
lack of sensitivity to the magnitude of observations makes conditional quantiles less
appropriate in, for example, risk management than expectiles. For a review on the
advantages and inconveniences of quantiles and expectile, see e.g. Schulze Waltrup
et al. (2015).

Newey and Powell (1987), following earlier work of Aigner et al. (1976), dis-
cussed expectiles in the context of linear regression models, in which the influence
of the vector of covariates on the expectile function is of the form δTX, with δ ∈ R

d∗
,

and with d∗ the dimension of X. This linear influence is often too restrictive when
it comes to applications, and in nonparametric settings, the influence of X on the
expectile curve is unspecified and involves, in general, a d∗-variate unknown function
g : Rd∗ → R that describes the influence g(X) on the expectile curve. Yao and Tong
(1996) studied nonparametric expectile regression in case of a univariate explanatory
variable using local linear fitting. Recently, Adam andGijbels (2021) extended this to
local polynomial regression, studied in detail optimal bandwidth choice and inves-
tigated several data-driven bandwidth selectors. Other smoothing (nonparametric)
techniques for estimating g are approximations by splines. See Schnabel and Eilers
(2009) and Schulze Waltrup and Kauermann (2017), among others. Flexible expec-
tile regression in a reproducing kernel Hilbert space context was studied in Yang
et al. (2018).

The aim of this paper is to consider the setting in which part of a set of covariates
X have a linear effect on the expectile curve whereas for another set of covariates
Z = (Z1, . . . , Zq)

T, the form of the influence cannot be assumed to be linear, and
hence ismodelled in a nonparametricway through an unknown function g : Rq → R.
This leads to a combined influence of the vector (XT,ZT)T and the form δTX + g(Z),
and to a semiparametric model, more precisely a partially linear model. Sobotka et al.
(2013) considered such a semiparametric model in a geoadditive setting when also
spatial effects are involved.

When only a small set of predictors are significant in a linear expectile model,
penalization techniques are used to select these in Zhao et al. (2018) and Liao et al.
(2019), and extended to semiparametric expectile regression in Zhao et al. (2019).
For a discussion on various approaches towards model selection for semiparametric
expectile regression, see Spiegel and Sobotka (2017).When several plausible estima-
tors are available Gu and Zou (2019), aggregate these using exponential weighting.
The use of envelope models for estimation in expectile regression is studied in Chen
et al. (2020).

In this chapter, we studymultivariate partially linear expectile regression in which
the nonparametric part is estimated using local polynomial techniques. A specific
advantage of using this technique is that an explicit expression can be provided for
an optimal choice of a bandwidth parameter. As in all smoothing techniques, good
data-driven choices of smoothing parameters are crucial for practical use.

This chapter is organized as follows. In Sect. 2, we introduce the framework
for partially linear expectile regression. The estimation methodology is exposed
in Sect. 3, and Sect. 4 deals with the important issue of bandwidth selection. Numer-
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ical illustrations are in Sects. 5 and 6. The Supplementary Material contains some
theoretical derivations, further details on statistical methodology and finite-sample
performance under heteroscedastic settings and additional simulation results.

2 Partially Linear Expectile Regression

Consider a random vector (Y,XT,ZT)T with X = (1, X1, . . . , Xd)
T and

Z = (Z1, . . . , Zq)
T, where the notation AT denotes the transposed of the vector

or matrix A. The inclusion of a first component 1 into the covariate vector is
needed for taking care of an intercept term. Denote x = (1, x1, . . . , xd)T ∈ R

d+1

and z = (z1, . . . , zq)T ∈ R
q . The interest here is in estimating the ωth conditional

expectile of Y given X = x and Z = z, with ω ∈ (0, 1), i.e.

τω(x, z) = argmin
a∈R

EY |X,Z [Qω(Y − a)|X = x,Z = z]

with Qω the expectile loss function

Qω(y) = |ω − 1{y ≤ 0}| y2, (1)

which is to be distinguished from the quantile loss function (also called check func-
tion) in which the factor y2 is replaced by |y|. For interpretations of expectiles,
quantiles and their advantages and disadvantages, see, for example, SchulzeWaltrup
et al. (2015) and Adam and Gijbels (2021), among others.

A partially linear structured expectile curve takes the form

τω(x, z) = δTωx + gω(z),

where possibly both parts, the parametric part δTωx and the nonparametric part gω(z),
may depend on ω. In this chapter, we focus on a regression model

Y = δTX + g(Z) + σε, (2)

with δ = (δ0, δ1, . . . , δd)
T, 0 ≤ σ < ∞, and where the error term ε satisfies

E(ε|X,Z) = 0 and Var(ε|X,Z) = 1. Note that, in order to ensure identifiability of
all elements in model (2), we need to impose some constraint. Indeed, adding any
constant to the function g and substracting the same constant to the component δ0,ω
lead to exactly the same expression for τω(·, ·). A standard condition to guarantee
identifiability is to impose that E[g(Z)] = 0.

An important property of unconditional expectiles is the following. Let Ỹ = a +
bY , with a, b ∈ R, and denote the ωth expectile of Y by τω,Y , then the ωth expectile
of Ỹ , denoted by τω,Ỹ , is given by
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τω,Ỹ =
{
a + bτω,Y if b > 0
a + bτ1−ω,Y if b ≤ 0.

(3)

See, for example, Newey and Powell (1987) and Remillard and Abdous (1995).
Using a conditional version of (3), we obtain that under (2), the ωth conditional

expectile of Y given X = x and Z = z equals

τω(x, z) = δTx + g(z) + στω,ε ≡ δTωx + g(z), (4)

with τω,ε the ωth unconditional expectile of the error term ε, and where we denoted
δω = (δ0,ω, δ1, . . . , δd)

T where δ0,ω = δ0 + στω,ε . Hence only the first component
of the linear part δTωx in (4) is affected by the value of ω. All other d components of
the regression vector δω in the linear part as well as the nonparametric part g(z) are
not affected by the value of ω.

Consider an i.i.d. sample (Y1,X1,Z1), . . . , (Yn,Xn,Zn) from (Y,X,Z) following
model (2), i.e., for each i = 1, . . . , n, we have

Yi = δTXi + g(Zi ) + σεi ,

where Xi = (1, Xi1, . . . , Xid)
T, and ε1, . . . , εn are i.i.d. from ε. The aim is then to

estimate the expectile function τω(x, z) in (4) which involves estimating the vector
of regression coefficients δω and the q-variate function g(·).

Homoscedasticity and Heteroscedasticity
Note that the error term in (2) is constant, i.e. not depending on the covariate vector
(XT,ZT)T. In case of heteroscedasticity, i.e. when the error variance σ 2 depends
on the covariate vector, one can distinguish various cases: the error variance σ 2 is
a function of only X(−1) = (X1, . . . , Xd)

T, of only Z or of the full covariate vec-
tor (XT

(−1),Z
T)T. The vector X(−1) differs from X only by not containing the first

component 1. That component need not be included when looking at into an error
variance part. Consider first the case that σ is a function of Z only, i.e. σ (Z), and
the underlying regression model is of the form

Y = δTX + g(Z) + σ (z) ε. (5)

The ωth conditional expectile of Y given X = x and Z = z under model (5) equals

τω(x, z) = δTx + g(z) + σ(z)τω,ε.

Keeping inmind the constraint on the nonparametric function part (zero expectation),
the expectile function is viewed as

τω(x, z) = δTx + E [σ(Z)] τω,ε + g(z) + {σ(z) − E [σ(Z)] } τω,ε ≡ δTωx + gω(z),
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Table 1 Homoscedasticity and various heteroscedasticity structures

Error
structure

Expectile function
τω(x, z)

Elements depending on ω

σ ε δTωx + g(z) δ0,ω = δ0 + στω,ε

σ (Z) ε δTωx + gω(z) δ0,ω = δ0 + E [σ(Z)] τω,ε

gω(z) = g(z) + {σ(z) − E [σ(Z)] } τω,ε

σ
(
X(−1)

)
ε δTωx+g(z)+gω(x(−1)) δ0,ω = δ0 + E

[
σ(X(−1))

]
τω,ε

gω(x(−1)) = {σ (x(−1)
)− E

[
σ(X(−1))

]}
τω,ε

σ
(
X(−1),Z

)
ε δTωx + gω(x(−1), z) δ0,ω = δ0 + E

[
σ(X(−1),Z)

]
τω,ε

gω(x(−1), z) = g(z) + g̃ω(x(−1), z)
g̃ω(x(−1), z) = {σ(x(−1), z) − E

[
σ(X(−1),Z)

] }
τω,ε

with

δ0,ω = δ0 + E [σ(Z)] τω,ε and gω(z) = g(z) + {σ(z) − E [σ(Z)] } τω,ε,

and for which E[gω(Z)] = 0, implied by E[g(Z)] = 0. Of importance is to note
that under such a heteroscedastic structure, the dependence on ω shows up on two
levels: the intercept term of the linear part, as well as in the nonparametric part. In
real data applications, when there is no knowledge on homoscedasticity or a specific
heteroscedasticity structure, some conclusions about these aspects might be drawn
from the estimated linear part and nonparametric part. Similar (model) arguments
can give insights into the other heteroscedasticity structures.

Table 1 summarizes the various error structures and the influence on the expectile
surface τω(x, z). Of importance is the impact of the heteroscedasticity structure on the
linear and nonparametric part. Note for example that in the case of a heteroscedastic
error structure σ

(
X(−1)

)
ε, the nonparametric part of the expectile function depends

on both covariates part, but that this is through an additive structure. If in real data
applications such prior knowledge on the error structure is known, one should exploit
this knowledge and use a bivariate-vector additive structure to estimate the nonpara-
metric part g(z) + gω(x(−1)).

For simplicity of presentation, we focus in the sequel of the paper on the
homoscedastic error setting in (2). However, the proposed statistical methodology
is applicable to heteroscedastic error settings, as is demonstrated in Sections S2 and
S3 of the Supplementary Material.
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3 Statistical Estimation Methodology

Dealing with estimation in partially linear models is by now quite standard. Denoting
X̃i = Xi − EX|Z[Xi |Z = Zi ] and Ỹi = Yi − EY |Z[Yi |Z = Zi ], for i = 1, . . . , n, and
using model (2), we first observe that

EY |Z[Yi |Z = Zi ] = δTEX|Z[Xi |Z = Zi ] + g(Zi )

=⇒ Yi − EY |Z[Yi |Z = Zi ] = δT
(
Xi − EX|Z[Xi |Z = Zi ]

)+ σεi =⇒ Ỹi = δTX̃i + σεi .

Note that the first component of X̃i equals zero, for all i = 1, . . . , n. In the sequel,
we no longer write the subscripts in the conditional expectation, unless in case of
possible confusion.

3.1 Estimation of the Vector of Regression Coefficients

Suppose first that we would know the conditional expectations E[X|Z] and E[Y |Z].
Then we could calculate (Ỹ1, X̃1), . . . , (Ỹn, X̃n) and based on the sample
(Ỹ1, X̃1,Z1), . . . , (Ỹn, X̃n,Zn) we could, for given ω ∈ (0, 1), estimate δω by
minimizing

n∑
i=1

Qω

(
Ỹi − δTX̃i

)
, (6)

with respect to δ, where Qω(·) is the expectile loss function in (1). The minimizer of
(6) is the asymmetric least square estimator, studied by Newey and Powell (1987).

However, the conditional expectations mX(Z) = E[X|Z] and mY (Z) = E[Y |Z]
are unknown, and hence need to be estimated. Note that mX(z) is a column vector
of dimension d + 1 (with as first component 1), which will be estimated componen-
twise. We opt for using local linear techniques for estimating these two conditional
expectations. For ease of presentation, we first discuss this when q = 1, i.e. Z = Z
a univariate covariate, and i.i.d. observations Z1, . . . , Zn of Z are available. For a
given point z, the local linear estimators for the j th component of mX(z) (denoted
by [mX(z)] j ) and mY (z) are, respectively,

[m̂X(z)] j =
n∑

i=1

Kh1(Zi − z)
Sn,2,h1 − Sn,1,h1(Zi − z)

Sn,2,h1 Sn,0,h1 − S2n,1,h1

Xi j

and m̂Y (z) =
n∑

i=1

Kh2(Zi − z)
Sn,2,h2 − Sn,1,h2(Zi − z)

Sn,2,h2 Sn,0,h2 − S2n,1,h2

Yi
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where Kh j (.) = K (./h j )/h j , for j = 1, 2, is a kernel function, Sn,�,h j is defined
as Sn,�,h j =∑n

i=1 Kh j (Zi − z)(Zi − z)� and h j > 0, for j = 1, 2, are bandwidth
parameters. For the bandwidths h j , j = 1, 2, one can use any of the practical band-
width selectors that have been developed for local polynomial fitting, such as the
rule-of-thumb bandwidth selector as discussed in Fan and Gijbels (1996).

When Z is multivariate (i.e. q > 1) and as long as q is not too large, and the curse
of dimensionality is not an issue, we use the multivariate local linear estimator as
discussed in Fan and Gijbels (1996, Sect. 7.8). The observations for Z are denoted
Z1, . . . ,Zn , where Zi = (Zi1, . . . , Ziq)

T. Let Kq be a q-variate probability density
function, satisfying thus

∫
Kq(u)du = 1 and

∫
uKq(u)du = 0. Further we assume

that Kq has compact support and that

∫
uiu j Kq(u)du = δi jμ2(Kq),

with μ2(Kq) ≥ 0. So the variance–covariance matrix of Kq is μ2(Kq)Iq with Iq the
q × q identity matrix. Define

Kq,B(u) = 1

|B|Kq(B−1u), (7)

where B is a nonsingular q × q matrix, the bandwidth matrix, and |B| denotes
its determinant. With z = (z1, . . . , zq)T ∈ R

q given, we denote the vector of Y -
observations, the n × (q + 1) design matrix and the n × n diagonal weight matrix
as respectively

Y =

⎛
⎜⎜⎜⎝
Y1
Y2
...

Yn

⎞
⎟⎟⎟⎠ , ZD =

⎛
⎜⎜⎜⎝
1 Z11 − z1 . . . Z1q − zq
1 Z21 − z1 . . . Z2q − zq
...

...
...

1 Zn1 − z1 . . . Znq − zq

⎞
⎟⎟⎟⎠ and V = diag(Kq,B(Zi − z)). (8)

Further we denote by e1 = (1, 0, . . . , 0)T the (q + 1)-dimensional column vec-
tor with 1 at the first position and zero at all other positions. Further the col-
umn of all observations regarding X j (for j = 1, . . . , d + 1) is denoted as X[ j] =
(X1 j , . . . , Xnj )

T. Obviously for j = 1, this is the n-dimensional vector of one’s. The
local linear estimator for [mX(z)] j and mY (z) is then given by

[m̂X(z)] j = eT1
(
ZT
DVZD

)−1
ZT
DVX[ j] and m̂Y (z) = eT1

(
ZT
DVZD

)−1
ZT
DVY,

where j = 1, . . . , d + 1. For simplicity, we took the same bandwidth matrix B for
estimatingmX(z) andmY (z). For background information on choices of a bandwidth
matrix B, see Fan and Gijbels (1996, Sect. 7.8), Wand and Jones (1995), Duong and
Hazelton (2005) and references therein.
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With these two estimates, we then obtain ̂̃Xi = Xi − m̂X(Zi ) and ̂̃Y i = Yi −
m̂Y (Zi ). The estimator for the regression coefficient vector δω is then

δ̂ω := argmin
δ

n∑
i=1

Qω(̂̃Y i − δT̂̃Xi ).

3.2 Estimation of the Nonparametric Part

From (2) and expression (4), it is clear that

Y − δTωX = g(Z) + σ
(
ε − τω,ε

)
.

Denoting this residual Y − δTωX from the linear part by Y ∗, we obtain that

τω,Y ∗(z) = g(z). (9)

If the vector δω would be known, one could consider the observations (Y ∗
1 , . . . ,Y ∗

n ) =
(Y1 − δTωX1, . . . ,Yn − δTωXn) and apply usual smoothing techniques to these data to
obtain a mean, quantile or expectile curve.

Since the vector δω is unknown, but can be estimated as described in Sect. 3.1, we
thus instead consider

Y ∗
i = Yi − δ̂

T
ωXi i = 1, . . . , n, (10)

and perform a nonparametric step to estimate g(·) keeping in mind (9).
Let’s look at q = 1 and Z = Z first. Using local polynomial fitting of order p

(with p ≥ 0 an integer) would result into minimizing

n∑
i=1

Qω

⎛
⎝Yi − δ̂

T
ωXi −

p∑
j=0

γ j (Zi − z) j

⎞
⎠ Kh(Zi − z), (11)

with respect to γ = (γ0, . . . , γp)
T. Herein K is a univariate kernel function and

h > 0 a bandwidth. Denoting by γ̂ = (γ̂0, . . . , γ̂p)
T the solution to optimization

problem (11), the local polynomial estimator for g(z) is γ̂0. Adam and Gijbels (2021)
studied this estimator, establishing its asymptotic properties and discussing in detail
theoretical and practical choices for the bandwidth h. See also Sect. 4.

If q > 1 and we have a random vector Z, we restrict this presentation to local
linear fitting (i.e. p = 1 in the above paragraph). We now rely on approximating a
q-variate function locally by applying a multivariate Taylor expansion of order 1 (i.e.
up to first-order derivative terms). Due to the local modelling, we need to consider
a multivariate function K : Rq → R (possibly different from Kq in Sect. 3.2) and
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a bandwidth matrix H. We assume that this is a symmetric and positive definite
matrix. For the multivariate kernel function K , we make similar assumptions as for
Kq , and we define its rescaled version KH(·) = (|H|)−1K (H−1·) similarly as in (7).
All together this leads to the optimization problem: minimize

n∑
i=1

Qω

⎛
⎝Y ∗

i − β0 −
q∑
j=1

β j (Zi j − z j )

⎞
⎠ KH (Zi − z) , (12)

with respect to β = (β0, . . . , βq)
T where, for given ω, β0 = τω,Y ∗(z) and, β j =

∂τω,Y∗ (z)
∂z j

for j = 1, . . . , q. Denote by ̂β = (β̂0, . . . , β̂q)
T the minimizer of (12).

It is convenient to introduce some further vector/matrix notations: denote

Y∗ =

⎛
⎜⎜⎜⎝
Y ∗
1

Y ∗
2
...

Y ∗
n

⎞
⎟⎟⎟⎠ and W = diag (r1(ω)KH (Z1 − z), . . . , rn(ω)KH (Zn − z)) ,

where W is a diagonal matrix with as i th element

ri (ω) =
{
1 − ω if Y ∗

i ≤ β0 +∑q
j=1 β j (Zi j − z j )

ω if Y ∗
i > β0 +∑q

j=1 β j (Zi j − z j ).

Note that these weight factors are induced by the form of the function Qω(y) in (1),
which can be rewritten as Qω(y) = (1 − ω)1{y ≤ 0} y2 + ω1{y > 0} y2. Recalling
also notations (8), the minimization problem in (12) can be rewritten in matrix form
as

minimize
β

(Y∗ − ZDβ)TW(Y∗ − ZDβ). (13)

The complication in the setting of expectile estimation is that the diagonal weight
matrix W depends on the unknown vector β through the weight factors ri (ω). As
a consequence, the optimization problem (13) needs to be solved via an iterative
procedure. See, for example, Yao and Tong (1996) and Adam and Gijbels (2021) for
details on this iterative procedure. As a starting point for the iterative procedure, we
use the vector of least squares regression estimators.After convergence of the iterative
procedure, we obtain the local linear estimator for β denoted by β̂ = (β̂0, . . . , β̂q)

T.
The local linear estimator for τω,Y ∗(z), denoted by τ̂ω,Y ∗(z), is then β̂0 and has the
form

β̂0 = eT1 β̂ = eT1
(
ZT
DWZD

)−1
ZT
DWY∗. (14)

This estimation procedure involves the choice of the bandwidth matrix H. For
mean regression, there are quite some papers that study how to optimally choose
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a bandwidth matrix/value. This issue is far less studied in expectile regression. In
Sect. 4, we derive an optimal choice for the bandwidth matrix H and discuss some
practical bandwidth selectors.

4 Asymptotic Properties and Bandwidth Selection

A detailed study of multivariate local linear fitting in mean regression can be found
in Ruppert and Wand (1994). See also Cheng and Peng (2006). From the asymptotic
bias and variance expressions in mean regression on the one hand, and in expectile
regression using local polynomial fitting on the other hand (see Adam and Gijbels
2021), one can derive approximate expressions for the asymptotic bias and variance
of the local linear estimator for g(·) in (14). These hold under standard assumptions
which for brevity are not listed here (see e.g. Adam and Gijbels 2021). Before stating
the expressions, we first introduce some notations:

ν0(K ) =
∫

K 2(u)du and

M2(z) =

⎛
⎜⎜⎝

∂2

∂z1∂z1
τω,Y ∗(z) . . . ∂2

∂z1∂zq
τω,Y ∗(z)

...
. . .

...
∂2

∂zq∂z1
τω,Y ∗(z) . . . ∂2

∂zq∂zq
τω,Y ∗(z)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂2

∂z1∂z1
g(z) . . . ∂2

∂z1∂zq
g(z)

...
. . .

...
∂2

∂zq∂z1
g(z) . . . ∂2

∂zq∂zq
g(z)

⎞
⎟⎟⎠ .

For a point z in the interior of the support of fZ, the q-variate marginal density
function of Z, the main terms in the asymptotic conditional bias and the asymptotic
conditional variance of τ̂ω,Y ∗(z) are

ABias[̂τω,Y ∗ (z)|Z1, . . . ,Zn] = 1

2
μ2(K ) trace(M2(z)HHT )

AVar[̂τω,Y ∗ (z)|Z1, . . . ,Zn] = ν0(K )

n|H|
1

γ 2(ω, z) fZ(z)

∫
(2Lω(y − τω,Y ∗ (z)))2 fY ∗|Z(y|z)dy

where Lω(y) = |ω − 1{y ≤ 0}| y, is, up to a factor 2, the first derivative of the
expectile loss function Qω(·), and

γ (ω, z) = 2(1 − ω)P
{
Y ∗ ≤ τω,Y ∗(Z)|Z = z

}+ 2ωP
{
Y ∗ > τω,Y ∗(Z)|Z = z

}
.

(15)



Partially Linear Expectile Regression Using Local Polynomial Fitting 149

4.1 Optimal Theoretical Bandwidth (Matrix)

With the aim to get to an optimal bandwidth (matrix), we first compute the Approx-
imate Mean Squared Error (AMSE) which is defined as

AMSE
(̂
τω,Y ∗(z)

) = ABias2 + AVariance

= 1

4
μ2
2(K ) trace2(M2(z)HHT) + ν0(K )

n|H| Ũ (z), (16)

where we introduced the shorthand notation

Ũ (z) = 1

γ 2(ω, z) fZ(z)

{∫
(2Lω(y − τω,Y ∗(z)))2 fY ∗|Z(y|z)dy

}
, (17)

a quantity containing unknown model elements.
From expression (16), one can proceed similarly as in Fan et al. (1997) to get

to an expression for HHT that would constitute a minimum for the AMSE. Taking
the derivative of (16) with respect to HHT (see Rao 1973, p. 72) and putting this
derivative equal to 0, we obtain

μ2
2(K ) trace(M2(z)HHT)M2(z) − ν0(K )

n|H| (HHT)−1 Ũ (z) = 0. (18)

Suppose that the matrix of second-order partial derivative M2(z) is positive or neg-
ative definite. Then we show in Section S1 of the Supplementary Material that the
unique solution to (18) is

HHT =
(

ν0(K )

μ2
2(K )n q

Ũ (z) |M∗
2(z)|1/2

)2/(q+4) (
M∗

2(z)
)−1

, (19)

with

M∗
2(z) =

{
M2(z) for positive definite M2(z)
−M2(z) for negative definite M2(z).

Any matrix H that satisfies Eq. (19) is an optimal local bandwidth matrix.
One next can consider an Approximate weighted Mean Integrated Square Error

(AMISE), obtained by integrating the AMSE using a weight factor, i.e.

AMISE
(̂
τω,Y ∗(·))

= 1

4
μ2
2(K )

∫
trace2(M2(z)HHT)k(z)dz + ν0(K )

n|H|
∫

Ũ (z) k(z)dz, (20)
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where k(·) ≥ 0 is a weight function. An optimal global bandwidth matrix H would
be a matrix which minimizes (20). Deriving something in general for this setting is
quite involved, and not further elaborated here.

With the aim to come to some practical and simple rule for bandwidth selection,
we restrict in the sequel to the setting whereH = h Iq , with h > 0. In that case |H| =
hq |Iq | = hq and moreover HHT = h2Iq , and the expression for AMISE reduces to

AMISE
(̂
τω,Y ∗(·))

= 1

4
μ2
2(K ) h4

∫
trace2(M2(z))k(z)dz + ν0(K )

n hq

∫
Ũ (z) k(z)dz. (21)

An optimal value for the constant bandwidth parameter h is then easily found by
minimizing (21) with respect to h, which leads to

hopt =
(

ν0(K )q

μ2
2(K )

∫
Ũ (z)k(z)dz∫

trace(M2(z))2k(z)dz

)1/(q+4)

n−1/(q+4). (22)

4.2 Rule-of-Thumb (ROT) Bandwidth Selector

Looking at the expression of Ũ (z) in (17), it is easily seen that a further simplification
is obtainedwith taking theweight function k(z) = k0(z) fZ(z)with k0(.) ≥ 0 a chosen
weight function. From (22), we get

hopt =
(

ν0(K )q

μ2
2(K )

∫
U (z)k0(z)dz∫

trace(M2(z))2 fZ(z)k0(z)dz

)1/(q+4)

n−1/(q+4), (23)

with now U (z) = Ũ (z) fZ(z) = (γ 2(ω, z))−1
{∫

(2Lω(y − τω,Y ∗(z)))2 fY ∗|Z(y|z)
dy} .

Note first of all that

U (z) = (γ 2(ω, z))−1 EY ∗|Z
[
(2Lω(Y ∗ − τω,Y ∗(z)))2 | Z = z

]
(24)∫

trace(M2(z))2 fZ(z)k0(z)dz = EZ
[
trace(M2(Z))2k0(Z)

]
. (25)

Inspecting (23), (24) and (25), we see that we are concerned essentially with the
unknown quantities: τω,Y ∗(z), the ωth expectile curve of Y ∗ given Z = z; the matrix
of second-order partial derivatives of this function with respect to z and the proba-
bility expression γ (ω, z) in (15) which also involves τω,Y ∗(z). Since all these quan-
tities require to know τω,Y ∗(z), a first step in our proposed rule-of-thumb data-driven
bandwidth procedure consists of fitting globally a polynomial function to the pseudo
observations (Y ∗

1 ,Z1), . . . , (Y ∗
n ,Zn), where Y ∗

i , i = 1, . . . , n, is as in (10). We then
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employ this global parametric fit to get rough approximations of the unknown quan-
tities in (15), (24) and (25), appearing in the expression for the optimal bandwidth
in (23).

More precisely, the rule-of-thumb (ROT) bandwidth selector is obtained via the
following procedure.

• Fit globally a parametric polynomial of order 5 to the pseudo observations
(Y ∗

1 ,Z1), . . . , (Y ∗
n ,Zn), using the expectile loss function Qω(·), and obtain the

fit
τ̂ ω(z) = α̂0 + α̂T

1z + . . . + α̂T
5z

5

where α̂� = (̂α�1, . . . , α̂�q)
T, with z� = (z�

1, . . . , z
�
q)

T, for � = 1, . . . , 5.
• This leads to the following “rough” approximations of the unknown quantities.We
approximate the quantity EY ∗|Z

[
(2Lω(Y ∗ − τω,Y ∗(z)))2 | Z = z

]
in (24) roughly

by
4

n

n∑
i=1

L2
ω(Y ∗

i − τ̂ ω(Zi )),

the probability in (15) by

2 (1 − ω)
1

n

n∑
i=1

1{Y ∗
i ≤ τ̂ ω(Zi )} + 2ω

1

n

n∑
i=1

1{Y ∗
i > τ̂ω(Zi )}

and the expectation in (25) by

1

n

n∑
i=1

⎧⎨
⎩

q∑
j=1

(
∂2τ̂ ω(z)

∂z2j

∣∣∣∣∣
z=Zi

)⎫⎬
⎭

2

k0(Zi ).

With these rough approximations, we calculate the rule-of-thumb (ROT) band-
width

̂
hopt =

(
ν0(K )q

nμ2
2(K )

)1/(q+4)

×

⎛
⎜⎜⎜⎝

4
n

∑n
i=1 L

2
ω(Y ∗

i −τ̂ ω(Zi ))

4((1−ω) 1
n

∑n
i=1 1{Y ∗

i ≤τ̂ ω(Zi )}+ω 1
n

∑n
i=1 1{Y ∗

i >τ̂ω(Zi )})2
∫
k0(z)dz

1
n

∑n
i=1

(∑q
j=1

(
∂2 τ̂ ω(z)

∂z2j

∣∣∣
z=Zi

))2

k0(Zi )

⎞
⎟⎟⎟⎠

1/(q+4)

.

(26)

There are other approaches possible to obtain data-driven bandwidth selection
procedures. In a fully nonparametric setting, and in case q = 1, several of these
approaches have been discussed in detail by Adam and Gijbels (2021), and their
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performances investigated via a simulation study. In the setting of that paper, a
similar rule-of-thumb bandwidth selector showed a very good overall performance,
which is the main reason why we focus on a similar approach in this paper. Another
valid approach would also be to exploit the location-scale model in combination with
the relationships that exist between expectiles and quantiles. We refer to the above
paper for a discussion on other data-driven bandwidth procedures.

5 Simulation Study

In this section, we provide a small simulation study to investigate the local polyno-
mial estimation method of Sect. 3 to estimate the ωth expectile function in (4). We
investigate the finite-sample quality of the estimators for the parameter vector δω,
for the nonparametric part g(·) as well as for the target quantity τω,Y (·, ·).

We consider two simulation models, withX = (X1, X2)
T (i.e. d = 2, no intercept

term); one model with a univariate Z (i.e. q = 1) and a second model with a bivariate
vector Z (i.e. q = 2). These models were inspired by those considered in Zhu et al.
(2013). The different model elements are given in Table2.

Note that in these models, X and Z are dependent. The error term in Model 1 has
a normal distribution, whereas the error term in Model 2 has a Student-t distribution
with three degrees of freedom, and hence a heavier tail.

Models 1 and 2 have a homoscedastic error structure. In Section S3 of the Sup-
plementary Material, one can find simulation results for models with various het-
eroscedastic error structures.

For each model, we simulated 100 samples of size n (with n = 100 for Model 1,
and n = 200 for Model 2 involving the heavier-tailed Student-t error distribution).
For each sample, we calculate the estimates for (i) the regression parameter vector
δω = (τω,ε, δ

T)T = (τω,ε, δ1, δ2)
T; (ii) the functional part g(·) and finally for (iii) the

ωth expectile curve τω(x, z) in (4).

Table 2 The two simulation models

Model Location-scale model Details

1 Y = δTX + 10 sin(0.9Z) + ε Z ∼ U[−3, 3], δ = (0.8,−0.8)T

X j = 0.9Z + 1.5η j for j = 1, 2,
η j ∼ N(0, j), ε ∼ N(0, 52)

2 Y = δTX + 0.2 exp(1.5γ TZ) + ε δ = (0,−0.8)T

Z1, Z2 ∼ U[0, 1], Z1 and Z2 independent

X j = γ TZ + 1.5η j for j = 1, 2,
γ = (3,−0.4)T

η j ∼ N(0, j), ε ∼ Student-t (3)



Partially Linear Expectile Regression Using Local Polynomial Fitting 153

To compute the local linear estimates for the conditional expectations E[X|Z = z]
and E[Y |Z = z], we use the R package locpol or, since this can only deal with
univariate covariates, the lsfit command inR.Hereinwe use aGaussian kernel and the
rule-of-thumb bandwidth procedure developed by Fan and Gijbels (1996), applying
the command pluginBw in the package locpol (see Cabrera 2018). For estimation
of the regression parameter vector δω, we use the R package expectreg (see Otto-
Sobotka et al. 2019), and in particular the command expectreg.ls, to compute the
linear expectile part.

When estimating the function g(·), we solve optimization problem (13) for an
equispaced grid of values of z. In the multivariate case, we use a product kernel,
based on univariate Gaussian kernels (for both parts of the estimation procedure, in
Sects. 3.1 and 3.2). For Model 1, we take 200 equispaced grid-values, denoted by
{z1, . . . , z200} on the domain [−3, 3] of the variable Z . ForModel 2, we take a grid of
200 equispaced points in each dimension, on the domain of each component ofZ. For
estimating the nonparametric part, we use the ROT bandwidth selector

̂
hopt in (26), as

described in Sect. 4.2. For the weight function k0(z), we take k0(z) = 1{−2.9 ≤ z ≤
2.9} in Model 1, and in Model 2 k0(z1, z2) = 1{0.1 ≤ z1 ≤ 0.9} · 1{0.1 ≤ z2 ≤
0.9}, for which ∫ k0(z)dz = 0.82.

For summarizing the results with respect to the estimation of the nonparametric
part g(·), we proceed as follows. For each sample, we calculate the estimator ĝ(·)
over the fixed grid of points and compute the Approximate Integrated Square Error
(AISE)

AISE = 1

Ngrid

Ngrid∑
j=1

(
ĝ(z j ) − g(z j )

)2
, (27)

where Ngrid denotes the number of grid points. After ordering these 100 AISE values,
we obtain the 0.05th, 0.50th and 0.95th percentile value and depict the correspond-
ing estimates ĝ(·) as representative estimates among the 100 estimated curves. The
scatterplot that is shown in the concerned plots is that of the sample with the median
performance (0.50th percentile among AISE values).

5.1 Simulation Results for Model 1

In Fig. 1, the true expectile function τω(x, z) is depicted, where on one of coordinate
axes we present δTx and on the other coordinate z. The surface τω(x, z) is shown
for five values of ω: ω = 0.1, 0.3, 0.5, 0.7, 0.9, where the surface for the smallest
(highest) value ofω is the lowest (highest) situated surface. Since we have a location-
scalemodel, the five expectile surfaces are parallel. One can clearly see the sinusoidal
type of influence of the variable Z .

Boxplots of the 100 estimated values for each of the components of δω =
(τω,ε, δ1, δ2)

T are presented in Fig. 2, and this for each of the five ω values. The
horizontal (red) dotted line indicated the true values of the parameter components,
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Fig. 1 Model 1. 3D surface plot showing the true expectile curves. The expectile surfaces for the
subsequent values ω = 0.1, 0.3, 0.5, 0.7, 0.9 are the lowest to highest situated surfaces
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Fig. 2 Model 1. Boxplots of the estimates τ̂ω,ε , δ̂1 and δ̂2 forω = 0.1, 0.3, 0.5, 0.7, 0.9. The dotted
horizontal lines indicate the true values
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Fig. 3 Model 1. True expectile curve τ0.3,Y ∗ (.) (left) and τ0.7,Y ∗ (.) (right) in black and three
representative local linear estimates: 0.05th AISE-percentile (light-grey; colour blue), 0.5th AISE-
percentile (dashed line) and 0.95th AISE-percentile (grey; colour ochre yellow)

Fig. 4 Model 1. 3D surface plots showing the true 0.7th expectile curve (left) and the estimated
0.7th expectile curve (right)

i.e. τω,ε , δ1 = 0.8 and δ2 = −0.8. All estimators are of good quality, although esti-
mation in case of small or large values of ω typically is a bit more difficult.

Figure3 presents the representative estimates of g when ω = 0.3 (left) and
ω = 0.7 (right). Obviously g(·) does not depend on ω, but the estimation of g is
influenced by the quality of the estimation of the parametric part (that depends on
ω). Figure3 gives a graphical idea about the quality of the estimator by presenting the
true expectile curve τω,Y ∗(·) = g(·) together with the three representative estimates
for ω = 0.3 and 0.7.

Finally, Fig. 4 shows the true 0.7th expectile curve and the estimate with median
performance (according to a corresponding AISE criterion). The estimated surfaces
are relatively smooth, confirming the quality of the ROT bandwidth selector, and
clearly reveal the sinusoidal behaviour of g(·).
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Fig. 5 Model 2. Boxplot of the estimates of τ̂ω,ε and δ̂2 for ω = 0.1, 0.3, 0.5, 0.7, 0.9. The dotted
horizontal lines indicate the true values

Fig. 6 Model 2. 3D surface plot showing the true τ0.3,Y ∗ (·) = g(·) curve (left) and the estimated
curve (right)

5.2 Simulation Results for Model 2

Figure5 presents the boxplots of the estimates for τω,ε and δ2 (with true value−0.8).
Note the presence of outlying values in the boxplots, related to the Student-t error,
as opposed to the normal error structure in Model 1.

Figure6 presents the true (left) and the estimated (right) τ0.3,Y ∗(·) = g(·) surfaces,
where the scatterplot and the estimated surface are those corresponding to a median
performance across simulations.

6 Real Data Application

The data we consider are measurements on air quality in New York in the period
May 1, 2013 till September 30, 2013, downloaded from https://globalweather.tamu.
edu and https://www.epa.gov/outdoor-air-quality-data/download-daily-data. There
are 153 observations and the variables we consider here are Ozone concentration
(in parts per million), solar radiation (Solar.R) (in MegaJoule per square metre),

https://globalweather.tamu.edu
https://globalweather.tamu.edu
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
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Fig. 7 Air quality data. Analysis q = 2. Left: δ̂
T
ωX̃ of the parametric part for ω values

0.1, 0.3, 0.5, 0.7, 0.9. Right: Estimated expectile regression surface ĝ(·, ·) for ω = 0.7

Wind (in metres/second) and Temp (in degrees Celsius). The response variable Y is
Ozone concentration. Due to too few observations in certain regions of the covariates
domain, we restricted the dataset to observations for which Solar.R is larger or equal
to 15 andWind does not exceed 4. This led to a reduced dataset of 119 observations.

A scatterplot matrix of all bivariate scatterplots indicated that Temp appears to
have a linear influence, whereas forWind and Solar.R, the effect appears as possibly
nonlinear. In a first instance, we consider Temp as the sole element in the set of
covariates X, with Z (with q = 2) containing Wind and Solar.R.

Figure7 (left) shows the estimate δ̂Tωx̃ for ω values 0.1, 0.3, 0.5, 0.7 and 0.9, i.e.
the estimated parametric part. Note that the lines are not parallel which indicates
that there is likely heteroscedasticity in the data. Table3 (first block of rows) gives
the estimated values for τ̂ω,ε and δ̂1. Note the positive values for δ̂1, with an average
around 0.0006218, indicating a small positive effect of Temp on the expectile of
Ozone. Figure7 (right) depicts the estimate ĝ, for ω = 0.7. The impact of Solar.R on
the estimated conditional expectile of Ozone appears as nonlinear. The influence of
Wind on the other hand seems not too far from linear. Therefore, in the next step of
our analysis, we also include Wind in the linear part.

For this case of q = 1, Fig. 8 (left) shows the estimated parametric part δ̂Tωx̃ for
ω = 0.3 and 0.7. Note the non-parallel estimated surfaces. The estimated values δ̂ω

are given in the second block of rows in Table3. Note the overall negative values
for δ̂2, indicating that more wind reduces the ozone concentration expectile. Figure8
(right) shows the estimated expectile surface τ̂0.7(·, ·), with coordinate axis δ̂ωx and
z. In δTx, the pattern is linear and in Z , we can observe the increasing nonlinear
trend.
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Fig. 8 Air quality data. Analysis q = 1. Left: 3D surface plot showing the estimates δ̂
T
ωX̃ of the

parametric part for values of ω equal to 0.3 and 0.7. Right: 3D surface plot showing the estimate

τ̂0.7(·, ·) surface, with on the coordinate axis δ̂
T
ωx̃ and Solar.R

Table 3 Values of the two (for q = 2) or three (for q = 1) estimators τ̂ω,ε , δ̂1 and δ̂2 for ω =
0.1, 0.3, 0.5, 0.7, 0.9. These estimated parameters constitute the estimated linear part, revealing the
estimated linear influence of temperature (q = 2) and temperature and wind (q = 1) in the expectile
function

Dimension ω 0.1 0.3 0.5 0.7 0.9

q = 2 τ̂ω,ε −0.0023181 −0.0006114 0.0001647 0.0009888 0.0025815

δ̂1 0.0004568 0.0005246 0.0006137 0.0006986 0.0008154

q = 1 τ̂ω,ε −0.0070013 −0.0027328 0.0000191 0.0027633 0.0067605

δ̂1 0.0005939 0.0008373 0.0009688 0.0010814 0.0012171

δ̂2 −0.0033660 −0.0022400 −0.0017538 −0.0014734 −0.0013471

7 Further Reading

In applications, one might have the natural restriction that the curve of interest has
somequalitative properties, such as beingmonotone (increasing or decreasing), being
convex or concave. There is a vast literature on estimation under shape constraints.
In mean and quantile regression, for example, the assumption of monotonicity of the
mean regression or the quantile regression curves is often quite justifiable. SeeMam-
men and Thomas-Agnan (1999), Gijbels (2006), Poiraud-Casenova and Thomas-
Agnan (2000) and Groeneboom and Jongbloed (2014), among others.

Expectiles are of particular interest in risk measures, in particular since it was
argued by Ziegel (2016) that expectiles lead to the only coherent and elicitable law-
invariant risk measure. Among the recent contributions in this area is the paper by
Daouia et al. (2020).
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Expectile regression when the response Y is multivariate is a real challenge. Some
recent work on this is Herrmann et al. (2018) and Daouia and Paindaveine (2019),
among others.
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Piecewise Linear Continuous Estimators
of the Quantile Function

Delphine Blanke and Denis Bosq

Abstract In Blanke and Bosq (2018), families of piecewise linear estimators of the
distribution function F were introduced. It was shown that they reduce the mean
integrated squared error (MISE) of the empirical distribution function Fn and that
the minimal MISE was reached by connecting the midpoints (

X∗
k+X∗

k+1

2 , k
n ), with

X∗
1, . . . , X

∗
n the order statistics. In this contribution, we consider the reciprocal esti-

mators, built respectively for known and unknown support of distribution, for esti-
mating the quantile function F−1. We prove that these piecewise linear continuous
estimators again strictly improve the MISE of the classical sample quantile function
F−1
n .

1 Introduction

If X1, X2, . . . , Xn are independent and identically distributed (i.i.d.) real random
variables with absolutely continuous distribution function F , the quantile function is
defined as F−1(t) = inf{x : F(x) ≥ t}. The sample (or empirical) quantile function
is then F−1

n (t) = inf{x : Fn(x) ≥ t}, with Fn(x) = 1
n

∑n
i=1 I]−∞,x](Xi ), x ∈ R and

IA denotes the indicator function of the set A. This is equivalent to F−1
n (t) = X∗

k
for t ∈] k−1

n , k
n ], k = 1, . . . , n and where X∗

1 < · · · < X∗
n (almost surely) denotes the

ordered sample. We study the properties of two piecewise linear alternatives of F−1
n

that respectively address the cases of known and unknown support of the density
f . Actually, these estimators are the reciprocals of two particular estimators con-
sidered in Blanke and Bosq (2018) to estimate F . More precisely, in this last cited
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reference, the MISE of a general family of polygonal estimators of the distribution
function is studied. These estimators consist in linearly interpolating Fn at differ-
ent points, namely (X∗

k + p(X∗
k+1 − X∗

k ),
k
n ), k = 1, . . . , n − 1, where p is a chosen

parameter in [0,1]. For example, p = 0 corresponds to a piecewise linear interpola-
tion at (X∗

k ,
k
n ), p = 1 at (X∗

k+1,
k
n ), and the choice p = 1

2 connects the midpoints

(
X∗
k+X∗

k+1

2 , k
n ). It is then shown in Blanke and Bosq (2018) that for all p chosen in

]0,1[, the MISE of Fn is strictly improved and that it is minimal at p = 1
2 (while

the choices p = 0 or 1 cannot be recommended). The reciprocals of estimators con-
necting the midpoints of Fn are studied in this contribution to estimate the quantile
function, they join the midpoints of F−1

n , and their formulation depends on whether
or not the support is known.

A large literature exists on quantile estimation or L-statistics (linear functions
of order statistics): we may refer to the review proposed by Poiraud-Casanova and
Thomas-Agnan (1998) or to the detailed introductions in Sheather andMarron (1990)
and Zelterman (1990) for smooth quantile estimation, and to Cheng and Parzen
(1997) for an unified approach. The origin of the quantile estimators studied in this
paper can go back to Hazen (1914) in hydrology (see Harter 1984, for a discussion
about plotting positions). Even if their good behavior had been outlined by Parzen
(1979) and Dielman et al. (1994), as far as we can judge, there has been no theoretical
study of their statistical behavior until now.

The paper is organized as follows. In Sect. 2, we introduce our two piecewise
quantile estimators and give their first properties deduced from their proximity to the
sample quantile function F−1

n . The main result of this paper is the derivation of their
MISE established in Theorem1. It appears that the piecewise quantile estimators
strictly improve the sample quantile function and have an equivalent MISE up to the
second order. A conclusion and discussion about possible extensions of our results
appear in Sect. 3. Finally, the proof of the most technical results is postponed to the
appendix.

2 The Piecewise Quantile Estimators

2.1 Definition

For independent and identically distributed (i.i.d.) random variables X1, . . . , Xn with
compact support [a, b] and absolutely continuous distribution function F , we intro-
duce two continuous piecewise linear estimators of the quantile function F−1. These
estimators are the reciprocals of the two estimators of F , studied in Blanke and Bosq
(2018), which linearly interpolate the empirical cumulative distribution function Fn

at itsmidpoints, andwhichminimize theMISE among the set of polygonal estimators
considered in the latter reference.

Our first quantile estimator, G−1
n1 , addresses the case of a known support [a, b] by

using this support in its construction. The second estimator, G−1
n2 , modifies G−1

n1 at its
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both ends and handles by this way the case of an unknown support. Note that even if
the results of this article are established for distributions with compact support, the
definition of G−1

n2 is adapted for the case where no information on the support of the
distribution is available (and so can even be infinite).

Definition 1 (1) For known support [a, b], we define

G−1
n1 (t) =

⎧
⎪⎨

⎪⎩

2nt (X∗
1 − a) + a if t ∈ [0, 1

2n ],
(nt − k + 1

2 )(X∗
k+1 − X∗

k ) + X∗
k if t ∈] 2k−1

2n , 2k+1
2n ], k = 1, . . . , n − 1,

b − 2n(1 − t)(b − X∗
n) if t ∈]1 − 1

2n , 1].
(1)

(2) In the general case, we set G−1
n2 (t) = G−1

n1 (t) for t ∈] 1
2n , 1 − 1

2n ], and for n ≥ 2,

G−1
n2 (t) =

{
(nt − 1

2 )(X
∗
2 − X∗

1) + X∗
1 if t ∈ [0, 1

2n ],
(nt − n + 1

2 )(X
∗
n − X∗

n−1) + X∗
n if t ∈]1 − 1

2n , 1].
(2)

Let us recall that the classical sample quantile function is the generalized inverse
function of Fn defined by

F−1
n (t) = inf{x : Fn(x) ≥ t}

and is equivalent to F−1
n (t) = X∗

k for t ∈] k−1
n , k

n ], k = 1, . . . , n. Our estimators sim-
ply regularize F−1

n by connecting its midpoints on [ 1
2n , 1 − 1

2n ] and are extended in
a natural way at both ends (toward the support for G−1

n1 and by lengthening the last
segments for G−1

n2 ).
Let us notice that connecting themidpoints of F−1

n on [ 1
2n , 1 − 1

2n ] is an old propo-
sition, suggested in Hazen (1914), which remains popular and used in hydrology.
Such an estimator also appears in Harter (1984), Parzen (1979), Parrish (1990), and
Dielman et al. (1994) and is implemented in statistical packages (Hyndman and Fan
1996). But according to these authors, even with good performance in simulations
and good properties of construction, it presents several problems:

• not being justified on the basis of an estimation argument (Hyndman and Fan
1996),

• being restricted on the support [ 1
2n , 1 − 1

2n ] (Dielman et al. 1994),
• and only suited to symmetric distributions (Parzen 1979; Dielman et al. 1994).

The results presented in this contribution address the above-mentioned drawbacks.
We establish the asymptotic behavior of the estimators G−1

n1 and G−1
n2 defined on

[0,1], and we show that they are always better than the sample quantile function in
terms of MISE.
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2.2 First Properties

First, note that estimators G−1
nj , j = 1, 2, are examples of linear functions of order

statistics. Such L-estimators have been extensively studied and share natural prop-
erties expected for the quantile function. They are defined as weighted averages of
consecutive order statistics. Those of them involving one- or two-order statistics
can be written as: (1 − γ )X∗

k + γ X∗
k+1, where (k − �)/n ≤ t < (k − � + 1)/n and

γ = nt + � − k with � ∈ R a constant determined by the considered estimator (see
Hyndman and Fan 1996, for values taken by � according to the chosen sample quan-
tile). In our case, the choice � = 1

2 gives G−1
nj (t), j = 1, 2, for t ∈ [ 1

2n , 1 − 1
2n ]. For

the intervals [0, 1
2n ] and [1 − 1

2n , 1], the same expression holds for G−1
n2 by setting

k = 1 and k = n − 1, respectively, on the valid definition over [ 1
2n , 1 − 1

2n ]. The
following proposition reviews some of other natural properties of our estimators.

Proposition 1 For j = 1, 2, we get that the estimators G−1
nj are

(a) continuous on [0,1],
(b) symmetric,
(c) invariant by translation (only on [ 1

2n , 1 − 1
2n ] for G−1

n1 ),
(d) equal to the usual sample median for t = 1

2 .

Proof (a) Clear by construction.
(b) Wehave to check thatG−1

−X,nj (t) = −G−1
nj (1 − t) forG−1

−X,nj builtwith (−X1, . . . ,

−Xn). Symmetry is obtained by substituting X∗
k by −X∗

n−k+1 for k = 1, . . . , n
and [a, b] by [−b,−a] in (1)–(2).

(c) For Yk = Xk + c, k = 1, . . . , n with some constant c, we have to establish
that G−1

Y ,nj (t) = G−1
nj (t) + c if G−1

Y ,nj is the sample quantile estimator built with
Y1, . . . ,Yn . The result is clear with Y ∗

k = X∗
k + c for all k = 1, . . . , n in (1)–(2).

The property is no longer true for G−1
n1 (t) with t ∈ [0, 1

2n ] or t ∈ [1 − 1
2n , 1].

(d) For j = 1, 2 and n = 1, G−1
nj ( 12 ) = X∗

1 . For n ≥ 2 and n = 2p, G−1
nj ( 12 ) =

X∗
p+X∗

p+1

2 while for n = 2p + 1, G−1
nj ( 12 ) = X∗

p+1. �

The next immediate lemma specifies the proximity between F−1
n and G−1

nj and
will be useful for establishing the convergence of our estimators. Note that from now
on, we set a = 0 and b = 1 to simplify the presentation of the results.

Lemma 1 (1) For j = 1, 2 and k = 1, . . . , n − 1,

G−1
nj (t) − F−1

n (t) =
{

(nt − k + 1
2 )(X

∗
k+1 − X∗

k ) if t ∈] kn − 1
2n ,

k
n ]

(nt − k − 1
2 )(X

∗
k+1 − X∗

k ) if t ∈] kn , k
n + 1

2n ].

(2) For t ∈ [0, 1
2n ], G−1

n1 (t) − F−1
n (t) = (2nt − 1)X∗

1 while G−1
n2 (t) − F−1

n (t) =
(nt − 1

2 )(X
∗
2 − X∗

1).
(3) For t ∈ [1 − 1

2n , 1], G−1
n1 (t) − F−1

n (t) = (2nt − 2n + 1)(1 − X∗
n) while

G−1
n2 (t) − F−1

n (t) = (nt − n + 1
2 )(X

∗
n − X∗

n−1).
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Corollary 1 If F is absolutely continuous with density f such that f is continuous
on [0,1] and inf x∈[0,1] f (x) ≥ c0 for some positive constant c0, one obtains that
supt∈[0,1]

∣
∣G−1

nj (t) − F−1
n (t)

∣
∣ = Op(n−1), j = 1, 2.

Proof First recall that the joint density of (X∗
k , X

∗
k+1) (see e.g. David and Nagaraja

2003, p. 12) is given by

f(X∗
k ,X

∗
k+1)

(x, y) =
n!

(k − 1)!(n − k − 1)! F
k−1(x) f (x) f (y)(1 − F(y))n−k−1 I[0,y](x) I[0,1](y).

Next, integrations by parts imply thatE (X∗
k+1 − X∗

k ) = Ck
n

∫ 1
0 Fk(x)(1 − F(x))n−k

dx so that

E (X∗
k+1 − X∗

k ) = Ck
n

∫ 1

0
uk(1 − u)n−k 1

f (F−1(u))
du ≤ Ck

n

c0

∫ 1

0
uk(1 − u)n−k du.

From the standard result
∫ 1
0 uk(1 − u)n−k du = k!(n−k)!

(n+1)! , we may deduce that

E (X∗
k+1 − X∗

k ) = O( 1
n+1 ) uniformly in k. One easily concludes with Lemma1

and Lemma 3.2(a)–(b) in Blanke and Bosq (2018) (recalled in the Appendix, see
Lemma3) together with Markov inequality. �

We may deduce that the two estimators are asymptotically equivalent to F−1
n ; for

example, they get the same limit in distribution since
√
n(G−1

nj (t) − F−1
n (t))

p−−−→
n→∞ 0

for j = 1, 2.

2.3 Mean Integrated Squared Error

We now give the main result of this contribution showing that the estimators strictly
improve the sample quantile function in terms of MISE and are equivalent up to
second order.

Theorem 1 If F is absolutely continuous with density f such that f is C1 on [0,1]
and inf x∈[0,1] f (x) > 0, we get that, for j = 1, 2,

∫ 1

0
E

(
G−1

nj (t) − F−1(t)
)2
dt

=
∫ 1

0
E

(
F−1
n (t) − F−1(t)

)2
dt − 1

4n2

∫ 1

0

1

f (x)
dx + O(

n− 5
2
)
.
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The proof of Theorem1 is based on the decomposition of
(
G−1

nj (t) − F−1(t)
)2

into

(
G−1
nj (t) − F−1

n (t)
)2 + (

F−1
n (t) − F−1(t)

)2 + 2
(
G−1
nj (t) − F−1

n (t)
)(
F−1
n (t) − F−1(t)

)

with the following proposition proved in the appendix.

Proposition 2 Under the assumptions of Theorem1, we obtain

(1) for j = 1, 2,

E

∫ 1

0

(
G−1

nj (t) − F−1
n (t)

)2
dt = 1

6n(n + 1)

∫ 1

0

1

f (x)
dx + O(

n−3
)
.

(2) for j = 1,

E

∫ 1

0

(
G−1

n1 (t) − F−1
n (t)

)
F−1
n (t) dt

= E (1 − X∗
n)

4n
− 1

4n(n + 1)

∫ 1

0

1

f (x)
dx + O(

n−3
)

while, for j = 2,

E

∫ 1

0

(
G−1

n2 (t) − F−1
n (t)

)
F−1
n (t) dt

= E (X∗
n − X∗

n−1)

8n
− 1

4n(n + 1)

∫ 1

0

1

f (x)
dx + O(

n−3
)
.

(3) for j = 1,

E

∫ 1

0

(
G−1

n1 (t) − F−1
n (t)

)
F−1(t) dt = E (1 − X∗

n)

4n
− 1

24n2

∫ 1

0

1

f (x)
dx + O(

n− 5
2
)

while, for j = 2,

E

∫ 1

0

(
G−1

n2 (t) − F−1
n (t)

)
F−1(t) dt

= E (X∗
n − X∗

n−1)

8n
− 1

24n2

∫ 1

0

1

f (x)
dx + O(

n− 5
2
)
.

Moreover, in the proof of Proposition2, the following result is established, see
Eq. (7) in the appendix. We highlight this result because it might be useful for other
applications.

Lemma 2 If F is absolutely continuous with density f such that f is C1 on [0,1]
and inf x∈[0,1] f (x) > 0, we get that
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∫ 1

0

∫ 1

x

(
1 − F(y) + F(x)

)n
dy dx = 1

n + 1

∫ 1

0

1

f (y)
dy

− 1

2(n + 1)(n + 2) f 2(1)
− 1

2(n + 1)(n + 2) f 2(0)
+ O(n−3).

Note that Theorem1 illustrates the classical phenomenon of deficiency with the
dominant term given by theMISE of the sample quantile function. This phenomenon
appears also for kernel quantile estimators, see Falk (1984), Sheather and Marron
(1990), as well as for estimators inverting kernel estimators of the distribution func-
tion, see Azzalini (1981). In these works, an optimal choice of the bandwidth allows
a gain compared to the MISE of Fn that is a O(n− 4

3 ) for the term of the second order.
In this way, these estimators are more efficient than our piecewise linear ones, that
have a gain of only O(n−2), but G−1

nj , j = 1, 2, present the immediate advantages to
not depend on any smoothing parameter and can be plotted directly in an easy way.
As indicated in Proposition1, they also meet the qualities expected for empirical
quantiles (see also Hyndman and Fan 1996).

To conclude this part, we complete Theorem1 with the MISE of the sample
quantile function (in accordance with the Bahadur representation) as we did not find
the explicit result in the literature.

Proposition 3 Under the assumptions of Theorem1, we have

∫ 1

0
E

(
F−1
n (t) − F−1(t)

)2
dt = 1

n

∫ 1

0

t (1 − t)

f 2(F−1(t))
dt + O(

n− 3
2
)
.

If we suppose moreover that f is C2 on [0,1], we get that

∫ 1

0
E

(
F−1
n (t) − F−1(t)

)2
dt = 1

n

∫ 1

0

t (1 − t)

f 2(F−1(t))
dt + O(

n−2
)
.

Proof We start from

∫ 1

0

(
F−1
n (t) − F−1(t)

)2
dt =

n∑

k=1

∫ k
n

k−1
n

(
X∗
k − F−1(t)

)2
dt

= 1

n

n∑

k=1

X∗2
k + E (X2

1) − 2
n∑

k=1

X∗
k

∫ k
n

k−1
n

F−1(t) dt

so that E
∫ 1
0

(
F−1
n (t) − F−1(t)

)2
dt = 2

(
E (X2

1) − ∑n
k=1 E (X∗

k )
∫ k

n
k−1
n
F−1(t) dt

)
.

The main task is the evaluation of the last term. Taylor formula and continuity of f ′
give that, uniformly over k,

∫ k
n

k−1
n

F−1(t) dt = 1

n
F−1(

k − 1

n
) + 1

2n2
1

f (F−1( k−1
n ))

+ O(n−3)
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which in turn gives a O(n−2) for the term of rest after multiplying it by∑n
k=1 E (X∗

k ) = nE (X1). Next, again using Taylor formula to control the remaining
terms, we may write

1

n

n∑

k=1

E (X∗
k )F−1(

k − 1

n
)

= 1

n

n∑

k=1

E (X∗
k )

[
F−1(

k

n + 1
) − n − (k − 1)

n(n + 1)

1

f (F−1( k−1
n ))

]
+ O(n−2)

= 1

n

n∑

k=1

E (X∗
k )

[
F−1(

k

n + 1
) − 1

n f (F−1( k
n+1 ))

+ k

n(n + 1) f (F−1( k
n+1 ))

]
+ O(n−2).

(3)

Next, we apply results concerning the expectation of linear combinations of order
statistics, 1n

∑n
k=1 J ( k

n+1 )X
∗
k , given in Stigler (1974) andHelmers (1980). First, since

F−1 is twice differentiable on [0, 1], wemay adapt Eq. (5.11) in the proof of Theorem
2.2 in Helmers (1980) to obtain that

1

n

n∑

k=1

E (X∗
k )F

−1(
k

n + 1
) =

∫ 1

0
(F−1(t))2 dt

− 1

2n

∫ 1

0

t (1 − t)

f 2(F−1(t))
dt + 1

n

∫ 1

0
(
1

2
− t)

F−1(t)

f (F−1(t))
dt + O(n− 3

2 ). (4)

For the two last terms in (3) involving the density f , we may apply Theorem 4 of
Stigler (1974) that does not require the existence of f ′′. This allows to obtain that

1

n

n∑

k=1

E (X∗
k )

1

f (F−1( k
n+1 ))

=
∫ 1

0

F−1(t)

f (F−1(t))
dt + o(n− 1

2 ) (5)

and

1

n

n∑

k=1

E (X∗
k )

k

n + 1

1

f (F−1( k
n+1 ))

=
∫ 1

0

t F−1(t)

f (F−1(t))
dt + o(n− 1

2 ). (6)

To conclude the proof, one may note that if f ′′ exists and is continuous, one may
apply the Helmers (1980)’s result to get a O(n−2) instead of O(n− 3

2 ) in (4) and a
O(n−1) instead of a o(n− 1

2 ) in (5)–(6). �
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3 Discussion

We have studied two smoothed quantile estimators, G−1
n1 and G−1

n2 , and have derived
their properties as well as exact expansions for the MISE at the second order for
compactly supported distributions. These estimators present several advantages: they
are simple generalizations of the quantile process F−1

n (t), they do not depend on any
smoothing parameter, and can be plotted directly without any computation. They also
meet the standard properties expected for quantiles. Our main result points ahead
that they strictly improve the MISE of F−1

n . Moreover, the two estimators have
equivalent MISE up to the order n−2. The first one uses the support of the density in
its construction while the second one does not require the knowledge of this support.
Even if their good numerical properties had already been pointed out in the literature,
see for example Parrish (1990) and Dielman et al. (1994), their theoretical study had
not been carried out until now.We hope that this paper can give additional motivation
for their study and their use in practical problems.

Our results are in agreement with those established for equivalent estimators
of the distribution function in Blanke and Bosq (2018). In this reference, general
families of estimators of F have been considered, by joining linearly the empirical
distribution function Fn at some defined points. It is established that estimators
joining the midpoints (as their reciprocal forms studied in the present article for
quantile estimation) reach a minimal MISE at the order n−2. In addition, it is shown
that piecewise linear estimators joining the order statistics (either the points (X∗

k ,
k
n )

or (X∗
k+1,

k
n )) do not improve the MISE of Fn at this order. It would be interesting

to see if this bad behavior can also be established also for quantile estimation since
the simple kernel estimator (joining two consecutive order statistics) is still popular
among practitioners. Indeed,more general sample quantiles of the type Qn(t) = (1 −
γ )X∗

k + γ X∗
k+1 when (k − �)/n ≤ t < (k − � + 1)/n for some � could be studied

with the techniques of our article in order to compare their asymptotic behaviors
(work in progress).

Various other extensions of our results may be envisaged. The first one is to
relax the assumption of bounded support and then, to consider a weighted mean
integrated squared error to ensure the existence of the integrals. As noted previously,
the estimator G−1

n2 seems naturally suitable for such a framework. We may also
remark, see Babu et al. (2002), that a monotone transformation like Y = X/(1 + X)

may handle the case of random variables with support [0;∞[, and Y = (1/2) +
(tan−1 X/π) can be taken for real random variables. It should be interesting to look
at the transformation of our estimators in these cases. Also, some numerical studies
on F−1

n ,G−1
n1 , andG

−1
n2 , not exposed here, have been conducted for Gaussianmixtures

(in the same way as in Blanke and Bosq 2018) and give good results even in these
unbounded cases.

Finally, conditional quantile estimation is now a large field of research; we can
refer to the nice survey of Poiraud-Casanova and Thomas-Agnan (1998) or to the
more recent handbooks of Koenker (2005) and Koenker et al. (2018). It allows to
take into account the influence of covariates on the studied distribution and has
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multiple applications in medicine, economics, and finance. Also, they represent a
robust alternative to the conditional mean and are involved in curve estimation, see
e.g. Aragon et al. (2005) for frontier estimation and Leconte et al. (2002) for random
censorship. It would be interesting to see how our estimators could be written in
these frameworks, and see if their easy implementation could offer an interesting
alternative to existing usual estimators.

Acknowledgements We thank the reviewers for their careful reading and helpful comments. We
are also grateful to the editors for giving us the opportunity to contribute to this volume in honor of
Christine Thomas-Agnan, a great mathematician and very nice person.

Appendix

The two following lemmas are useful for calculations.

Lemma 3 (Blanke and Bosq 2018, Lemma 3.2) If f is continuous on [0,1] and
inf x∈[0,1] f (x) ≥ c0 for some positive constant c0 then, for all integers r ≥ 0 and
m ≥ 1, not depending on n, we get

(a)

E
(

inf
i=1,...,n+r

Xi

)m = am
nm

+ O
( 1

nm+1

)
, am > 0,

(b)

E
(
1 − sup

i=1,...,n+r
Xi

)m = bm
nm

+ O
( 1

nm+1

)
, bm > 0,

(c)

E
(
X∗
2 − X∗

1

) = d1
n

+ O
( 1

n2

)
, d1 > 0, and E

(
X∗
2 − X∗

1

)m = O
( 1

nm

)
,

(d)

E
(
X∗
n − X∗

n−1

) = e1
n

+ O
( 1

n2

)
, e1 > 0, and E

(
X∗
n − X∗

n−1

)m = O
( 1

nm

)
.

Lemma 4 (Blanke andBosq2018, PropositionA1) If h ismeasurable and integrable
on [0, 1]2, then
n−1∑

k=1

E
(
h(X∗

k , X∗
k+1)

) = n(n − 1)
∫ 1

0

∫ y

0
h(x, y) f (x) f (y)

(
1 − F(y) + F(x)

)n−2 dx dy.
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Proof of Proposition2

(1) We start from Lemma1 and simple integrations give

E

∫ 1

0

(
G−1
n1 (t) − F−1

n (t)
)2 dt = E

(
X∗
1

)2

6n
+ E

(
1 − X∗

n
)2

6n
+

∑n−1
k=1 E

(
X∗
k+1 − X∗

k

)2

12n

for j = 1, while for j = 2, one gets

E

∫ 1

0

(
G−1

n2 (t) − F−1
n (t)

)2
dt

= E
(
X∗
2 − X∗

1

)2

24n
+ E

(
X∗
n − X∗

n−1

)2

24n
+

∑n−1
k=1 E

(
X∗
k+1 − X∗

k

)2

12n
.

Lemma3 implies that the twofirst terms in these expressions are negligible inO(
n−3

)
.

Lemma4 implies that

n−1∑

k=1

E
(
X∗
k+1 − X∗

k
)2 = n(n − 1)

∫ 1

0

∫ y

0
(y − x)2 f (x) f (y)

(
1 − F(y) + F(x)

)n−2 dx dy.

Next, integrations by parts give that

n−1∑

k=1

E
(
X∗
k+1 − X∗

k

)2 = −2
∫ 1

0
yP(X∗

1 > y) dy − 2
∫ 1

0
(1 − x)P(X∗

n ≤ x) dx

+2
∫ 1

0

∫ 1

x

(
1 − F(y) + F(x)

)n
dy dx .

Setting t = y2 and t = (1 − x)2 in the two first integrals give a O(n−2) for these
terms with Lemma3. For the term 2

∫ 1
0

∫ 1
x

(
1 − F(y) + F(x)

)n
dy dx , we perform

the change of variables y = F−1(t), x = F−1(s) to get

∫ 1

0

∫ 1

x

(
1 − F(y) + F(x)

)n dy dx =
∫ 1

0

∫ 1

s
(1 − t + s)n

1

f (F−1(t))

1

f (F−1(s))
ds dt.

Again multiple integrations by parts lead to

∫ 1

0

∫ 1

x

(
1 − F(y) + F(x)

)n
dy dx = 1

n + 1

∫ 1

0

1

f (y)
dy

− 1

2(n + 1)(n + 2) f 2(1)
− 1

2(n + 1)(n + 2) f 2(0)
+ O(n−3). (7)

Now, one may conclude that
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n−1∑

k=1

E
(
X∗
k+1 − X∗

k

)2 = 2

n + 1

∫ 1

0

1

f (x)
dx + O(

n−2
)

(8)

and the result follows.

(2) From Lemma1 and F−1
n (t) = X∗

k for t ∈] k−1
n , k

n ], k = 1, . . . , n, we may cal-
culate each integral to obtain, for j = 1,

∫ 1

0
(G−1

n1 (t) − F−1
n (t))F−1

n (t) dt = − (X∗
1)

2

4n
+ X∗

n(1 − X∗
n)

4n
−

n−1∑

k=1

(X∗
k+1 − X∗

k )
2

8n

and since X∗
n(1 − X∗

n) = (1 − X∗
n) − (1 − X∗

n)
2, Lemma3 implies that

E

∫ 1

0
(G−1

n1 (t) − F−1
n (t))F−1

n (t) dt = E (1 − X∗
n)

4n
−

n−1∑

k=1

E (X∗
k+1 − X∗

k )2

8n
+ O( 1

n3
)

and one may conclude with the relation (8). For j = 2, we obtain

∫ 1

0
(G−1

n2 (t) − F−1
n (t))F−1

n (t) dt

= − (X∗
2 − X∗

1)X
∗
1

8n
+ X∗

n(X
∗
n − X∗

n−1)

8n
−

n−1∑

k=1

(X∗
k+1 − X∗

k )
2

8n

and, since (X∗
n − X∗

n−1)X
∗
n = −(X∗

n − X∗
n−1)(1 − X∗

n) + (X∗
n − X∗

n−1), Cauchy–
Schwarz inequality and Lemma3 imply that

E

∫ 1

0
(G−1

n2 (t) − F−1
n (t))F−1

n (t) dt = E (X∗
n − X∗

n−1)

8n
−

n−1∑

k=1

E (X∗
k+1 − X∗

k )
2

8n
+ O(

n−3)

and again the relation (8) gives the result.

(3) This is the most technical term to handle. For j = 1, we decompose it into

E (X∗
1)

∫ 1
2

0
(2nt − 1)F−1(t) dt + E (1 − X∗

n)

∫ 1

1− 2
n

(2nt − 2n + 1)F−1(t) dt

+
n−1∑

k=1

E (X∗
k+1 − X∗

k )

∫ k
n

k
n − 1

2n

(nt − k + 1

2
)F−1(t) dt

+
n−1∑

k=1

E (X∗
k+1 − X∗

k )

∫ k
n + 1

2n

k
n

(nt − k − 1

2
)F−1(t) dt. (9)
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We introduce K0(t) and K1(t) the primitives of F−1(t) and t F−1(t) and we
use Taylor expansions with integral remainder with K ′′

1 (t) = F−1(t) + t
f (F−1(t)) ,

K (3)
1 (t) = 2

f (F−1(t)) − t f ′(F−1(t))
f 3(F−1(t)) ; and K ′′

0 (t) = 1
f (F−1(t)) , K

(3)
0 (t) = − f ′(F−1(t))

f 3(F−1(t)) .
By integrating by parts, we arrive at

∫ 1
2n

0
(2nt − 1)F−1(t) dt = 2n

∫ 1
2n

0

( 1
2n − t)2

f (F−1(t))
dt − 1

8n2 f (0)
+ O(n−3)

= 1

12n2 f (0)
− 1

8n2 f (0)
+ O(n−3) = − 1

24n2 f (0)
+ O(n−3)

so that Lemma3-(a) gives that the first term of (9) is a O(n−3). We use the same
methodology for the second term to obtain that

∫ 1

1− 1
2n

(2nt − 2n + 1)F−1(t) dt = F−1(1 − 1
2n )

4n
+ 1

12n2 f (F−1(1 − 1
2n ))

+ O(n−3)

= 1

4n
− 1

24n2 f (1)
+ O(n−3).

We may deduce that the second term of (9) is equal to E (1−X∗
n )

4n + O(n−3) with
the help of Lemma3-(d). We use again Taylor expansions with integral remainder
together with integration by parts for the two terms depending on k. This allows to
get, uniformly in k, that

∫ k
n

k
n − 1

2n

(nt − k + 1

2
)F−1(t) dt = F−1( kn − 1

2n )

8n
+ 1

24n2 f (F−1( kn − 1
2n ))

+ O(n−3)

and

∫ k
n + 1

2n

k
n

(nt − k − 1

2
)F−1(t) dt = − F−1( kn )

8n
− 1

48n2 f (F−1( kn ))
+ O(n−3).

By this way,

n−1∑

k=1

E (X∗
k+1 − X∗

k )
( ∫ k

n

k
n − 1

2n

(nt − k + 1

2
)F−1(t) dt +

∫ k
n + 1

2n

k
n

(nt − k − 1

2
)F−1(t) dt

)

= − 1

24n2
E

n−1∑

k=1

(X∗
k+1 − X∗

k )

f (F−1( kn ))
+ O(n−3).

The last task is now to study E
( ∑n−1

k=1
X∗
k+1−X∗

k

f (F−1( k
n ))

)
. As Fn(X∗

k ) = k
n , we have
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E

n−1∑

k=1

(X∗
k+1 − X∗

k )

f (F−1( kn ))
=E

( n−1∑

k=1

X∗
k+1 − X∗

k

f (X∗
k )

)

+ E
( n−1∑

k=1

(X∗
k+1 − X∗

k )( f (X
∗
k ) − f (F−1( kn )))

f (F−1( kn )) f (X
∗
k )

)
.

The first term is evaluated with Lemma4 yielding to

E
( n−1∑

k=1

X∗
k+1 − X∗

k

f (X∗
k )

) = n(n − 1)
∫ 1

0

∫ 1

x
(y − x) f (y)(1 − F(y) + F(x))n−2 dy dx

= −n
∫ 1

0
(1 − x)Fn−1(x) dx + n

∫ 1

0

∫ 1

x
(1 − F(y) + F(x))n−1 dy dx .

Using (7) and the relation
∫ 1
0 (1 − x)Fn−1(x) dx = (1−E (supi=1,...,n−1 Xi ))

2

2 together with
Lemma3-(b), we arrive at

E
( n−1∑

k=1

X∗
k+1 − X∗

k

f (X∗
k )

) =
∫ 1

0

1

f (y)
dy − 1

2(n + 1) f 2(0)
− 1

2(n + 1) f 2(1)

− n(1 − E (supi=1,...,n−1 Xi ))
2

2
+ O(n−2).

For the second term, using Cauchy–Schwarz inequality implies that it may be

bounded by C
( ∑n−1

k=1 E (X∗
k+1 − X∗

k )
2
) 1

2
( ∑n−1

k=1 E (F−1
n ( kn ) − F−1( kn ))

2
) 1

2 with C
some positive constant. From relation (8), Riemann approximation, and Proposi-
tion2, this term is of order O(n− 1

2 ). Collecting all the results, the assertion holds for
j = 1 and is unchanged for j = 2, details are omitted. �
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Single-Index Quantile Regression Models
for Censored Data

Axel Bücher, Anouar El Ghouch, and Ingrid Van Keilegom

Abstract When the dimension of the covariate space is high, semiparametric
regression models become indispensable to gain flexibility while avoiding the curse
of dimensionality. These considerations become even more important for incom-
plete data. In this work, we consider the estimation of a semiparametric single-index
model for conditional quantiles with right-censored data. Iteratively applying the
local-linear smoothing approach, we simultaneously estimate the linear coefficients
and the link function. We show that our estimating procedure is consistent and we
study its asymptotic distribution. Numerical results are used to show the validity
of our procedure and to illustrate the finite-sample performance of the proposed
estimators.

1 Introduction

Quantile regression is a very attractive alternative to the classical mean-regression
model based on the quadratic loss. While the latter provides only information about
the central behavior of the data, by varying the quantile level, the former provides
a more complete picture, both in the center and in the tails. At the same time, one
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does not need to impose restrictive assumptions about the unknown data generating
process. There are many cases where studying the conditional mean is uninformative
compared to the conditional upper or lower quantiles representing more extreme
situations. A nice illustration can be found in Elsner et al. (2008), where the interest
lies in the lifetime-maximum wind speeds of tropical cyclones. The authors found
that trends are near zero for the mean and lower quantiles (median and below), but
are upward for higher quantiles.

With the objective of providing a robust yet easily computable alternative to lin-
ear mean models, Koenker and Bassett (1978) propose a method to estimate a linear
quantile model using the so-called check loss function. This seminal work inspired
many researchers from different fields and the method has been generalized and
adapted to a wide range of statistical applications including fully nonparametric
methods like local-polynomial or spline smoothing; see, e.g., Yu and Jones (1998)
and Koenker et al. (1994). Although a completely nonparametric approach is flexi-
ble, its application requires a large amount of data in order to overcome the curse of
dimensionality. While retaining much flexibility, semiparametric models avoid the
curse of dimensionality by imposing some structure on themodel. One such structure
is the single-index model in which one assumes that the objective function depends
linearly on the covariates through an unknown link function.Manywidely used para-
metric models can be seen as particular cases of the single-index model. Examples
are the linear regression model and the generalized linear model. In a single-index
model, no matter the number of covariates, the curse of dimensionality is avoided
because the nonparametric part (link function) is of dimension one. This model was
investigated and successfully applied to many objective functions, including the con-
ditional mean and conditional quantiles. For some related papers, see, for example,
Ichimura (1993), Klein and Spady (1993), Härdle et al. (1993), Carroll et al. (1997),
Delecroix et al. (2003), Wu et al. (2010), and Kong and Xia (2012) to cite just some
of the relevant papers.

The majority of the available literature is devoted to the case where the variable
of interest, say Y , is completely observed. This is not the case in many interesting
applications including survival analysis where censoring prevents the direct appli-
cation of “classical” semiparametric methods because instead of observing Y , one
only observes the minimum of Y and a censoring variable. For general results on
(linear) quantile regression within such a setting, see, e.g., Portnoy (2003), Wang
and Wang (2009), and references therein. Compared to the uncensored case, the lit-
erature on single-index models dealing with censoring is very sparse. To the best of
our knowledge, the only paper so far is the one of Christou and Akritas (2019) who
studied a non-iterative approach based on a combination of four local smoothing
estimators: the local Kaplan–Meier estimator for estimating the conditional distri-
bution function of the censoring variable, the nonparametric estimator of Kong et al.
(2013), a Nadaraya–Watson-type estimator for estimating the link function, and a
local-linear estimator for estimating the desired conditional quantile. For the case of
the conditional mean, we refer to Lopez et al. (2013) and the references therein.

In this paper, we study the single-index model for the conditional quantile func-
tion when the data are right-censored. We estimate the parameters of interest by
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constructing a weighted check function in a way similar to the method of El Ghouch
and Van Keilegom (2009). The main difficulties here are the non-differentiability of
the check loss function and the fact that the weight function depends on the censoring
distribution, which is unknown and needs to be estimated and then plugged-in in the
estimating equation. Our proposed local-linear estimationmethod is based on an iter-
ative procedure involving a

√
n-consistent estimator of the single-index parameters.

In every iteration, we need to maximize a large number of local equations. We derive
the asymptotic properties of the resulting quantile regression function under some
suitable sufficient conditions. The practical performance of the proposed method is
examined viaMonte Carlo experiments. The estimator is shown to perform very well
for data of moderate size, even when the percentage of censoring is relatively high.

The remainder of the paper is organized as follows. Section2 describes the estima-
tion procedure. The asymptotic properties such as the consistency and the asymptotic
normality of our semiparametric estimator are obtained in Sect. 3. The problem of
selecting the bandwidth parameter is tackled in Sect. 4. Simulation studies are pre-
sented in Sects. 5, and 6 highlights a brief application to real data. Proofs and technical
lemmas are deferred to an online supplement.

2 Model and Estimation

Suppose that Y is a non-negative response depending on a d-dimensional covariate
X . The object of interest in this paper is the τ th conditional quantile of Y given
X = x , τ ∈ (0, 1), which we denote by Qτ (x). We impose a single-index structure
on Qτ , i.e., we suppose that

Qτ (x) = mτ (x
Tβ0,τ ), (1)

where mτ : R → R is an unknown smooth link function and where β0,τ is a vector
of unknown coefficients in the unit sphere Sd−1 = {β ∈ R

d : ‖β‖ = 1}, where ‖ · ‖
denotes the Euclidean norm on R

d . For identifiability reasons, we suppose that the
first coordinate of β0,τ is positive. As long as it will not cause any ambiguity, we
suppress the index τ and write m = mτ and β0 = β0,τ . In model (1), estimating Qτ

boils down to estimating m and β0.
For u ∈ R, let ρτ (u) = u{τ − 1(u < 0)} denote the check function. Then, it is

well known that β0 is given by

β0 = argminβ∈RdE[ρτ {Y − m(XTβ)}]
= argminβ∈RdE

[
E[ρτ {Y − m(XTβ)}|XTβ]] . (2)

The expressions E[ρτ {Y − m(XTβ)}] and E[ρτ {Y − m(XTβ)}|XTβ] can be inter-
preted as the expected and the conditional expected loss, respectively.

For the moment, let us suppose that there is no censoring and that we observe
an i.i.d. sample (Xi ,Yi )ni=1 from (X,Y ). The following procedure for estimating β0

and m(v), where v ∈ R is arbitrary, stems from Wu et al. (2010). The main idea is
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to define an empirical analog of the expected loss in (2), which can be minimized
subsequently. Let β ∈ Sd−1 be given. Then, assuming that m is sufficiently smooth
and that XT

i β is close to v, a Taylor expansion yields

m(XT
i β) ≈ m(v) + m ′(v)(XT

i β − v) = a + b(XT
i β − v),

where a = m(v) and b = m ′(v). Thus,

n∑

i=1

ρτ

{
Yi − a − b(XT

i β − v)
}
K {(XT

i β − v)/h} (3)

with some kernel function K and a bandwidth h represents an empirical analog of
the conditional expected loss in (2). Note that, for given β = β0, minimizing (3) with
respect to a and b yields oracle estimators for m(v) and m ′(v), respectively. To get
an empirical analog of E[ρτ {Y − m(XTβ)}], we need to average (3) over v. Hence,
setting v = v j = XT

j β, we obtain

n∑

j=1

n∑

i=1

ρτ

{
Yi − a j − b j (X

T
i jβ)

}
wi j (β), (4)

where Xi j = Xi − X j and where

wi j (β) =
{

n∑

i=1

K

(
XT
i jβ

h

)}−1

K

(
XT
i jβ

h

)

.

By minimizing the expression in (4) with respect to (a j , b j )
n
j=1 and β, we obtain

estimators of (m(v j ),m ′(v j ))
n
j=1 and β0. To simplify this minimization problem,Wu

et al. (2010) proposed an iterative procedure based on successive estimation of β0

and (m(v),m ′(v)), for any given v ∈ R. In the present paper, we adapt their approach
to the case where the observations of the response variable may be censored.

In the presence of censoring, we do not fully observe the response variables Yi .
Instead, we observe a sequence of i.i.d. triplets (Xi , Zi ,�i )

n
i=1 from (X, Z ,�),

where Z = min(Y,C), � = 1(Y ≤ C), and C ≥ 0 denotes a censoring variable.
Assume for the moment that C is independent of Y given XTβ and let FC |XT β

(z|xTβ) = Pr(C ≤ z|XTβ = xTβ) denote the conditional distribution of C given
XTβ = xTβ. Then, some simple calculations based on the tower property of condi-
tional expectations show that, for any measurable function h : R2 → R,

E[h(Y, XTβ) | XTβ] = E

[
h(Z , XTβ)�

1 − FC |XT β(Z − |XTβ)

∣∣
∣∣ X

Tβ

]
. (5)

Therefore, we can write E
[
ρτ {Y − a − b(XTβ − v)} | XTβ

]
as
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E

[
Q(β)ρτ {Z − a − b(XTβ − v)} | XTβ

]

= τE
[
Y − Z |XTβ

]
+ E

[
{Z − a − b(XTβ − v)} [τ

−Q(β)1{Z < a + b(XTβ − v)}
] ∣
∣
∣XTβ

]
,

where Q(β) = �/{1 − FC |XT β(Z − |XTβ)}. This suggests to replace (3) by either

n∑

i=1

Q̂i (β)ρτ {Zi − a − b(XT
i β − v)}K

(
XT
i β − v

h

)
, (6)

or

n∑

i=1

{Zi − a − b(XT
i β − v)}

[
τ − Q̂i (β)1{Zi < a + b(XT

i β − v)}
]
K

(
XT
i β − v

h

)

,

(7)

with Q̂i (β) = �i/{1 − F̂C |XT β(Zi − |XT
i β)}, where F̂C |XT β is a suitable estimator

of FC |XT β . For instance, one may use the local Kaplan–Meier estimator given by

F̂C |XT β(z|xTβ) = 1 −
∏

Zi≤z

(

1 − Bi (β, x)
∑

Z j≥Zi
Bi (β, x)

)1−�i

,

with

Bi (β, x) =
K

(
βT Xi−βT x

an

)

∑n
j=1 K

(
βT X j−βT x

an

) ,

and where an is a bandwidth sequence converging to zero as n tends to infinity.
When Bi = n−1 for all i , F̂C |XT β reduces to the classical (unconditional) Kaplan–
Meier estimator, subsequently simply denoted by F̂C . Note that, for any given β,
both (6) and (7) are convex functions. Although the numerical minimization of (6)
may be easier than that of (7), in this work we opt for the latter because, as is
well known, the Kaplan–Meier estimator is very unstable at the right tail and this
problem can be adequately and automatically dealt with through (7). In fact, in (6),
the Kaplan–Meier estimator needs to be calculated for every Zi whereas in (7),
using the fact that Q̂i (β)1{Zi < a + b(XT

i β − v)} = 0 if Zi ≥ a + b(XT
i β − v),

the observations beyond m(xTβ) would have no or a very small impact (depending
on the bandwidth) on the resulting estimator. A very similar approach was used in
El Ghouch and Van Keilegom (2009) for the case of one covariate. An approach
based on minimizing a quantity closely related to (7) can be found in He et al. (2013)
for analyzing high-dimensional survival data.
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For simplicity, and to avoid some technical difficulties, in the present paper, we
assume that

(C1) C is independent of Y given X and C are independent of X

(a different assumption, also used for instance by Bouaziz and Lopez (2010)
recently, under which the asymptotic results in this paper remain valid is given
in Remark1 below). In such a case, Y and C are independent given XTβ, and
FC |XT β(z|xTβ) = Pr(C ≤ z) = FC(z) so that the unconditional Kaplan–Meier esti-
mator can be used. To sum up, we estimate m(v) and m ′(v) by m̂(v, β) = â(v, β)

and m̂ ′(v, β) = b̂(v, β), respectively, where

(â(v, β), b̂(v, β)) = argmina,b∈R
n∑

i=1

{Zi − a − b(XT
i β − v)} [τ

−Q̂i1{Zi < a + b(XT
i β − v)}

]
K

(
XT
i β − v

h

)
, (8)

andwhere Q̂i = �i/{1 − F̂C(Zi−)}with the unconditionalKaplan–Meier estimator
F̂C . Still, it remains to construct an estimator for β0. To do so, we proceed as in the
uncensored case and define the following empirical analog of (4):

n∑

j=1

n∑

i=1

{Zi − a j − b j (X
T
i jβ)}

[
τ − Q̂i1{Zi < a j + b j (X

T
i jβ)}

]
wi j (β).

The jointminimization of the resulting expressionwith respect to (a j , b j )
n
j=1 and β is

complicated and likely to lead to unstable estimates, hence we propose the following
iterative procedure adapted from Wu et al. (2010).

Step 1. Start with an initial estimator β̂(0) of β0 and set βi ter = β̂(0) (see below for a
suitable example on how to obtain β̂(0)).

Step 2. For j = 1, . . . , n, let

(â j , b̂ j ) = argmina,b∈R
n∑

i=1

{Zi − a − b(XT
i jβi ter )}

[
τ −

Q̂i1{Zi < a + b(XT
i jβi ter )}

]
wi j (βi ter ).

Step 3. Using the estimates (â j , b̂ j )
n
j=1, set

β� = argminβ∈Rd

n∑

j=1

n∑

i=1

{Zi − â j − b̂ j (X
T
i jβ)}[τ −

Q̂i1{Zi < â j + b̂ j (X
T
i jβ)}]wi j (βi ter )

and update βi ter by setting βi ter = sgn(β�
1)β

�/‖β�‖.
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Step 4. Repeat Steps 2 and3until the differencebetween twoconsecutive estimations
ofβ is smaller than a given threshold and define the final estimate β̂ by setting
β̂ = βi ter .

Step 5. For any desired index value v ∈ R, estimate m(v) and m ′(v) by m̂(v, β̂) =
â(β̂) and m̂ ′(v, β̂) = b̂(β̂), the latter estimators being defined in (8). For any
desired index value x ∈ R

d , estimate Qτ (x) by m̂(xT β̂, β̂).

Step 1 requires an initial estimator for β0. We propose to use an estimator adapted
from the OPG (outer product of gradients) method in the mean-regression context in
Xia et al. (2002). The method requires that X has a density, and the underlying idea is
as follows: For any x ∈ R

d , we have ∂m(xTβ0)/∂x = m ′(xTβ0)β0.Hence, the partial
derivatives ofm(xTβ0)with respect to x are parallel to β0. For j = 1, . . . , n, let b j =
m ′(XT

j β0)β0. One can easily see that the (standardized) eigenvector corresponding
to the largest eigenvalue of Vn = n−1 ∑n

i=1 b jbTj is given by β0, which suggests

to estimate β0 by replacing b j in the definition of Vn by suitable estimators b̂ j ,
that is, we define β̂0 as the (standardized) eigenvector corresponding to the largest
eigenvalue of V̂n = n−1 ∑n

j=1 b̂ j b̂Tj . For the estimation of b j , we propose to use the
local-polynomial estimators

(â j , b̂
T
j ) = argmin(a,bT )∈Rd+1

n∑

i=1

{Zi − a − bT Xi j }
[
τ − Q̂i1{Zi < a + bT Xi j )}

]
K (Xi j/h),

where K denotes a d-dimensional kernel.

3 Asymptotic Results

In this section, we present asymptotic results for the final estimator m̂ = m̂(β̂) arising
from Step 5 of the procedure described in the preceding section. In particular, we
show that the estimator for m does not depend on the specific form (or asymptotic
distribution) of the parametric estimator β̂, as long as it is

√
n-consistent for β0 . In

a non-censored case, the latter assumption has for instance been shown for a similar
recursively defined estimator inKong andXia (2012). In a censored case, it is satisfied
for the maximum likelihood estimator proposed by Strzalkowska-Kominiak and Cao
(2013) and for the regression-like semiparametric estimator of Bouaziz and Lopez
(2010).

We begin by describing technical conditions. For fixed v ∈ R, suppose that there
exist neighborhoods Uβ0 ,Um(v), and Uv of β0,m(v) and v, respectively, such that:
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(A1) The kernel K is a density function on R which is symmetric around 0, has a
compact support denoted by supp(K ), and is differentiable with a bounded
derivative.

(A2) The function m is twice continuously differentiable on Uv with bounded
derivatives.

(A3) (i) The support of X , denoted by supp(X), is contained in a compact subset
DX of Rd .
(ii) For any β ∈ Uβ0 , the random variable XTβ has a density fXT β . The func-
tionUβ0 ×Uv → R, (β, u) 
→ fXT β(u) is bounded and Lipschitz-continuous
at (β0, v). In addition, fXT β0(v) > 0.

(A4) (i) The conditional distribution FY |X of Y given X has a conditional density
fY |X (·|·) that is bounded on Um(v) × supp(X).
(ii) For any β ∈ Uβ0 , the conditional distribution of Y given XTβ has a condi-
tional density fY |XT β(·|·). The functionUβ0 ×Um(v) ×Uv → R, (β, y, u) 
→
fY |XT β (y | u) is bounded and Lipschitz-continuous at (β0,m(v), v). In addi-
tion, fY |XT β0(m(v) | v) > 0.
(iii) Uβ0 ×Um(v) ×Uv → R, (β, y, u) 
→ fY |XT β(y|u) is partially differen-
tiablewith respect to y and the derivative, denoted by f ′

Y |XT β
(y|u), is bounded.

(A5) The point v ∈ R satisfies FZ {m(v)} < 1, where FZ denotes the c.d.f. of Z .

Before we formulate the main results, let us introduce some additional nota-
tions. For β ∈ R

d and u ∈ R, let Xi (β, u) = (
1, (XT

i β − u)/h
)T
, Zi (β, u) = Zi −

m(u) − m ′(u)(XT
i β − u), and Ki (β, u) = K {(XT

i β − u)/h}. Moreover, set K̄ j =∫
R
u j K (u) du and K̄ ′

j = ∫
R
u j K 2(u) du for j ∈ {0, 1, 2, 3} and let

K̄ =
(
K̄0 K̄1

K̄1 K̄2

)
, K̄ ′ =

(
K̄ ′

0 K̄ ′
1

K̄ ′
1 K̄ ′

2

)
.

For some constant M > 0, let UM denote the closed d-dimensional ball of radius
M with center 0, i.e., UM = {γ ∈ R

d : ‖γ ‖ ≤ M}. Finally, for β ∈ R
d and u ∈ R

(usually considered to be close to β0 and v), let

Mn(u, β) = √
nh

{(
m̂(u, β) − m(v)

h{m̂ ′(u, β) − m ′(v)}
)

− h2

2
K̄−1

(
K̄2

K̄3

)
m ′′(v)

}

with m̂(u, β) and m̂ ′(u, β) as defined in (8).

Theorem 1 Suppose that (C1) ismet and that h = h(n) → 0 satisfies limn→∞ nh3 =
∞ and nh5 = O(1) as n → ∞. Then, for any v ∈ R that satisfies conditions (A1)–
(A5) and for any M > 0,

sup
(γ,κ)∈UM×[−M,M]

∥∥∥∥Mn(v
κ
n , β

γ
n ) − V−1 1√

nh

n∑

i=1

[
τ −

Qi1
{
Zi < m(XT

i β0)
} ]

× Xi (β0, v)Ki (β0, v)

∥∥∥∥ = oP(1),
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where vκ
n = v + κ/

√
n and β

γ
n = β0 + γ /

√
n, where Qi = �i/{1 − FC(Zi−)} and

where V = [
fY |XT β0

{m(v) | v} fXT β0(v)
]
K̄ .

Note that the sum between the norm signs in Theorem1 consists of centered
summands as a consequence of (5). The uniformity in γ and κ in Theorem1 is
essential for the next corollary which can be regarded as the main result of this
paper: it states that the final estimator for Qτ (x) in Step 5 is asymptotically normally
distributed.

Corollary 1 Let β̂n ∈ Sd−1 be an estimator for β0 such that γ̂n = √
n(β̂n − β0) =

OP(1). Suppose that (C1) and the conditions on the bandwidth of Theorem1 are met.
Then, for any v ∈ R that satisfies conditions (A1)–(A5) and for any x ∈ R

d such that
v = xTβ0 satisfies conditions (A1)–(A5),

Mn(v, β̂n) � N2
(
0, σ 2(v)K̄−1 K̄ ′ K̄−1

)
, and

Mn(x
T β̂n, β̂n) � N2

(
0, σ 2(xTβ0)K̄

−1 K̄ ′ K̄−1
)
,

where, for any v ∈ R,

σ 2(v) = �β0{m(v) | v} − τ 2

f 2Y |XT β0
{m(v) | v} fXT β0(v)

and where, for any u, v ∈ R,

�β0(u | v) = E

[
1(Y < u)

1 − FC(Y−)

∣∣∣ XTβ0 = v

]
.

Remark 1 The results of Theorem1 and Corollary1 remain valid provided we
replace Condition (C1) by the following Condition (C2) originating from Stute
(1993). Note that it is also imposed in Bouaziz and Lopez (2010).

(C2) � is independent of X given Y and C are independent of Y .

We also refer to Lopez et al. (2013), where assumption (C1) is replaced by a weaker
assumption involving independence between C and Y conditional on g(X) for some
function g. For the sake of brevity, we omit further details.

4 Bandwidth Selection

The practical performance of any nonparametric regression technique depends cru-
cially on the choice of smoothing parameters. A (theoretical) local optimal band-
width can be derived from the result in Corollary1 by minimizing the asymptotic
mean squared error of m̂(v, β̂) with respect to h, yielding
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hoptn = hoptn (v) =
{

σ 2(v)K̄0

{m ′′(v)}2 K̄ 2
2

}1/5

n−1/5.

Unfortunately, this expression is not directly applicable in practice, since it depends
on several unknown quantities. Even in the simpler non-censored case, the deriva-
tion of reliable estimators for the respective quantities is delicate. For that reason,
alternative procedures for the bandwidth selection have been proposed, see, e.g.,
Yu and Jones (1998) or Kong and Xia (2012) for procedures relying on the mean-
regression case. However, these procedures are not directly applicable in the presence
of censoring. For that reason, we propose to use the following leave-one out cross-
validation (CV) procedure (see also Zheng and Yang 1998; Leung 2005; El Ghouch
and Van Keilegom 2009):

(CV1) For a given h, estimate β̂ = β̂(h) as in Steps 1–4.
(CV2) For any j = 1, . . . , n, set m̂− j,h(XT

j β̂) = â− j (XT
j β̂, β̂), where, for any v ∈

R and β ∈ Sd−1,

(
â− j (v, β), b̂− j (v, β)

) = argmina,b∈R
∑

i=1,...,n
i �= j

{Zi − a − b(XT
i β − v)}

× Q̂i,− j
[
τ − 1{Zi < a + b(XT

i β − v)}] K
(
XT
i β − v

h

)

denotes the estimator based on all observations except the j th.
(CV3) For j ∈ {1, . . . , n} such that � j = 1, set ĉv− j,h = |m̂− j,h(XT

j β̂) − Z j |. Let
CV (h) denote either the median or the mean or the m%-trimmed mean of
that sample (referred to as MAE, MSE, or trimmed MSE in the following).

(CV4) Repeat the first three steps for several bandwidths and set hCV
n = argminh

CV (h).

We consider 10%-trimmedMSE, which, together with theMSE and theMAE, yields
three different criteria.

5 Numerical Results

In this section, we assess the finite-sample performance of the 5-step estimator for
m(v). For reasons of numerical stability, we constrain all minimizations to a compact
set [−M, M]p, with M = 10. Additionally, we stop the algorithm in Step 4 after
atmost 25 iterations, if convergence has not occurred until then. We perform 500
repetitions for two different models, two sample sizes (n = 200, 400), two levels
of censoring (on average 25% and 50%), three values of τ ∈ {0.3, 0.5, 0.7}, two
dimensions d ∈ {3, 6} and 61 values for v ∈ {0.05, 0.075, 0.1, . . . , 1.525, 1.55}. We
consider 15 different bandwidths h ∈ {0.1, 0.15, . . . , 0.75, 0.8}. Additionally, we



Single-Index Quantile Regression Models for Censored Data 187

Fig. 1 Left: True quantile curves for τ = 0.1, 0.3, 0.5, 0.7, 0.9 (black curves, in increasing order)
and a simulated sample of size n = 400 (for d = 3, with 25% censoring on average). Right: Proba-
bility of censoring v 
→ Pr(Y > C | XT β0 = v) for Model 1. The average probability of censoring
Pr(Y > C) is 25% for the black curve and 50% for the gray curve

investigate the performance of the cross-validation method described in Sect. 4. The
considered models are as follows.

Model 1 (location-scale model, censoring independent of the covariate)

For i = 1, . . . , n, we consider

Yi = 3 + 1
2 exp(X

T
i β0) + {1 + 3

4 sin(2πXT
i β0)} εi , Xi = (Xi,1, . . . , Xi,d),

where Xi, j is i.i.d. uniform on (0, 1) for i = 1, . . . , n and j = 1, . . . , d, and where
εi is i.i.d. normal with mean 0 and variance 0.25. During the simulation study,
we consider the vector β0 = ‖(d, d − 1, . . . , 1)‖−1

2 × (d, d − 1, . . . , 1). Note that
the support of XTβ0 is the interval [0, ‖β0‖1], with ‖β0‖1 = 1.60 for d = 3 and
‖β0‖1 = 2.20 for d = 6. The τ th conditional quantile of Yi given Xi = x is given by

Qτ (x) = qτ

(
1
2 exp(x

Tβ0),
1
2 {1 + 3

4 sin(2πxTβ0)}
)
, (9)

where qτ (μ, σ ) denotes the τ th-quantile of the normal distribution with mean μ

and standard deviation σ . The curves are depicted in the left panel of Fig. 1, for
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

The censoring variables are i.i.d. normal with mean μC and variance σ 2
C = 1,

independent of Xi and εi . We consider two choices for the mean μC , which result
in either a proportion of censoring of about 50% or of about 25% (for instance, for
d = 3 the choices are μC = 4.2 to obtain a proportion of censoring of about 50%,
and μC = 5 for proportion of censoring of about 25%). A sample of size n = 400
with d = 3 and 25% censoring is depicted in the left panel of Fig. 1.

Note that the probability of censoring given X = x is given by
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Fig. 2 Left: True quantile curves for τ = 0.1, 0.3, 0.5, 0.7, 0.9 (black curves, in increasing order)
and a simulated sample of size n = 400 (for d = 3, with 25% censoring on average). Right: Proba-
bility of censoring v 
→ Pr(Y > C | XT β0 = v) for Model 2. The average probability of censoring
Pr(Y > C) is 25% for the black curve and 50% for the gray curve

Pr(Y > C | X = x) = �

(
3 + 1

2 exp(x
Tβ0) − μC

√
1 + 1

4 {1 + 3
4 sin(2πxTβ0)}2

)
,

where � is the standard normal cumulative distribution function. The corresponding
curves v 
→ Pr(Y > C | XTβ0 = v) are depicted in the right panel of Fig. 1 forμC ∈
{4.2, 5} (which, for d = 3, yields a proportion of censoring of about 50% and 25%,
respectively). From these graphs, we expect the estimator m̂(v, β̂) to have worse
performance for large values of v.

Model 2 (location-scale model, censoring depending on the covariate)

We consider the same data generating mechanism for Yi as forModel 1. In particular,
the conditional quantile curves are given by (9).

The censoring variables are i.i.d. normal with mean μC + 1
2 exp(X

Tβ0) and vari-
ance σ 2

C = 1, independent of εi . We consider two choices for the mean μC , which
result in either a proportion of censoring of about 50% or of about 25% (for instance,
for d = 3 the choices are μC = 3 to obtain a proportion of censoring of about 50%,
and μC = 3.8 for proportion of censoring of about 25%). A sample of size n = 400
with d = 3 and 25% censoring is depicted in the left panel of Fig. 2.

The probability of censoring given X = x is given by

Pr(Y > C | X = x) = �

(
3 − μC√

1 + 1
4 {1 + 3

4 sin(2πxTβ0)}2
)

.
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The corresponding curvesv 
→ Pr(Y > C | XTβ0 = v) are depicted in the right panel
of Fig. 2 forμC ∈ {3, 3.8} (which, ford = 3, yields a proportion of censoring of about
50% and 25%, respectively). The curves are much flatter than in Model 1, whence
we may expect the estimator to perform similarly throughout the support of XTβ0.

The results of our simulation study for the fixed bandwidth case are reported in
Table1 and Figs. 3 and 4. The results in Table1 concern both the performance of
the estimator of β and the estimator of m(v) for various values of v. We state the
minimal MSE (for β̂: the minimal summed MSE over the coordinates of β), over all
15 bandwidth choices h ∈ {0.1, 0.15, . . . , 0.8}, alongside with the value realizing
that minimum. The results in Figs. 3 and 4 illustrate the performance of the estimator
m̂(v) in dependence of the bandwidth parameter h, for a fixed value of v = 0.85.
The reported boxplots concern the empirical squared estimation error over N = 500
simulation runs, and are only reported for d = 3 (the results for d = 6 look very
similar and are not presented here for the sake of brevity).

Overall, the results are as to be expected: for both models, they (greatly) improve
with larger sample sizes and a smaller proportion of censoring. Concerning the
quantile level, the results are in most cases best for τ = 0.5, closely followed by
τ = 0.3 and then τ = 0.7. Despite the fact that the estimator for Model 2 (lower half
of Table1 and Fig. 4) is more complicated (being based on the local Kaplan–Meier
estimator for the censoring distribution), the performance of the estimator is often
better than for the Model 1, in particular for the parametric estimator β̂.

Finally, Table2 shows simulation results on the cross-validation method based on
the 10%-trimmed MSE for choosing the optimal bandwidth as described in Sect. 4.
For the sake of brevity, we only considerModel 1with d = 6.Wemeasure the quality
of the cross-validation method in terms of the relative efficiency:

RE = MSE(t̂, hgl.opt )

MSE(t̂, hCV
n )

,

where hgl.opt = minh∈{0.1,...,0.8}
{
MSE(β̂, h) + MSE(m̂(0.7), h) + MSE(m̂(1), h)

+ MSE(m̂(1.3), h)
}
and where t̂ ∈ {β̂, m̂(0.7), m̂(1), m̂(1.3)}.

The results in Table2 show that, overall, the cross-validation method works rea-
sonably well but we also noticed that in some cases, the method may lead to unsat-
isfactory results. Therefore more work is needed to develop a better solution for this
challenging problem of bandwidth selection.

6 Case Study

In this section, we fit the single-index quantile regression model to a subset of the
data from the University of Massachusetts AIDS Research Unit IMPACT Study
(called UIS-dataset), available online at the John Wiley & Sons website, ftp://ftp.
wiley.com/public/sci_tech_med/survival. This dataset has been extensively studied

ftp://ftp.wiley.com/public/sci_tech_med/survival
ftp://ftp.wiley.com/public/sci_tech_med/survival
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Table 1 Minimal summed MSE of β and minimal MSE of m̂ for four values of v in
Model 1 (upper half) and Model 2 (lower half), multiplied by 103, over all bandwidths h ∈
{0.1, 0.15, . . . , 0.75, 0.8}, alongside with the bandwidth realizing that minimum. The first and
third quarter are for d = 3, while the the second and fourth quarter are for dimension d = 6

n Cens. τ β̂ hopt m̂(0.4) hopt m̂(0.7) hopt m̂(1) hopt m̂(1.3) hopt

200 0.25 0.3 20.3 0.50 24.4 0.45 3.0 0.25 8.5 0.50 34.5 0.80

200 0.50 0.3 38.1 0.55 32.7 0.55 5.4 0.35 12.3 0.70 60.4 0.80

200 0.25 0.5 17.3 0.75 10.0 0.80 2.5 0.55 6.2 0.80 39.2 0.80

200 0.50 0.5 37.5 0.75 16.0 0.80 4.3 0.70 9.5 0.80 77.8 0.80

200 0.25 0.7 23.3 0.55 22.9 0.50 7.2 0.30 12.1 0.80 75.3 0.75

200 0.50 0.7 68.0 0.55 36.3 0.60 20.0 0.45 24.9 0.80 149.1 0.80

400 0.25 0.3 8.3 0.45 13.0 0.45 1.8 0.30 3.6 0.45 15.7 0.80

400 0.50 0.3 13.0 0.50 17.8 0.50 2.1 0.30 5.1 0.45 28.5 0.80

400 0.25 0.5 7.8 0.75 5.5 0.80 0.9 0.50 2.7 0.80 21.3 0.80

400 0.50 0.5 13.9 0.75 8.8 0.80 1.6 0.50 4.7 0.80 44.1 0.80

400 0.25 0.7 9.6 0.55 14.0 0.45 2.5 0.20 6.0 0.55 35.2 0.70

400 0.50 0.7 23.6 0.55 23.3 0.50 7.1 0.30 12.9 0.75 83.5 0.80

200 0.25 0.3 109.6 0.80 137.1 0.50 5.9 0.55 26.2 0.30 126.0 0.80

200 0.50 0.3 189.5 0.80 174.3 0.80 11.4 0.70 59.1 0.80 170.9 0.10

200 0.25 0.5 60.8 0.80 18.7 0.80 7.9 0.80 22.1 0.75 40.4 0.80

200 0.50 0.5 132.4 0.80 30.0 0.80 21.7 0.80 51.7 0.80 108.4 0.80

200 0.25 0.7 67.4 0.80 73.1 0.55 21.2 0.30 27.9 0.80 33.0 0.80

200 0.50 0.7 163.5 0.75 66.2 0.55 63.0 0.40 87.2 0.80 98.3 0.45

400 0.25 0.3 45.4 0.30 75.6 0.50 3.0 0.60 4.7 0.25 47.4 0.25

400 0.50 0.3 94.3 0.80 111.7 0.45 3.9 0.60 17.0 0.40 106.0 0.80

400 0.25 0.5 28.2 0.80 11.6 0.80 3.7 0.70 9.0 0.45 18.3 0.80

400 0.50 0.5 61.4 0.80 14.4 0.80 7.0 0.80 18.7 0.35 39.1 0.80

400 0.25 0.7 32.0 0.80 47.2 0.45 7.7 0.20 10.7 0.80 16.8 0.80

400 0.50 0.7 82.9 0.80 48.9 0.50 18.7 0.25 31.0 0.55 41.8 0.80

200 0.25 0.3 17.1 0.45 20.9 0.50 3.0 0.30 7.6 0.45 28.6 0.80

200 0.50 0.3 26.2 0.50 26.7 0.60 4.0 0.35 10.5 0.50 43.9 0.80

200 0.25 0.5 13.7 0.80 12.4 0.80 2.1 0.60 5.6 0.80 24.9 0.80

200 0.50 0.5 23.7 0.75 21.0 0.80 3.5 0.65 8.4 0.80 46.4 0.80

200 0.25 0.7 16.1 0.55 32.1 0.45 5.7 0.30 8.2 0.80 42.5 0.80

200 0.50 0.7 32.2 0.60 57.0 0.50 10.2 0.45 14.7 0.75 87.1 0.80

400 0.25 0.3 7.4 0.40 11.2 0.50 1.5 0.20 3.1 0.40 11.6 0.80

400 0.50 0.3 11.0 0.40 15.1 0.55 2.3 0.25 4.1 0.40 17.3 0.80

400 0.25 0.5 5.9 0.80 8.0 0.70 0.7 0.60 2.3 0.80 13.5 0.80

400 0.50 0.5 10.0 0.70 14.4 0.80 1.3 0.55 3.8 0.80 21.1 0.80

400 0.25 0.7 6.7 0.55 16.8 0.40 2.0 0.20 4.2 0.65 22.3 0.70

400 0.50 0.7 12.8 0.55 36.6 0.40 3.7 0.25 7.7 0.70 49.5 0.75

200 0.25 0.3 74.5 0.30 118.8 0.55 4.8 0.60 11.5 0.30 90.3 0.30

200 0.50 0.3 109.0 0.40 157.9 0.80 7.1 0.45 19.3 0.40 141.8 0.30

200 0.25 0.5 48.4 0.80 20.6 0.80 5.2 0.65 11.5 0.40 27.5 0.80

(continued)
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Table 1 (continued)

n Cens. τ β̂ hopt m̂(0.4) hopt m̂(0.7) hopt m̂(1) hopt m̂(1.3) hopt

200 0.50 0.5 81.3 0.80 31.6 0.80 10.0 0.70 21.4 0.55 44.5 0.80

200 0.25 0.7 47.6 0.80 103.5 0.55 11.9 0.25 13.5 0.80 22.0 0.80

200 0.50 0.7 89.0 0.80 120.5 0.65 26.3 0.80 28.9 0.80 41.7 0.80

400 0.25 0.3 27.5 0.25 61.7 0.50 2.9 0.55 2.9 0.30 26.6 0.20

400 0.50 0.3 39.8 0.30 85.3 0.50 3.3 0.60 4.3 0.35 37.2 0.25

400 0.25 0.5 23.0 0.80 13.8 0.80 2.9 0.70 5.3 0.35 12.8 0.45

400 0.50 0.5 38.3 0.80 17.5 0.80 4.2 0.70 7.1 0.40 18.6 0.50

400 0.25 0.7 23.4 0.80 68.4 0.50 4.5 0.20 6.1 0.80 13.6 0.35

400 0.50 0.7 41.9 0.80 91.0 0.55 10.0 0.80 11.3 0.80 25.3 0.35

Table 2 Relative Efficiency of β̂ and of m̂ in Model 1 (d = 6) based on the 10% trimmed MSE
cross-validation criterion

n Cens. τ β̂ m̂(0.7) m̂(1) m̂(1.3)

200 0.25 0.3 0.88 0.91 0.88 0.65

200 0.50 0.3 0.61 0.45 0.55 0.63

200 0.25 0.7 0.79 0.98 0.72 0.61

200 0.50 0.7 0.72 0.83 0.88 0.64

400 0.25 0.3 0.91 1.04 0.46 0.78

400 0.50 0.3 0.82 0.79 0.99 0.72

400 0.25 0.7 0.81 0.99 0.90 0.76

400 0.50 0.7 0.74 0.87 0.76 0.68

in the textbook Hosmer et al. (2008), see in particular Section 1.3 and the references
therein.

The censored, dependent variable of interest Y is the number of days from admis-
sion of a drug abusing patient until his/her self-reported return to drug use. While the
entire UIS-dataset from the above website consists of (incomplete) data on 628 sub-
jects, we only consider a subsample of size n = 202, consisting of patients receiving
one particular treatment (long term) and stemming from one particular treatment
site (site A). The proportion of censoring, i.e., the proportion of patients that did not
return to drug use, is about 21%. We are interested in the effects of 4 (approximately
continuous) covariates on the dependent variable: length of treatment in days (X1),
age at enrollment (X2), Beck Depression Score at admission (X3), and number of
prior drug treatments (X4).

To preprocess the data, we take logarithms of the number of days to return to drug
use. The four covariates are standardized to have mean 0 and variance 1. Denote the
estimated values of the single-index parameter by β̂(τ ) = (β̂1(τ ), . . . , β̂4(τ ))′ ∈ S3,
where τ ∈ {0.1, 0.3, 0.5, 0.7}. Note that due to the proportion of censoring of about
21%, higher quantiles cannot be expected to give any insight into the relationship
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Fig. 3 Squared estimation error of m̂(v) for v = 0.85 against the bandwidth h in Model 1 for
d = 3. Upper six pictures: n = 200, lower six pictures: n = 400. Note the different scale in the last
column (corresponding to τ = 0.7)

between the dependent variable and the covariates (see also the plot of the observa-
tions in Fig. 5). The bandwidth parameters are chosen based on the 10%-trimmed
MSE-criterion.
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Fig. 4 Squared estimation error of m̂(v) for v = 0.85 against the bandwidth h in Model 2 for
d = 3. Upper six pictures: n = 200, lower six pictures: n = 400. Note the different scale in the last
column (corresponding to τ = 0.7)

The estimated link functions, based on the 10%-trimmed-mean criterion, are
shown in Fig. 5, whereas the estimated single-index parameters are given in Table3.
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Fig. 5 Estimated link function xT β̂ 
→ m̂(xT β̂), for τ ∈ {0.1, 0.3, 0.5, 0.7} (from upper left to
lower right)

Table 3 Estimated single-index parameter for the UIS-dataset

τ β̂1(τ ) β̂2(τ ) β̂3(τ ) β̂4(τ )

0.1 0.999 0.005 −0.040 −0.001

0.3 0.999 0.007 −0.041 0.004

0.5 0.996 0.045 −0.034 −0.073

0.7 0.994 −0.052 −0.095 0.021

The triangles and circles in Fig. 5 are the censored and uncensored observations,
respectively.

The results reveal some interesting features about the effects of the covariates on
the response. First of all, we observe that for all quantile levels under consideration,
the covariate “length of treatment in days’’ seems to have a more important impact
than the three other covariates, since the coefficients of the standardized variables are
very different in size, as can be seen from Table3. As a general conclusion, a longer
treatment period results in a longer time until drug abusers return to drug use. The
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estimated link function is strictly increasing for all quantile levels and non-linear and
strictly concave for τ ∈ {0.1, 0.3, 0.5}. Furthermore, it is interesting to note that the
strength of concavity increases with decreasing quantile. Hence, the marginal utility
of an increase of X1 in its left tail is largest for those patients which generally tend to
return to drug abuse rather quickly (i.e., small quantiles of the response—these may
be considered as the most interesting group of patients).
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Extreme L p-quantile Kernel Regression

Stéphane Girard, Gilles Stupfler, and Antoine Usseglio-Carleve

Abstract Quantiles are recognized tools for risk management and can be seen as
minimizers of an L1-loss function, but donot define coherent riskmeasures in general.
Expectiles, meanwhile, are minimizers of an L2-loss function and define coherent
risk measures; they have started to be considered as good alternatives to quantiles
in insurance and finance. Quantiles and expectiles belong to the wider family of
L p-quantiles. We propose here to construct kernel estimators of extreme conditional
L p-quantiles. We study their asymptotic properties in the context of conditional
heavy-tailed distributions, and we show through a simulation study that taking p ∈
(1, 2) may allow to recover extreme conditional quantiles and expectiles accurately.
Our estimators are also showcased on a real insurance data set.

1 Introduction

Thequantile, also calledValue-at-Risk in actuarial andfinancial areas, is awidespread
tool for risk measurement, due to its simplicity and interpretability: if Y is a random
variable with a cumulative distribution function F , the quantile at level α ∈ (0, 1)
is defined as q(α) = inf {y ∈ R|F(y) ≥ α}. As pointed out in Koenker and Bas-
sett (1978), quantiles may also be seen as a solution of the following minimization
problem:

q(α) = argmin
t∈R

E
[
ρ(1)

α (Y − t) − ρ(1)
α (Y )

]
, (1)
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where ρ(1)
α (y) = |α − 1{y≤0}||y| is the quantile check function. However, the quan-

tile is not subadditive in general and so is not a coherent risk measure in the sense
of Artzner et al. (1999). An alternative risk measure gaining popularity is the expec-
tile, introduced in Newey and Powell (1987). This is the solution of (1), with the
new loss function ρ(2)

α (y) = |α − 1{y≤0}|y2 in place of ρ(1)
α . Expectiles larger than

the mean are coherent risk measures, and have started to be used in actuarial and
financial practice (see for instance Cai and Weng 2016). A pioneering paper for the
estimation of extreme expectiles in heavy-tailed settings is Daouia et al. (2018).

Quantiles and expectiles may be generalized by considering the family of
L p-quantiles. Introduced in Chen (1996), this class of risk measures is defined, for
all p ≥ 1, by

q(p)(α) = argmin
t∈R

E
[
ρ(p)

α (Y − t) − ρ(p)
α (Y )

]
, (2)

where ρ
(p)
α (y) = |α − 1{y≤0}||y|p is the L p-quantile loss function; the case p = 1

leads to the quantile and p = 2 gives the expectile. Note that, for p > 1, using the
formulation (2) and through the subtraction of the (at first sight unimportant) term
ρ

(p)
α (Y ), it is a straightforward consequence of the mean value theorem applied to the

function ρ
(p)
α that the L p-quantile q(p)(α) is well defined as soon asE(|Y |p−1) < ∞.

While the expectile is the only coherent L p-quantile (see Bellini et al. 2014), Daouia
et al. (2019) showed that for extreme levels of quantiles or expectiles (α → 1), it may
be better to estimate L p-quantiles first (where typically p is between 1 and 2) and
exploit an asymptotic proportionality relationship to estimate quantiles or expectiles.
An overview of the potential applications of this kind of statistical assessment of
extreme risk may for instance be found in Embrechts et al. (1997).

The contribution of this work is to propose a methodology to estimate extreme
L p-quantiles of Y |X = x, where the random covariate vector X ∈ R

d is recorded
alongside Y . In this context, the case p = 1 (quantile) has been considered in Daouia
et al. (2011) andDaouia et al. (2013), and the case p = 2 (expectile) has recently been
studied in Girard et al. (2021). For the general case p ≥ 1, only Usseglio-Carleve
(2018) proposes an estimation procedure under the strong assumption that the vector
(X,Y ) is elliptically distributed. The present paper avoids this modeling assumption
by constructing a kernel estimator.

The paper is organized as follows. Section 2 introduces an estimator of conditional
L p-quantiles. Section 3 gives the asymptotic properties of the estimator previously
introduced, at extreme levels. Finally, Sect. 4 proposes a simulation study in order
to assess the accuracy of our estimator which is then showcased on a real insurance
data set in Sect. 5. Proofs are postponed to the Appendix.
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2 L p-quantile Kernel Regression

Let (Xi ,Yi ), i = 1, . . . , n be independent realizations of a random vector (X,Y ) ∈
R

d × R. For the sake of simplicity we assume that Y ≥ 0 with probability 1. We
denote by g the density functionofX and let, in the sequel,x be afixedpoint inRd such
that g(x) > 0. We denote by F̄ (1)(y|x) = P (Y > y|X = x) the conditional survival
function of Y given X = x and assume that this survival function is continuous and
regularly varying with index −1/γ (x):

∀t > 0, lim
y→∞

F̄ (1)(t y|x)

F̄ (1)(y|x)
= t−1/γ (x). (3)

Such a distribution belongs to the Fréchet maximum domain of attraction (de Haan
and Ferreira 2006). Note that for any k < 1/γ (x),E

[
Y k |X = x

]
< ∞. Since the def-

inition of L p-quantiles in (2) requiresE
[|Y |p−1|X = x

]
< ∞, our minimal assump-

tion will be that p − 1 < 1/γ (x). From Eq. (2), L p-quantiles of level α ∈ (0, 1) of
Y given X = x may also be seen as the solution of the following equation:

E
[|Y − y|p−1 1{Y>y}|X = x

]

E
[|Y − y|p−1 |X = x

] = 1 − α.

In other terms, as noticed in Jones (1994), (conditional) L p-quantiles can be equiv-
alently defined as quantiles

q(p)(α|x) = inf
{
y ∈ R | F̄ (p)(y|x) ≤ 1 − α

}

of the distribution associated with the survival function

F̄ (p)(y|x) = ϕ(p−1)(y|x)

m(p−1)(y|x)
,

where, for all k ≥ 0,

m(k)(y|x) = E
[|Y − y|k |X = x

]
g(x)

and ϕ(k)(y|x) = E
[|Y − y|k 1{Y>y}|X = x

]
g(x).

Obviously, if p = 1, we get the survival function introduced above. The case p = 2
leads to the function introduced in Jones (1994) and used in Girard et al. (2021).
To estimate F̄ (p)(y|x), we let K be a probability density function on R

d and we
introduce the kernel estimators

m̂(k)
n (y|x) =

n∑

i=1
|Yi − y|k K

(
x−Xi
hn

)

nhdn
, ϕ̂(k)

n (y|x) =

n∑

i=1
|Yi − y|k K

(
x−Xi
hn

)
1{Yi>y}

nhdn
.
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Note that m̂(0)
n (0|x) is the kernel density estimator of g(x), and m̂(1)

n (0|x)/m̂(0)
n (0|x)

is the standard kernel regression estimator (since the Yi are nonnegative). The kernel
estimators of F̄ (p)(y|x) and q(p)(α|x) are then easily deduced:

ˆ̄F (p)
n (y|x) = ϕ̂

(p−1)
n (y|x)

m̂(p−1)
n (y|x)

, q̂(p)
n (α|x) = inf

{
y ∈ R | ˆ̄F (p)

n (y|x) ≤ 1 − α
}

. (4)

The case p = 1 gives the kernel quantile estimator introduced inDaouia et al. (2013),
while p = 2 leads to the conditional expectile estimator of Girard et al. (2021).
We study here the asymptotic properties of q̂(p)

n (α|x) for an arbitrary p ≥ 1, when
α = αn → 1.

3 Main Results

We first make a standard assumption on the kernel. We fix a norm || · || on R
d .

(K) The density function K is bounded and its support S is contained in the unit
ball.

To be able to analyze extreme conditional L p-quantiles in a reasonably simple
way, we make a standard second-order regular variation assumption (for a survey of
those conditions, see Sect. 2 in de Haan and Ferreira (2006)).

C2 (γ (x), ρ(x), A(.|x)) There exist γ (x) > 0, ρ(x) ≤ 0 and a positive or negative
function A(·|x) converging to 0 such that

∀t > 0, lim
y→∞

1

A(y|x)

(
q(1)(1 − 1/(t y)|x)

q(1)(1 − 1/y|x)
− tγ (x)

)

=

⎧
⎪⎨

⎪⎩

tγ (x) t
ρ(x) − 1

ρ(x)
if ρ(x) < 0,

tγ (x) log(t) if ρ(x) = 0.

Our last assumption is a local Lipschitz condition which may be found for instance
in Daouia et al. (2013); El Methni et al. (2014). We denote by B(x, r) the ball with
center x and radius r .

(L) We have g(x) > 0 and there exist c, r > 0 such that

∀x′ ∈ B(x, r), |g(x) − g(x′)| ≤ c||x − x′||.

To be able to control the local oscillations of (x, y) 	→ F̄ (1)(y|x), we let, for any
nonnegative yn → ∞,

ω
(1)
hn

(yn|x) = sup
x′∈B(x,hn)

sup
z≥yn

1

log(z)

∣∣∣∣log
(
F̄ (1)(z|x′)
F̄ (1)(z|x)

)∣∣∣∣ ,

ω
(2)
hn

(yn|x) = sup
x′∈B(x,hn)

sup
0<y≤yn

|F̄ (1)(y|x′) − F̄ (1)(y|x)|,
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and ω
(3)
hn

(yn|x) = sup
x′∈B(x,hn)

sup
λ≥1

sup
bn ,b′

n→0

∣∣∣∣
F̄ (1)(λyn(1 + bn)|x′)
F̄ (1)(λyn(1 + b′

n)|x′)
− 1

∣∣∣∣ .

The quantity ω
(1)
hn

(yn|x), discussed for instance in Girard et al. (2021), controls the
oscillation of the conditional survival function with respect to x in its right tail, while
ω

(2)
hn

(yn|x) and ω
(3)
hn

(yn|x) are introduced to be able to deal with the case p /∈ {1, 2}
specifically. Let us highlight that ω

(3)
hn

(yn|x) is again geared toward controlling an

oscillation of the right tail of the conditional distribution; however,ω(2)
hn

(yn|x) focuses
on the oscillation of the center of the conditional distribution with respect to x. For
p > 1, the introduction of a quantity such as ω

(2)
hn

(yn|x) is in some sense natural,
since we will have to deal with the local oscillation of the conditional moment
m(p−1)(y|x), appearing in the denominator of F̄ (p)(y|x), and this conditionalmoment
indeed depends on the whole of the conditional distribution rather than merely on its
right tail. Typically ω

(1)
hn

(yn|x) = O(hn), ω
(2)
hn

(yn|x) = O(hn) and ω
(3)
hn

(yn|x) = o(1)
under reasonable assumptions; we give examples below.

Remark 1 Assume that Y |X = x has a Pareto distribution with tail index γ (x) > 0:

∀y ≥ 1, F̄ (1)(y|x) = y−1/γ (x).

If γ is locally Lipschitz continuous, we clearly have ω
(1)
hn

(yn|x) = O(hn). Further-
more, for any y ≥ 1, the mean value theorem yields

|F̄ (1)(y|x′) − F̄ (1)(y|x)| ≤
∣∣∣∣

1

γ (x′)
− 1

γ (x)

∣∣∣∣× y−1/[γ (x)∨γ (x′)] log y.

(Here and below ∨ denotes the maximum operator.) Under this same local Lipschitz
assumption, one then finds ω

(2)
hn

(yn|x) = O(hn) as well. Finally, for any y, y′ > 1,

∣∣∣∣
F̄ (1)(y′|x′)
F̄ (1)(y|x′)

− 1

∣∣∣∣ =
∣∣∣∣∣

(
y

y′

)1/γ (x′)

− 1

∣∣∣∣∣
≤ |y − y′|

y′ × 1 + (y/y′)1/γ (x′)−1

γ (x′)

by the mean value theorem again. This inequality yields ω
(3)
hn

(yn|x) = o(1).

The same arguments, and asymptotic bounds on ω
(1)
hn

(yn|x), ω
(2)
hn

(yn|x) and

ω
(3)
hn

(yn|x), apply to the conditional Fréchet model

∀y > 0, F̄ (1)(y|x) = 1 − exp(−y−1/γ (x)).

Analogous results are easily obtained for the conditional Burr model

∀y > 0, F̄ (1)(y|x) = (1 + y−ρ(x)/γ (x))1/ρ(x)
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when ρ < 0 is assumed to be locally Lipschitz continuous, and the conditional mix-
ture Pareto model

∀y ≥ 1, F̄ (1)(y|x) = y−1/γ (x)
[
c(x) + (1 − c(x))yρ(x)/γ (x)

]

when ρ < 0 and c ∈ (0, 1) are assumed to be locally Lipschitz continuous. �

3.1 Intermediate L p-quantile Regression

In this paragraph, we assume that σ−2
n = nhdn(1 − αn) → ∞. Such an assumption

means that the L p-quantile level αn tends to 1 slowly (by extreme value standards),
hence the denominations intermediate sequence and intermediate L p−quantiles.
This assumption iswidespread in the literature of riskmeasure regression: see, among
others, Daouia et al. (2013, 2011); El Methni et al. (2014); Girard et al. (2021).
Throughout, we let ||K ||22 = ∫S K (u)2du be the squared L2−norm of K ,	(·) denote
the digamma function and I B(t, x, y) = ∫ t

0 u
x−1(1 − u)y−1du be the incomplete

Beta function. Note that I B(1, x, y) = B(x, y) is the standard Beta function.
We now give our first result on the joint asymptotic normality of a finite number J

of empirical conditional quantileswith an empirical conditional L p-quantile (p > 1).

Theorem 1 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold.
Let αn → 1, hn → 0 and an = 1 − τ(1 − αn)(1 + o(1)), where τ > 0. Assume fur-
ther that σ−2

n = nhdn(1 − αn) → ∞, nhd+2
n (1 − αn) → 0, σ−1

n A
(
(1 − αn)

−1|x) =
O(1),
ω

(3)
hn

(q(1)(αn|x)|x) → 0 and there exists δ ∈ (0, 1) such that

σ−1
n ω

(1)
hn

((1 − δ)(θ ∧ 1)q(1)(αn|x)|x) log(1 − αn) → 0, (5)

where θ = (τγ (x)/B
(
p, γ (x)−1 − p + 1

))−γ (x)
. Let furtherαn, j = 1 − τ j (1 − αn),

for 0 < τ1 < τ2 < . . . < τJ ≤ 1 such that

σ−1
n ω

(2)
hn

((1 + δ)(θ ∨ τ
−γ (x))

1 )q(1)(αn|x)|x) → 0. (6)

Then, for all p ∈ (1, γ (x)−1/2 + 1), one has

σ−1
n

⎧
⎨

⎩

(
q̂(1)
n (αn, j |x)

q(1)(αn, j |x)
− 1

)

1≤ j≤J

,

(
q̂(p)
n (an |x)

q(p)(an |x)
− 1

)⎫⎬

⎭
d−→ N

(

0J+1,
||K ||22
g(x)

γ (x)2�(x)

)

,

(7)
where �(x) is the symmetric matrix having entries
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

 j,�(x) = (
τ j ∨ τ�

)−1

 j,J+1(x) = τ−1
j

⎡

⎢⎢⎢
⎣

γ (x)

(p−1)I B

⎛

⎝
(

1∨ τ
−γ (x)
j

θ

)−1

,γ (x)−1−p+1,p−1

⎞

⎠

B(p,γ (x)−1−p+1)
+
((

1 ∨ τ
−γ (x)
j
θ

)
− 1

)p−1

⎤

⎥⎥⎥
⎦

J+1,J+1(x) = B
(
2p−1,γ (x)−1−2p+2

)

τ B(p,γ (x)−1−p+1)

.

(8)

Theorem 1, which will be useful to introduce estimators of the tail index γ (x) as
part of our extrapolation methodology, generalizes and adapts to the conditional
setup several results already found in the literature: see Theorem 1 in Daouia et al.
(2013), Theorem 1 in Daouia et al. (2019) and Theorem 3 in Daouia et al. (2020b).
Note however that, although they are in some sense related, Theorem 1 does not
imply Theorem 1 of Girard et al. (2021), because the latter is stated under weaker
regularity conditions warranted by the specific context p = 2 of extreme conditional
expectile estimation. On the technical side, assumptions (5) and (6) ensure that the
bias introduced by smoothing in the x direction is negligible compared to the standard
deviation σn of the estimator. The aim of the next paragraph is now to extrapolate
our intermediate estimators to properly extreme levels.

3.2 Extreme L p-quantile Regression

We consider here a level βn → 1 such that nhdn(1 − βn) → c < ∞. The estimators
previously introduced no longer work at such an extreme level. In order to overcome
this problem, we first recall a result of Daouia et al. (2019) (see also Lemma 5 below)

∀p ≥ 1, lim
α→1

q(p)(α|x)

q(1)(α|x)
=
(

γ (x)

B
(
p, γ (x)−1 − p + 1

)

)−γ (x)

. (9)

In the sequel, we shall use the notation gp(γ ) = γ /B
(
p, γ −1 − p + 1

)
. A first

consequence of this result is that the L p-quantile function is regularly varying, i.e.,

∀t > 0, lim
y→∞

q(p)(1 − 1/(t y)|x)

q(p)(1 − 1/y|x)
= tγ (x). (10)

This suggests then that, by considering an intermediate sequence (αn), our conditional
extreme L p-quantile may be approximated (and estimated) as follows:
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q(p)(βn|x) ≈
(
1 − αn

1 − βn

)γ (x)

q(p)(αn|x),

estimated by q̃(p)
n,αn

(βn|x) =
(
1 − αn

1 − βn

)γ̂αn (x)

q̂(p)
n (αn|x).

Here, q̂(p)
n (αn|x) is the kernel estimator introduced in Eq. (4), and γ̂αn (x) is a con-

sistent estimator of the conditional tail index γ (x). This is a class of Weissman-type
estimators (see Weissman 1978) of which we give the asymptotic properties.

Theorem 2 Assume that (K), (L) and C2(γ (x), ρ(x), A(·|x)) hold with ρ(x) < 0.
Let αn, βn → 1, hn → 0 be such that σ−2

n = nhdn(1 − αn) → ∞ and nhdn(1 −
βn) → c < ∞. Assume further that nhd+2

n (1 − αn) → 0, ω
(3)
hn

(q(1)(αn|x)|x) → 0
and

(i) σ−1
n A

(
(1 − αn)

−1|x) = O(1), σ−1
n (1 − αn) = O(1) and

σ−1
n E

[
Y1{0<Y<q(1)(αn |x)}|x

]
q(1)(αn|x)−1 = O(1),

(ii) For some δ ∈ (0, 1),σ−1
n ω

(1)
hn

((1 − δ)[gp(γ (x))]−γ (x)q(1)(αn|x)|x) log(1 − αn)

→ 0 and σ−1
n ω

(2)
hn

((1 + δ)q(1)(αn|x)|x) → 0,
(iii) σ−1

n / log ((1 − αn)/(1 − βn)) → ∞.

Take p ∈ (1, γ (x)−1/2 + 1). If in addition σ−1
n (γ̂αn (x) − γ (x))

d−→ �, then

σ−1
n

log((1 − αn)/(1 − βn))

(
q̃(p)
n,αn (βn|x)

q(p)(βn|x)
− 1

)
d−→ �.

We notice, as is classical in the analysis of heavy tails, that the asymptotic distribu-
tion of the extrapolated estimator q̃(p)

n,αn (βn|x) is exactly that of the purely empirical
estimator γ̂αn (x) with a slightly slower rate of convergence. Technically speaking,
assumption (i) controls the bias due to the asymptotic approximation (9), while
assumption (ii) is used to deal with the bias due to smoothing.

Our aim is now to propose some estimators of γ (x) solely based on intermediate
L p-quantiles, in order to carry out the extrapolation step.

3.3 L p-quantile-Based Estimation of the Conditional Tail
Index

The aim of this paragraph is to discuss the estimation of the conditional tail index
γ (x). A local Pickands estimator is studied in Daouia et al. (2013, 2011). This
estimator however has a large variance, which is why Daouia et al. (2011) propose
a simplified, conditional, and local version of the Hill estimator:
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γ̂ (H)
αn

(x) = 1

log(J !)
J∑

j=1

log

(
q̂n

(
j − 1 + αn

j
|x
)

/q̂n (αn|x)

)
. (11)

They also mentioned that taking J = 9 is an optimal choice, and leads to an asymp-
totic variance close to 1.25||K ||22γ (x)2/g(x). Recently, Daouia et al. (2020a); Girard
et al. (2021) have shown that replacing the quantile by the expectile in tail index esti-
mators can lead to a significant variance reduction. Our idea here is to propose an
estimator based on L p-quantiles rather than quantiles. In this context, we propose to
follow the approach of Girard et al. (2019) and exploit the asymptotic relationship (9)
by introducing the following estimator, valid for all 1 < p < γ (x)−1 + 1:

γ̂ (p)
αn

(x) = inf

⎧
⎨

⎩
γ > 0 : gp(γ ) ≤

ˆ̄F (1)
n

(
q̂(p)
n (αn|x)|x

)

1 − αn

⎫
⎬

⎭
. (12)

This class of estimators is introduced in Girard et al. (2019) in an unconditional
setting, and the (explicit) estimator γ̂ (2)

αn
(x) is introduced in Girard et al. (2021).

Using the results previously obtained, we can give the asymptotic distribution of
γ̂

(p)
αn (x) for all 1 < p < γ (x)−1/2 + 1.

Theorem 3 Assume that (K), (L) and C2(γ (x), ρ(x), A(·|x)) hold with γ (x) < 1.
Letαn → 1 and hn → 0. Assume further that σ−2

n = nhdn(1 − αn) → ∞, nhd+2
n (1 −

αn) → 0, ω(3)
hn

(q(1)(αn|x)|x) → 0 and

(i) σ−1
n A

(
(1 − αn)

−1|x)→ 0,
(ii) σ−1

n q(1)(αn|x)−1 → λ ∈ R,
(iii) For some δ ∈ (0, 1),σ−1

n ω
(1)
hn

((1 − δ)
(
gp(γ (x))−γ (x)q(1)(αn|x)

) |x) log(1 − αn)

→ 0 and σ−1
n ω

(2)
hn

((1 + δ)
(
q(1)(αn|x)

) |x) → 0.

Then, for all p ∈ (1, γ (x)−1/2 + 1), one has

σ−1
n

(

γ̂ (p)
αn

(x) − γ (x),
q̂(p)
n (αn|x)

q(p)(αn|x)
− 1

)
d−→ �, (13)

where� is a bivariateGaussian distributionwithmean vector
(
bp(x), 0

)
and covari-

ance matrix ||K ||22γ (x)2g(x)−1�(x) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bp(x) = (1−p)γ (x)gp(γ (x))γ (x)
E[Y |X=x]

1− 1
γ (x) (	(γ (x)−1+1)−	(γ (x)−1−p+1))

λ

�11(x) = B(p,γ (x)−1−p+1)
(
1− 1

γ (x) (	(γ (x)−1+1)−	(γ (x)−1−p+1))
)2

(
B(2p−1,γ (x)−1−2p+2)
B(p,γ (x)−1−p+1)

2 − 1
γ (x)

)

�12(x) = B(p,γ (x)−1−p+1)
1− 1

γ (x) (	(γ (x)−1+1)−	(γ (x)−1−p+1))

(
1

γ (x)
− B(2p−1,γ (x)−1−2p+2)

B(p,γ (x)−1−p+1)
2

)

�22(x) = B(2p−1,γ (x)−1−2p+2)
B(p,γ (x)−1−p+1)

.

(14)
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Let us remark here that although Theorem 3 can be seen as a version of Theorem 4
of Girard et al. (2021), the latter is stated under weaker regularity assumptions and
applies to further examples of estimators developed specifically in the conditional
expectile setup.

Note that condition γ (x) < 1 entails E[Y |X = x] < ∞ and leads to a simple
expression of the bias term bp(x). A result dropping this assumption is available
in the unconditional setting in Girard et al. (2019); here, our motivation for this
condition is that we shall use extreme regression L p-quantiles as a way to estimate
extreme regression expectiles, for the existence of which a natural condition is that
E[|Y ||X = x] < ∞. The bias term bp(x) is related to γ (x), q(1)(αn|x) and E[Y |X =
x]. All these quantities may be easily estimated (the latter two by kernel regression
estimators) to construct a bias-reduced conditional tail index estimator as follows:

γ̃
(p)
αn (x) = γ̂

(p)
αn (x)

⎛

⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 +

(p − 1)

⎛

⎜
⎝

n∑

i=1
Yi K

(
x−Xi
hn

)

n∑

i=1
K
(

x−Xi
hn

)

⎞

⎟
⎠ q̂(p)

n (αn |x)−1

1 + 1
γ̂

(p)
αn (x)

(
	
(
1/γ̂ (p)

αn (x) − p + 1
)

− 	
(
1/γ̂ (p)

αn (x) + 1
))

⎞

⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Under the conditions of Theorem 3, it is clear that σ−1
n (γ̃

(p)
αn (x) − γ (x))

d−→
N (0,�11(x)) where �11(x) is given in Eq. (14). This bias reduction improves sig-
nificantly the numerical results, and is used in the finite-sample study below.

Even though L p-quantiles with 1 < p < 2 are more widely estimable than expec-
tiles and take into account thewhole tail information, they are neither easy to interpret
nor coherent as risk measures. Recent work in Daouia et al. (2019) has shown that
extreme L p-quantiles can be used as vehicles for extreme quantile and expectile esti-
mation; see also Gardes et al. (2020) for an analogous study of the estimation of (a
compromise between)Median Shortfall and Conditional Tail Expectation at extreme
levels, using tail L p−medians. Our focus in the following finite-sample study is to
analyze the potential of extreme regression L p-quantiles for the estimation of extreme
regression quantiles and expectiles.

4 Simulation Study

We consider here a one-dimensional covariate (d = 1), uniformly distributed on
[0, 1], and a Burr-type distribution for Y given X = x :

F̄ (1)(y|x) = (1 + y−ρ(x)/γ (x)
)1/ρ(x)

, γ (x) = 4 + sin(2πx)

10
and ρ(x) ≡ −1.
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Such a distribution fulfills Assumption C2(γ (x), ρ(x), A(·|x)) with auxiliary func-
tion A(y|x) = γ (x)yρ(x). We simulate N = 500 samples of size n = 1,000 inde-
pendent replications of (X,Y ), and propose to estimate the conditional quantiles and
expectiles of level βn = 1 − 1/n = 0.999 using our extreme regression L p-quantile
estimators. Note that the quantiles may be calculated explicitly:

q(α|x) = [(1 − α)ρ(x) − 1
]−γ (x)/ρ(x)

.

Expectiles have to be approximated numerically, since they do not have a simple
closed form. Inorder to estimate these twoquantities,wepropose to compare different
approaches (called either direct or indirect):

(i) Use the conditionalWeissman-type estimators, respectively, based on empirical
quantiles and the estimator γ̂ (H)

αn
(x) (direct quantile estimator) and on empirical

expectiles and γ̃ (2)
αn

(x) (direct expectile estimator), i.e.

(
1 − αn

1 − βn

)γ̂ (H)
αn (x)

q̂(1)
n (αn|x) ,

(
1 − αn

1 − βn

)γ̃ (2)
αn (x)

q̂(2)
n (αn|x).

(ii) Indirect quantile estimator: estimate first the conditional L p-quantile using
estimator (4), and exploit asymptotic relationship (9) to recover the extreme
conditional quantile,

(
1 − αn

1 − βn

)γ̃
(p)
αn (x)

q̂(p)
n (αn|x)

⎛

⎝ γ̃
(p)
αn (x)

B
(
p, γ̃ (p)

αn (x)−1 − p + 1
)

⎞

⎠

γ̃
(p)
αn (x)

.

(iii) Indirect expectile estimator: useEq. (9) to get a connection between L p-quantile
and quantile, and quantile and expectile, resulting in the extreme conditional
expectile estimator

(
1 − αn

1 − βn

)γ̃
(p)
αn (x)

q̂(p)
n (αn|x)

⎛

⎝
B
(
2, γ̃ (p)

αn (x)−1 − 1
)

B
(
p, γ̃ (p)

αn (x)−1 − p + 1
)

⎞

⎠

γ̃
(p)
αn (x)

.

The choice of p is discussed in Girard et al. (2019) using the MSE of (the uncondi-
tional version of) γ̃

(p)
αn (x) as a criterion. Cross-validation choices of the bandwidth

hn and intermediate quantile level αn , meanwhile, are discussed in Daouia et al.
(2013); Girard et al. (2021). For the sake of simplicity, we choose here common
parameters p = 1.7 following the guidelines of Girard et al. (2019)), hn = 0.15 and
αn = 1 − 1/

√
n ≈ 0.968 across all replications and K is the Epanechnikov kernel

defined by K (t) = 0.75(1 − t2)1{|t |<1}. Results are shown in Fig. 1.
We can notice that an indirect estimation of extreme quantiles or expectiles with a

L p-quantile (with p between 1 and 2) leads to a trade-off between bias and variance:
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Fig. 1 Left: Boxplots of 500 estimates of q(1)(βn |x) with the direct (green) and indirect (blue)
quantile estimators. Right: Boxplots of 500 estimates of q(2)(βn |x) with the direct (green) and
indirect (blue) expectile estimators. True values are in red

the indirect L p−estimator of an extreme regression quantile is less variable than the
direct estimator but slightlymore biased, and the indirect L p−estimator of an extreme
regression expectile is more variable than the direct estimator but less biased. For
conditional quantiles, an explanation is that using the asymptotic approximation (9)
in the construction of the indirect estimator adds a source of bias, while the reduced
variance stems from the use of p = 1.7 in the estimator γ̃ (p)

αn (x), providing an estima-
tor with lower variance compared to the simple Hill estimator in our case (see Girard
et al. 2019). The case of conditional expectiles is less clear, although the increased
variability observed for x ∈ [0, 0.5] seems to originate in the use of the estimated
constant B(2, γ̃ (p)

αn (x)−1 − 1)/B(p, γ̃ (p)
αn (x)−1 − p + 1): when γ̃

(p)
αn (x) gets close to

1, which is sometimes the case in this zone where γ (x) ∈ [0.4, 0.5], this estimated
constant tends to explode, while the direct estimator is less affected. A similar obser-
vation, in the context of extreme Wang distortion risk measure estimation, is made
by El Methni and Stupfler (2017).

5 Real Data Example

We study here a data set on motorcycle insurance, collected from the former Swedish
insurance provider Wasa. Our data is on motorcycle insurance policies and claims
over the period 1994–1998 and is available from www.math.su.se/GLMbook or the
R packages insuranceData and CASdatasets, and analyzed in Ohlsson and
Johansson (2010).We concentrate here on the relationship between the claim severity
Y (defined as the ratio of claim cost by number of claims for each given policyholder)
in Swedish kroner (SEK), and the number of years X of exposure of a policyholder.
Data for X > 3 are very sparse, so we restrict our attention to the case Y > 0 and
X ∈ [0, 3], resulting in n = 593 pairs (Xi ,Yi ).

www.math.su.se/GLMbook
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Our goal in this section is to estimate extreme conditional quantiles and expectiles
of Y given X , at a level βn = 1 − 3/n ≈ 0.9949. This level is slightly less extreme
than themore standardβn = 1 − 1/n ≈ 0.9985, but is an appropriately extreme level
in this conditional context where less data are available locally for the estimation.
A preliminary diagnostic using a local version of the Hill estimator (which we do
not show here) suggests that the data is indeed heavy-tailed with γ (x) ∈ [0.25, 0.6].
Following again the guidelines inGirard et al. (2019),we choose p = 1.7 for our indi-
rect extreme conditional quantile and expectile estimators. These are, respectively,
compared to

• the estimator q̂W
n (βn|x) of Girard et al. (2021), calculated as in Sect. 5 therein, and

our direct quantile estimator presented in Sect. 4 (i),
• the estimator êW,BR

n (βn|x) of Girard et al. (2021), calculated as in Sect. 5 therein,
and our direct expectile estimator presented in Sect. 4 (i).

For the direct and indirect estimators presented in Sect. 4 (ii)–(iii), the parameters
αn and hn are chosen by a cross-validation procedure analogous to that of Girard
et al. (2021). The Epanechnikov kernel is adopted. Results are given in Fig. 2. In
each case, all three estimators reassuringly point to roughly the same results, with
slight differences; in particular, for quantile estimation and when data is scarce, the
direct estimator in Sect. 4 (i) appears to be more sensitive to the local shape of the tail
than the indirect, L p-quantile-based estimator in Sect. 4 (ii), resulting in less stable
estimates.

Fig. 2 Swedish motorcycle insurance data. Left panel: extreme conditional quantile estimation,
black curve: estimator q̂Wn (βn |x) of Girard et al. (2021), blue curve: direct quantile estimator (i)
of Sect. 4, red curve: indirect quantile estimator (ii) of Sect. 4. Right panel: extreme conditional
expectile estimation, black curve: estimator êW,BR

n (βn |x) of Girard et al. (2021), blue curve: direct
expectile estimator (i) of Sect. 4, red curve: indirect expectile estimator (iii) of Sect. 4. In each
panel, x-axis: number of years of exposure of policyholder, y-axis: claim severity
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6 Appendix

6.1 Preliminary Results

Lemma 1 Assume that (L) and C2 (γ (x), ρ(x), A(.|x)) hold, and let yn → ∞ and
hn → 0 be such that ω

(1)
hn

(yn|x) log(yn) → 0 and ω
(2)
hn

(yn|x) → 0. Then for all 0 ≤
k < γ (x)−1 we have, uniformly in x′ ∈ B(x, hn),

m(k)(yn|x′) = m(k)(yn|x)
(
1 + O (hn) + o

(
ω

(1)
hn

(yn|x)
)

+ O
(
ω

(2)
hn

(yn|x)
))

.

In particular m(k)(yn|x′) = ykn g(x) (1 + o(1)) uniformly in x′ ∈ B(x, hn).

Proof Let us first write

m(k)(yn |x) = E

[
(Y − yn)

k1{Y>yn}|X = x
]
g(x) + E

[
(yn − Y )k1{Y≤yn}|X = x

]
g(x).

By the arguments of the proof of Lemma 3 in Girard et al. (2021),

E
[
(Y − yn)k1{Y>yn}|X = x′] g(x′)

E
[
(Y − yn)k1{Y>yn}|X = x

]
g(x)

= 1 + O (hn) + O
(
ω

(1)
hn

(yn|x) log(yn)
)

.

Besides, an integration by parts yields

E
[
(yn − Y )k1{Y≤yn}|X = x

] =
∫ yn

0
ktk−1F (1)(yn − t |x) dt.

It clearly follows that

∣∣E
[
(yn − Y )k1{Y≤yn}|X = x′]− E

[
(yn − Y )k1{Y≤yn}|X = x

]∣∣ ≤ yknω
(2)
hn

(yn|x).

Now

E
[
(yn − Y )k1{Y≤yn}|X = x

] = ykn E

[(
1 − Y

yn

)k

1{Y≤yn}|X = x

]

= ykn (1 + o(1))

by the dominated convergence theorem, and

E

[
(Y − yn)

k1{Y>yn}|X = x
]

= g(x)B
(
k + 1, γ (x)−1 − k

)

γ (x)
ykn F̄

(1)(yn |x)(1 + o(1)),

(15)
see for instance Lemma 1(i) in Daouia et al. (2019). The result follows from direct
calculations.
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Lemma 2 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold, and let yn → ∞
and hn → 0 be such that nhdn → ∞, ω

(1)
hn

(yn|x) log(yn) → 0 and ω
(2)
hn

(yn|x) → 0.
Then for all 0 ≤ k < γ (x)−1/2,

E

[
m̂(k)
n (yn |x)

]
= m(k)(yn |x)

(
1 + O (hn) + o

(
ω

(1)
hn

(yn |x)
)

+ O
(
ω

(2)
hn

(yn |x)
))

and Var
[
m̂(k)
n (yn |x)

]
= ||K ||22

nhdn
g(x)y2kn (1 + o(1)).

Proof Note that E
[
m̂(k)

n (yn|x)
] = ∫S m(k)(yn|x − uhn)K (u)du by Assumption (K)

and a change of variables, and use Lemma 1 to get the first result. The second result
is obtained through similar calculations. �

Lemma 3 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold. Let yn → ∞,
hn → 0 be such that nhdn → ∞ and ω

(1)
hn

(yn|x) log(yn) → 0. Then for all 0 ≤ k <

γ (x)−1/2,

⎧
⎨

⎩

E
[
ϕ̂(k)
n (yn|x)

] = ϕ(k)(yn|x)
(
1 + O(hn) + O

(
ω

(1)
hn

(yn|x) log(yn)
))

,

Var
[
ϕ̂(k)
n (yn|x)

] = ||K ||22g(x)
B(2k+1,γ (x)−1−2k)

γ (x)

y2kn F̄ (1)(yn |x)

nhdn
(1 + o(1)).

Proof See Lemma 5 of Girard et al. (2021).

Lemma 4 Assume that C2 (γ (x), ρ(x), A(.|x)) holds. Let λ ≥ 1, yn → ∞, y′
n =

λyn(1 + o(1)) and 0 < k < γ (x)−1.

(i) Then the following asymptotic relationship holds:

E
[|Y − yn|k1{Y>y′

n}|X = x
]

= ykn F̄
(1)(yn|x)

[
k I B

(
λ−1, γ (x)−1 − k, k

)+ (λ − 1)kλ−1/γ (x)
]
(1 + o(1)).

�
(ii) Assume further thatω(1)

hn
(yn ∧ y′

n|x) log(yn) → 0 andω
(3)
hn

(yn|x) → 0. Then, uni-
formly in x′ ∈ B(x, hn),

E
[|Y − yn|k1{Y>y′

n}|X = x′] = E
[|Y − yn|k1{Y>y′

n}|X = x
]
(1 + o(1)).

Proof (i) Straightforward calculations entail
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E
[|Y − yn|k1{Y>y′

n}|X = x
]

= yknE

[{(
Y

yn
− 1

)k

− (λ − 1)k
}

1{Y>λyn}|X = x

]

(1 + o(1))

+ ykn (λ − 1)k F̄ (1)(λyn|x)(1 + o(1)),

with y′
n = λyn(1 + o(1)). The result then comes directly from the regular variation

property of F̄ (1)(·|x) and Lemma 1 in Daouia et al. (2019) with H(t) = (t − 1)k and
b = λ.

(ii) Note first that for n large enough

∣∣E
[|Y − yn|k1{Y>y′

n}|X = x′]− E
[|Y − yn|k1{Y>λyn}|X = x′]∣∣

≤ [|y′
n − yn|k + (λ − 1)k ykn

] [
F̄ (1)(y′

n ∧ λyn|x′) − F̄ (1)(y′
n ∨ λyn|x′)

]

≤ 3(λ − 1)k ykn × F̄ (1)(y′
n|x′) × ω

(3)
hn

(yn|x).

Write (Y − yn)k = ((Y − yn)k − (λ − 1)k ykn ) + (λ − 1)k ykn . It then follows from the
assumption ω

(3)
hn

(yn|x) → 0 that, uniformly in x′ ∈ B(x, hn),

E
[|Y − yn|k1{Y>y′

n}|X = x′] = (λ − 1)k ykn F̄
(1)(y′

n|x′)(1 + o(1))

+ k
∫ ∞

λyn

(z − yn)
k−1 F̄ (1)(z|x′)dz(1 + o(1)).

Remark now F̄ (1)
(
y′
n|x
)
(y′

n)
−ω

(1)
hn

(y′
n |x) ≤ F̄ (1)

(
y′
n|x′) ≤ F̄ (1)

(
y′
n|x
)
(y′

n)
ω

(1)
hn

(y′
n |x).

Then condition ω
(1)
hn

(y′
n|x) log(yn) → 0 entails, uniformly in x′ ∈ B(x, hn),

F̄ (1)
(
y′
n|x′) = F̄ (1)

(
y′
n|x
)
(1 + o(1)) = F̄ (1) (λyn|x) (1 + o(1)). Besides, for any

z ≥ λyn ≥ yn , F̄ (1) (z|x) z−ω
(1)
hn

(yn |x) ≤ F̄ (1)
(
z|x′) ≤ F̄ (1) (z|x) zω

(1)
hn

(yn |x). Following
the proof of Lemma 3 in Girard et al. (2021), we get, uniformly in x′ ∈ B(x, hn),

∣∣∣∣
∣

∫∞
λyn

(z − yn)k−1 F̄ (1)(z|x′)dz
∫∞
λyn

(z − yn)k−1 F̄ (1)(z|x)dz
− 1

∣∣∣∣
∣
= O(ω

(1)
hn

(yn|x) log(yn)) → 0.

Since
∫∞
λyn

(z − yn)k−1 F̄ (1)(z|x)dz is of order ykn F̄
(1)(yn|x) (by regular variation of

F̄ (1)(·|x)), the conclusion follows.

Lemma 5 Assume that C2 (γ (x), ρ(x), A(.|x)) holds. For all 1 ≤ p < γ (x)−1 + 1,

F̄ (p)(y|x)

F̄ (1)(y|x)
= B

(
p, γ (x)−1 − p + 1

)

γ (x)
[1 + r(y|x)]

where there are constants C1(x), C2(x), C3(x) such that
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r(y|x) = C1(x)
E(Y1{0<Y<y}|X = x)

y
(1 + o(1)) + C2(x)F̄ (1)(y|x)(1 + o(1))

+ C3(x)A(1/F̄ (1)(y|x)|x)(1 + o(1)) as y → ∞.

Similarly

q(p)(α|x)

q(1)(α|x)
=
(

γ (x)

B
(
p, γ (x)−1 − p + 1

)

)−γ (x)

[1 + R(α|x)]

where there are constants D1(x), D2(x), D3(x) such that

R(α|x) = D1(x)
E(Y1{0<Y<q(1)(α|x)}|X = x)

q(1)(α|x)
(1 + o(1)) + D2(x)(1 − α)(1 + o(1))

+ D3(x)A((1 − α)−1|x)(1 + o(1)) as α → 1.

�
Proof We start by focusing on the ratio F̄ (p)(y|x)/F̄ (1)(y|x). By Lemma 1 in Girard
et al. (2019), the function F̄ (p)(·|x) is continuous and strictly decreasing on the
support of Y given X = x. It is therefore enough to show the announced formula
for y = q(p)(α|x) with α → 1; this, in turn, is a simple corollary of Proposition 2
in Daouia et al. (2019). To show the analogous formula on q(p)(α|x)/q(1)(α|x), we
defineU (1)(t |x) = q(1)(1 − t−1|x);U (1)(·|x) also satisfies a (local uniform) second-
order regular variation condition, see Theorem 2.3.9 p.48 in de Haan and Ferreira
(2006). Consequently, we note that the asymptotic expansion on F̄ (p)(y|x)/F̄ (1)(y|x)

entails a similar expansion on

U (1)(1/F̄ (1)(y|x)|x)

U (1)(1/F̄ (p)(y|x)|x)
= y

q(1)(F (p)(y|x))
(1 + o(A(1/F̄ (1)(y|x)|x)))

as y → ∞, with different constants (here Lemma 1 in Daouia et al. (2020b) was
used). Setting y = q(p)(α|x), with α → 1, gives the announced result.

Lemma 6 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold. Let yn → ∞,
hn → 0 and zn = θyn(1 + o(1)), where θ > 0. Assume further that ε−2

n =
nhdn F̄

(1)(yn|x) → ∞, nhd+2
n F̄ (1)(yn|x) → 0, there exists δ ∈ (0, 1) such that

ε−1
n ω

(1)
hn

((1 − δ)(θ ∧ 1)yn|x) log(yn) → 0, and ω
(3)
hn

(zn|x) → 0. Letting, for all j ∈
{1, . . . , J }, yn, j = τ

−γ (x)

j yn(1 + o(1)) with 0 < τ1 < τ2 < . . . < τJ ≤ 1, and p ∈
(1, γ (x)−1/2 + 1), one has

ε−1
n

⎧
⎨

⎩

(
ϕ̂

(0)
n (yn, j |x)

ϕ(0)(yn, j |x)
− 1

)

1≤ j≤J

,

(
ϕ̂

(p−1)
n (zn |x)

ϕ(p−1)(zn |x)
− 1

)⎫⎬

⎭
d→ N

(

0J+1,
||K ||22
g(x)

�(x)

)

,

where �(x) is a symmetric matrix having entries:



214 S. Girard et al.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� j,�(x) = (
τ j ∨ τ�

)−1

� j,J+1(x) = γ (x)

(p−1)I B

⎛

⎝

(

1∨ τ
−γ (x)
j

θ

)−1

,γ (x)−1−p+1,p−1

⎞

⎠+
(

1∨ τ
−γ (x)
j

θ
−1

)p−1(

1∨ τ
−γ (x)
j

θ

)−1/γ (x)

τ j B(p,γ (x)−1−p+1)

�J+1,J+1(x) = γ (x)
B
(
2p−1,γ (x)−1−2p+2

)

B(p,γ (x)−1−p+1)
2 θ1/γ (x)

. (16)

Proof Let β = (β1, . . . , βJ , βJ+1) ∈ R
J+1. Set

Zn = ε−1
n

J∑

j=1

β j

(
ϕ̂(0)
n (yn, j |x)

ϕ(0)(yn, j |x)
− 1

)
+ ε−1

n βJ+1

(
ϕ̂

(p−1)
n (zn|x)

ϕ(p−1)(zn|x)
− 1

)

.

Clearly ω
(1)
hn

(yn, j |x) ≤ ω
(1)
hn

((1 − δ)yn|x) and ω
(1)
hn

(zn|x) ≤ ω
(1)
hn

((1 − δ)θyn|x) for n
large enough. Lemma 3 then provides E(Zn) = o(1). It thus remains to focus on
the asymptotic distribution of the centered variable Zn = Zn − E(Zn). Note that
Var[Zn] = ε−2

n β�B(n)β, where B(n) is the symmetric matrix having entries:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B(n)
j,� (x) = cov

(
ϕ̂

(0)
n (yn, j |x),ϕ̂

(0)
n (yn,�|x)

)

ϕ(0)(yn, j |x)ϕ(0)(yn,�|x)
, j, � ∈ {1, . . . , J }, j ≤ �,

B(n)
j,J+1(x) = cov

(
ϕ̂

(0)
n (yn, j |x),ϕ̂

(p−1)
n (zn |x)

)

ϕ(0)(yn, j |x)ϕ(p−1)(zn |x)
, j ∈ {1, . . . , J },

B(n)
J+1,J+1(x) = Var

[
ϕ̂

(p−1)
n (zn |x)

]

ϕ(p−1)(zn |x)2
.

We recall zn = θyn(1 + o(1)), hence F̄ (1)(zn|x) = θ−1/γ (x) F̄ (1)(yn|x)(1 + o(1)) and
Lemma 3 combined with Eq. (15) immediately gives

B(n)
J+1,J+1(x) = ||K ||22

g(x)
γ (x)

B
(
2p − 1, γ (x)−1 − 2p + 2

)

B
(
p, γ (x)−1 − p + 1

)2 θ1/γ (x)ε2n(1 + o(1)).

The calculation of B(n)
j,� (x) gives, through straightforward calculations and the use of

Lemma 3 and Eq. (15),

B(n)
j,� (x) = ||K ||22

nhdn

F̄ (1)
(
yn, j ∨ yn,�|x

)

g(x)F̄ (1)
(
yn, j |x

)
F̄ (1)

(
yn,�|x

) (1 + o(1)).

The regular variation property of F̄ (1) gives B(n)
j,� (x) = ||K ||22

g(x)
(τ j ∨ τ�)

−1ε2n(1 + o(1)).

It remains to calculate B(n)
j,J+1(x). Using Eq. (15), with Q(·) = K (·)2/||K ||22 a kernel

satisfying (K), this term equals
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1
nh2dn

||K ||22E
[
|Y − zn|p−1 Q

(
x−X
hn

)
1{Y>zn∨yn, j }

]

g(x)2B
(
p, γ (x)−1 − p + 1

)
z p−1
n F̄ (1)(yn, j |x)F̄ (1)(zn|x)/γ (x)(1 + o(1))

−
1
nE

[
1
hdn
K
(

x−X
hn

)
1{Y>yn, j }

]
E

[
|Y − zn|p−1 1

hdn
K
(

x−X
hn

)
1{Y>zn}

]

g(x)2B
(
p, γ (x)−1 − p + 1

)
z p−1
n F̄ (1)(yn, j |x)F̄ (1)(zn|x)/γ (x)(1 + o(1))

.

Clearly, as a direct consequence of Lemma 3, the first term dominates. Remark that
zn ∨ yn, j = (1 ∨ τ

−γ (x)

j /θ)zn(1 + o(1)) and combine Assumption (K), the results

of Lemma 4 (with λ = (1 ∨ τ
−γ (x)

j /θ)), and the regular variation property of ϕ(k)(·)
(see Eq. (15)) to find that the numerator of this first term is asymptotically equivalent
to

||K ||22
nhdn

g(x)z p−1
n F̄ (1)(zn|x)

[
(p − 1)I B

(
(1 ∨ τ

−γ (x)

j /θ)−1, γ (x)−1 − p + 1, p − 1
)

+((1 ∨ τ
−γ (x)

j /θ) − 1)p−1
(
1 ∨ τ

−γ (x)

j /θ
)−1/γ (x)

]
.

And finally B(n)
j,J+1(x) is asymptotically equivalent to

τ−1
j γ (x)

||K ||22
g(x)

ε2n

B
(
p, γ (x)−1 − p + 1

)
[
(p − 1)I B

(
(1 ∨ τ

−γ (x)

j /θ)−1, γ (x)−1 − p + 1, p − 1
)

+((1 ∨ τ
−γ (x)

j /θ) − 1)p−1
(
1 ∨ τ

−γ (x)

j /θ
)−1/γ (x)

]
.

Therefore, Var[Zn] = ||K ||22β��(x)β/g(x)(1 + o(1)), where �(x) is given in
Eq. (16). It remains to prove the asymptotic normality of Zn . For that purpose,
we denote Zn =∑n

i=1 Zi,n , where

Zi,n = ε−1
n

nhdn

J∑

j=1

β j

K
(

x−Xi
hn

)
1{Yi>yn, j } − E

[
K
(

x−Xi
hn

)
1{Yi>yn, j }

]

ϕ(0)(yn, j |x)

+ ε−1
n

nhdn
βJ+1

|Yi − zn|p−1 K
(

x−Xi
hn

)
1{Yi>zn} − E

[
|Yi − zn|p−1 K

(
x−Xi
hn

)
1{Yi>zn}

]

ϕ(p−1)(zn|x)
.

Taking δ > 0 sufficiently small and arguing as in the closing stages of the proof
of Lemma 6 in Girard et al. (2021), we find that nE

[|Z1,n|2+δ
] = O

(
εδ
n

) = o(1).
Applying the classical Lyapunov central limit theorem concludes the proof. �

Proposition 1 Assume that (K), (L) and C2 (γ (x), ρ(x), A(.|x)) hold. Let yn →
∞, hn → 0 and zn = θyn(1 + o(1)), where θ > 0. Assume further that ε−2

n =
nhdn F̄

(1)(yn|x) → ∞, nhd+2
n F̄ (1)(yn|x) → 0, ω

(3)
hn

(yn|x) → 0 and there exists δ ∈
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(0, 1) such that ε−1
n ω

(1)
hn

((1 − δ)(θ ∧ 1)yn|x) log(yn) → 0. If, for all j ∈ {1, . . . , J },
the yn, j = τ

−γ (x)

j yn(1 + o(1)) with 0 < τ1 < τ2 < . . . < τJ ≤ 1 are such that

ε−1
n ω

(2)
hn

((1 + δ)(θ ∨ τ
−γ (x)

1 )yn|x) → 0, then, for all p ∈ (1, γ (x)−1/2 + 1), one has

ε−1
n

⎧
⎪⎨

⎪⎩

⎛

⎝
ˆ̄F(1)
n (yn, j |x)

F̄(1)(yn, j |x)
− 1

⎞

⎠

1≤ j≤J

,

( ˆ̄F(p)
n (zn |x)

F̄(p)(zn |x)
− 1

)
⎫
⎪⎬

⎪⎭

d→ N
(

0J+1,
||K ||22
g(x)

�(x)

)

,

where �(x) is given in Eq. (16).

Proof Notice that

ˆ̄F (p)
n (un|x)

F̄ (p)(un|x)
− 1 =

(
ϕ̂

(p−1)
n (un|x)

ϕ(p−1)(un|x)
− 1

)
m(p−1)(un|x)

m̂(p−1)
n (un|x)

+
(
m(p−1)(un|x)

m̂(p−1)
n (un|x)

− 1

)

.

Lemma 2 and theChebyshev inequality ensure that for all p ∈ (1, γ (x)−1/2 + 1) and
un ∈ {yn,1, . . . , yn,J , zn}, m̂(p−1)

n (un|x)/m(p−1)(un|x) − 1 = OP(1/
√
nhdn), so that

ε−1
n

( ˆ̄F (p)
n (un|x)

F̄ (p)(un|x)
− 1

)

= ε−1
n

(
ϕ̂

(p−1)
n (un|x)

ϕ(p−1)(un|x)
− 1

)

+ oP(1).

Applying Lemma 6 concludes the proof. �

6.2 Proofs of Main Results

Proof of Theorem 1 Let us denote t = (t1, . . . , tJ , tJ+1) and focus on the probability

�n(t) = P

⎛

⎝
J⋂

j=1

{

σ−1
n

(
q̂(1)
n (αn, j |x)

q(1)(αn, j |x)
− 1

)

≤ t j

}
⋂
{

σ−1
n

(
q̂(p)
n (an |x)

q(p)(an |x)
− 1

)

≤ tJ+1

}⎞

⎠ .

Set yn = q(1)(αn|x), yn, j = q(1)(αn, j |x)
(
1 + σnt j

)
and zn = q(p)(an|x) (1+

σntJ+1). The technique of proof of Proposition 1 in Girard et al. (2019) yields

�n(t) = P

⎛

⎝
J⋂

j=1

⎧
⎨

⎩
σ−1
n

⎛

⎝
ˆ̄F (1)
n

(
yn, j |x

)

F̄ (1)
(
yn, j |x

) − 1

⎞

⎠ ≤ σ−1
n

(
F̄ (1)

(
q(1)(αn, j |x)|x)

F̄ (1)
(
yn, j |x

) − 1

)⎫⎬

⎭

⋂
{

σ−1
n

( ˆ̄F (p)
n (zn|x)

F̄ (p) (zn|x)
− 1

)

≤ σ−1
n

(
F̄ (p)

(
q(p)(an|x)|x)

F̄ (p) (zn|x)
− 1

)})

.
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Second-order regular variation arguments similar to those of the proof of Proposi-
tion 1 in Girard et al. (2019) give, for all j ∈ {1, . . . , J },

σ−1
n

(
F̄ (1)

(
q(1)(αn, j |x)|x)

F̄ (1)
(
yn, j |x

) − 1

)

= t j
γ (x)

(1 + o(1))

and similarly

σ−1
n

(
F̄ (p)

(
q(p)(an|x)|x)

F̄ (p) (zn|x)
− 1

)

= tJ+1

γ (x)
(1 + o(1)).

Finally, notice that yn, j = τ
−γ (x)

j yn(1 + o(1)) and zn = θyn(1 + o(1)) (see (9)).

Moreover, for n large enough, ω
(1)
hn

(yn, j |x) ≤ ω
(1)
hn

(
(1 − δ)q(1)(αn|x)|x) and

ω
(1)
hn

(zn|x) ≤ ω
(1)
hn

(
(1 − δ)θq(1)(αn|x)|x). Similarly, ω

(2)
hn

(yn, j |x) ≤ ω
(2)
hn ((1 + δ)

τ
−γ (x)

1 q(1)(αn|x)|x
)
and ω

(2)
hn

(zn|x) ≤ ω
(2)
hn

(
(1 + δ)θq(1)(αn|x)|x). Conclude using

Proposition 1. �
Proof of Theorem 2 We recall σ−2

n = nhdn(1 − αn). Write

σ−1
n

log
(
1−αn
1−βn

) log

(
q̃(p)
n,αn (βn |x)

q(p)(βn |x)

)

= σ−1
n (γ̂αn (x) − γ (x)) + σ−1

n

log
(
1−αn
1−βn

) log

(
q̂(p)
n (αn |x)

q(p)(αn |x)

)

+ σ−1
n

log
(
1−αn
1−βn

) log

((
1 − αn

1 − βn

)γ (x) q(p)(αn |x)

q(p)(βn |x)

)

.

The first term converges in distribution to �. The second one converges to 0 in
probability, by Theorem 1. To control the third one, write

(
1 − αn

1 − βn

)γ (x) q(p)(αn|x)

q(p)(βn|x)
=
(
1 − αn

1 − βn

)γ (x) q(1)(αn|x)

q(1)(βn|x)

q(p)(αn|x)

q(1)(αn|x)

q(1)(βn|x)

q(p)(βn|x)
.

In view of Theorem 4.3.8 in de Haan and Ferreira (2006) and its proof, ((1 − αn)/

(1 − βn))
γ (x) q(1)(αn|x) = q(1)(βn|x)

(
1 + O

(
A
(
(1 − αn)

−1|x))) = q(1)(βn|x)

(1 + O(σn)) . By Lemma 5 then,

(
1 − αn

1 − βn

)γ (x) q(p)(αn|x)

q(p)(βn|x)
= 1 + O(σn).

The third term therefore converges to 0. Conclude using Slutsky’s lemma and the
delta-method. �
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Proof of Theorem 3 This proof is similar to those of Theorem 4 inGirard et al. (2021)
(where p = 2) and Theorem 1 in Girard et al. (2019) (an unconditional version) and
is thus left to the reader.
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Robust Efficiency Analysis of Public
Hospitals in Queensland, Australia

Bao Hoang Nguyen and Valentin Zelenyuk

We dedicate our modest contribution to Professor Christine
Thomas-Agnan–a great Scholar who together with various
colleagues have originated, developed and inspired many
interesting directions in research, among which is the
concept of partial α-frontier modelling that we use in this
work.

Abstract In this study, we utilize various approaches for efficiency analysis to
explore the state of efficiency of public hospitals in Queensland, Australia, in the year
2016/17. Besides the traditional nonparametric approaches like DEA and FDH, we
also use a more recent and very promising robust approach–order-α quantile fron-
tier estimators (Aragon et al. 2005). Upon obtaining the individual estimates from
various approaches, we also analyze performance on a more aggregate level—the
level of Local Hospital Networks by using an aggregate efficiency measure con-
structed from the estimated individual efficiency scores. Our analysis suggests that
the relatively low efficiency of some Local Hospital Networks in Queensland can
be partially explained by the fact that the majority of their hospitals are small and
located in remote areas.

1 Introduction

In Australia, the provision of free public hospital services is the responsibility of
the state and territory governments. The management of public hospitals in states
and territories is usually geographically based. Since the National Health Reform
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Agreement in 2012 (Council of Australian Governments 2011), the governance of
public hospitals in Australia has become more decentralized with the establishment
of Local Hospital Networks. The Local Hospital Network is an independent statu-
tory body established by each Australian state/territory government. Local Hospital
Networks directly operate a group of public hospitals and are directly responsible
for their performance.

In Queensland, Local Hospital Networks are known as Hospital and Health Ser-
vices (HHSs). There are 16 HHSs in the state, of these 15 HHSs are geographically
based, the remaining one is a specialist statewide HHS dedicated to caring for chil-
dren and young people. Each HHS is independently and locally controlled by a
Hospital and Health Board and operated by a Health Service Chief Executive. HHSs
relate to the Queensland Department of Health (Queensland Health) through a ser-
vice agreement. Queensland Health acts as a system manager who has responsibility
for purchasing healthcare services to cover the healthcare needs of citizens as well
as monitoring the performance of HHSs. Meanwhile, each HHS acts as a provider
whose function is to deliver healthcare services to its local community.

Although state and territory governments are responsible for delivering pub-
lic hospital services, funding for public hospitals is provided by both federal and
state/territory governments based on taxes collected from all states/territories across
Australia. In the year 2016/17, 50% of expenditure on public hospital services in
Queensland came from the state government, while 40% of the expenditure was
provided by the Australian government (Australian Institute of Health and Welfare
2018). Public hospitals are funded either via Activity-Based Funding or a Block
Funding model. In Queensland, 36 hospitals (predominantly large and urban hospi-
tals) are funded by Activity Based Funding.1 Meanwhile, 87 hospitals (mainly small
and rural hospitals) are funded by Block Funding.

Public hospitals in Queensland are widely dispersed geographically with a rela-
tively high proportion in regional and remote areas, which in part reflects the share
of the state’s population living outside the major cities and the obligation of the state
government to provide equitable access to public hospital services for all residents.
Public hospitals in the state are also diverse in terms of size: 91 out of 123 hospitals
have 50 beds or fewer, yet 19 out of 123 hospitals have more than 200 beds and
account for 75% of Queensland’s total hospital beds (Australian Institute of Health
and Welfare 2019).

As public hospitals are the key institution in the acute healthcare sector where the
majority of healthcare expenditure occurs, improving hospital efficiency has been
viewed as a fundamentally important means to contain healthcare costs in Australia.2

In the study published in 2010, the Productivity Commission (2010) pointed out that

1Under Activity Based Funding, hospitals are reimbursed based on the number and the complexity
of patient care episodes they provide. Hospitals receive a fixed rate for each episode, and the value
of the fixed rate is determined by the DRG to which the episode belongs.
2In the fiscal year 2016/17, Australia spent $181 billion on healthcare (more than $7,400 per person
and 10% of its GDP), about a 57% increase since 2006/07 (after adjusting for inflation). This turns
out to be an average annual growth rate of 4.67% over the decade: around 2% higher than average
growth of GDP (Australian Institute of Health and Welfare 2018).
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the average inefficiency level of Australian hospitals is around 10% and they would
decrease operating expenditures by about 7% if the inefficiency was eliminated.
Given that the efficiency of public hospitals is an important issue of public concern
and has now become the main responsibility of HHSs, it is important to analyze
hospital performance, not only at the individual level but also at the HHS level. These
analyses will provide useful information about the relative performance of HHSs and
possibly identify sources of efficiency differentials, which are imperatively needed
for any plan to promote hospital efficiency.

This studywill provide such an analysis by exploring the state of efficiency of pub-
lic hospitals at the level ofHHSs inQueensland,Australia in the year 2016/17. To ana-
lyze performance on the aggregate level, we utilize an aggregate efficiency measure
constructed from individual efficiency scores estimated using various approaches.
Besides the traditional nonparametric approaches like DEA and FDH, we also use
a more recent and very promising robust approach–order-α quantile frontier estima-
tors (Aragon et al. 2005). The order-α quantile frontier estimators appear to be more
appealing than the conventional nonparametric approaches because they are more
robust with respect to extreme values and/or outliers in a finite sample and do not
suffer from the well-known curse of dimensionality (Simar and Wilson 2013).3

Based on the robust estimates of aggregate efficiency, we use k-mean cluster-
ing technique (an unsupervised machine learning algorithm) to classify HHSs in
Queensland into three groups, namely relatively low, medium and high efficiency.
Moreover, our analysis also suggests that the relatively low efficiency of some HHSs
inQueensland can be partially explained by the fact that themajority of their hospitals
are small and located in remote areas.

Our paper is organized as follows. Section2 presents theoretical frameworks for
efficiencymeasures and their nonparametric estimators. Section3 provides a descrip-
tion of the data sources and variables used in this study. Section4 discusses the results,
and Sect. 5 provides concluding remarks.

2 Methodology

2.1 Theoretical Concepts

Let us consider a production process in which a production unit uses a set of p
inputs, denoted as x = (x1, ..., x p)

′ ∈ �p
+, to produce a univariate output, denoted as

y ∈ �+.4 According to the production theory (Shephard 1953, 1970), the production
technology can be mathematically characterized by a technology set defined as

3Although the order-α quantile frontier estimators can provide new insights from the data compared
to the traditional nonparametric estimators, the traditional approach, especially the CRS-DEA, still
has its merits and value in itself (see more discussion in Sect. 4).
4For the cases of multiple-output, one can either follow the multivariate conditional quantile
approach proposed by Daouia and Simar (2007) or utilize aggregation techniques to aggregate
outputs. In this study, we adopt Daraio and Simar’s (2007) approach (the approach based on Princi-
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� = {
(x, y) ∈ �p

+ × �+ : x can produce y
}
. (1)

Some regularity conditions are usually assumed for the technology set, among those
the three most common assumptions are as follows5:

A1. � is closed.
A2. The output sets (defined in (2) below) are bounded, ∀x ∈ �p

+.
A3. All inputs and outputs are strongly disposable, i.e. (x0, y0) ∈ � ⇒ (x, y) ∈

�,∀x � x0, y � y0.

The production technology can also be described mathematically in terms of its
sections: input requirement set and output attainable set. In this paper, we measure
efficiency inoutput direction, thus our discussionhere focuses on theoutput attainable
set.6 It is defined as

P (x) = {y ∈ �+ : (x, y) ∈ �} , x ∈ �p
+. (2)

When efficiency is a concern, the boundary of the technology set is of interest. For the
case of univariate output, the upper bound of the output attainable set (the production
frontier) is also referred to as production function and defined as

∂ P (x) = max
y

{
y
∣∣ y ∈ P (x)

}
. (3)

The Farrell-type output-oriented technical efficiency for the production unit is then
defined as a radial distance from a point in output space representing the production
unit toward the boundary and is defined mathematically as

λ (x, y) = sup
λ

{
λ > 0

∣∣ λy ∈ P (x)
} = sup

λ

{
λ > 0

∣∣ (x, λy) ∈ �
}
. (4)

One might find it more convenient to look at the reciprocal of the output-oriented
efficiency (also known as the Shephard distance function) since it gives an efficiency
measure between 0 and 1, where 1 stands for 100% efficiency.

Now let us look at a more aggregate level, consider an industry of n produc-
tion units, Xn = {

(Xi , Yi )
∣∣ i = 1, . . . , n

}
, which can be partitioned into L groups

(according some external economic criteria) with the input-output allocation of each

pal Component Analysis) to aggregate hospital outputs into a single output measure. An alternative
approach would be to use a price-based aggregation approach (Zelenyuk 2020).
5Other standard regularity conditions are “No Free Lunch” and “Producing Nothing is Possible”
(see more details in Sickles and Zelenyuk 2019).
6Being similar to recent studies in the literature (e.g. Clement et al. 2008; Hu et al. 2012;
Besstremyannaya 2013; Chowdhury and Zelenyuk 2016), we measure efficiency in output direc-
tion because the level of inputs used in public hospitals is usually fixed and influenced by external
factors (the budget of hospitals are usually planned in advance with relatively fixed (typically 12+
months) labour contracts and huge investment in fixed inputs). Moreover, an output-oriented model
is consistent with the aim of Queensland Health, which is to maximize healthcare services delivered
to local community from given resources (see Queensland Health 2016).
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group, say group �, denoted as X� = {(
X �

i , Y �
i

) ∣∣ i = 1, . . . , n�

}
, � ∈ {1, · · · , L}.

One can measure the efficiency of each group � in the industry by using the aggre-
gate efficiency measure proposed by Färe and Zelenyuk (2003), extended by Simar
and Zelenyuk (2007) and further elaborated on in Simar and Zelenyuk (2018). The
main advantage of this measure is that it uses meaningful weights derived from the
economic optimization principle to aggregate individual efficiency scores in order
to construct a group measure (see detail in Färe and Zelenyuk 2003). In the case of
univariate output, the aggregate efficiency for group � is theweighted average of indi-
vidual efficiency scores, where weights are output shares of individual production
units in the group and is defined as

T E
� =

n�∑

i=1

λ
(
X �

i , Y �
i

) × S�
i , S�

i = Y �
i∑n�

i=1 Y �
i

. (5)

2.2 Nonparametric Estimators

2.2.1 DEA and FDH

In practice, � is unknown and thus needs to be estimated from a sample of pro-
duction units, say Xn . There have been two widely used approaches to estimate the
production frontiers in the literature, usually referred to as the ‘deterministic fron-
tier models’ and the ‘stochastic frontier models’. The deterministic frontier models
assume all observed production units belong to the technology set with probability
one, whereas the stochastic frontier models allow some observations to be outside of
the technology set by including two-sided random noise. The traditional Stochastic
Frontier Approach (SFA) requires parametric restrictions on the shape of the produc-
tion frontier and on the data generating process to estimate the frontier and to identify
the inefficiency term from the random noise component.7 Recently, semiparametric
and nonparametric estimators have been developed for stochastic frontier models
to mitigate the parameterization of the approach (see more details in Parmeter and
Zelenyuk 2019).

The deterministic frontier models appear to be more appealing because they are
usually handled via nonparametric estimators and rely on less restrictive assump-
tions. The most flexible deterministic frontier model is the Free Disposal Hull (FDH)
estimator introduced by Deprins et al. (1984), which requires only the strong dispos-
ability assumption on the technology set. If, in addition, one imposes the convexity
assumption on the technology set, one can use theData EnvelopmentAnalysis (DEA)
estimator, which was initiated by Farrell (1957) and popularized by Charnes et al.
(1978). For DEA models, one can further impose Constant Returns to Scale (CRS)
or Variable Returns to Scale (VRS) on the technology set to obtain CRS-DEA or

7The traditional stochastic frontier approach was proposed independently by Aigner et al. (1977)
and Meeusen and van Den Broeck (1977).
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VRS-DEA estimators (Färe et al. 1983; Banker et al. 1984). The three estimators can
be formulated respectively as follows

�̂F DH ≡
⎧
⎨

⎩
(x, y) : y ≤

n∑

i=1

ζi Yi , x ≥
n∑

i=1

ζi Xi ,

n∑

i=1

ζi = 1, ζi ∈ {0, 1} , i = 1, . . . , n

⎫
⎬

⎭
,

(6)

�̂C RS−DE A ≡
⎧
⎨

⎩
(x, y) : y ≤

n∑

i=1

ζi Yi , x ≥
n∑

i=1

ζi Xi , ζi ≥ 0, i = 1, . . . , n

⎫
⎬

⎭
, (7)

�̂V RS−DE A ≡
⎧
⎨

⎩
(x, y) : y ≤

n∑

i=1

ζi Yi , x ≥
n∑

i=1

ζi Xi ,

n∑

i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , n

⎫
⎬

⎭
.

(8)

The FDH/DEA estimators of technical efficiency are obtained by plugging �̂F DH

or �̂C RS−DE A or �̂V RS−DE A in (4). The asymptotic properties of FDH/DEA estima-
tors have been well-established in the literature (e.g. see Kneip et al. 1998, 2008;
Park et al. 2000, 2010). In summary, under appropriate assumptions, the estimators
are consistent (converging to the true values when sample sizes go to infinity) and
have limiting distributions. Convergence rates depend on the type of estimators and
the dimension of input-output space (the number of inputs, p, plus the number of out-
puts, q). To be more specific, the convergence rates for FDH, CRS-DEA, VRS-DEA
estimators are nκ , where κ = 1/(p + q), 2/(p + q), or 2/(p + q + 1), respectively
(e.g. see more discussion in Simar and Wilson 2015; Sickles and Zelenyuk 2019).

The envelopment estimators of aggregate efficiency of group � then can be
obtained by plugging the envelopment estimators of individual efficiency into equa-
tion (5)

T̂ E
� =

n�∑

i=1

λ̂
(
X �

i , Y �
i |Xn

) × S�
i , S�

i = Y �
i∑n�

i=1 Y �
i

. (9)

2.2.2 Partial Frontiers

The deterministic frontier models, however, are particularly sensitive to extreme
values and/or outliers because by construction, they fully envelop all observed data.
Various techniques have been proposed to deal with the disadvantage. One approach
is to identify and possibly delete any outliers in the data, but the approach, to some
extent, depends on how the researcher defines an ‘outlier’ (Simar and Wilson 2015).
As an alternative, one can also use the stochastic versions of DEA and FDH, where
data is prewhitened from the noise and outliers using nonparametric SFA in the first
stage and DEA/FDH is applied to estimate efficiency in the second stage (e.g. see
Simar 2007; Simar Zelenyuk 2011).
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Another approach is to use robust partial frontier estimators. There are mainly
two types of partial frontiers, which are (i) order-m frontiers introduced by Cazals
et al. (2002) and (ii) order-α quantile frontiers introduced byAragon et al. (2005) and
extended by Daouia and Simar (2007). The idea of partial frontier estimators is to
estimate something “close” to but not the boundary of the technology set (Simar and
Wilson 2013). For example, in output orientation, order-m frontiers are defined as the
expected maximum obtainable outputs among m production units drawn randomly
from the population of those using at most a given level of inputs. Meanwhile, order-
α quantile frontiers represent the expected maximum output levels that are exceeded
by 100 (1 − α)% of production units using less than or equal to a given level of
inputs.

The nonparametric estimators of these frontiers turn out to bemore appealing than
the conventional deterministic frontier models because they do not suffer from the
well-known curse of dimensionality and achieve the standard parametric root-n (

√
n)

rate of convergence (for a fixed value of order α) (Cazals et al. 2002; Aragon et al.
2005; Daouia and Simar 2007). Moreover, both the estimators are also consistent
estimators of the full frontier and share asymptotic properties with FDH estimators
but are more robust with respect to extreme values and/or outliers in finite sample
than the conventional FDH or DEA estimators (Simar and Wilson 2013).

Among the two above-mentioned partial frontier approaches, the order-α quantile
frontier estimators are argued to have better robustness properties than the order-m
frontier estimators. For example, Aragon et al. (2005) compared the two estimators
using various simulated data sets, and reached the same conclusion with all the data
sets that the order-m frontier estimators are less resistant to outliers than the order-
α quantile frontier estimators. Daouia and Simar (2007) examined the robustness
properties of the two estimators from the theoretical points of view using the concept
of influence function, and came up with the same conclusion. Thus, we will use the
order-α quantile frontier estimators in our analysis and focus our discussion on these
estimators.

Let us define the technology set � as the support of the joint distribution of a
random variable (X, Y ), which generates the random sample Xn . Here, we focus
on the interior of the set, �∗ = {

(x, y) ∈ �
∣∣FX (x) > 0

}
, where FX (·) represents

the marginal distribution of X . As in Cazals et al. (2002), the production function
defined in (3) can be rewritten in a probabilistic representation as

∂ P (x) = sup
y

{
y

∣∣ FY |X (y|x) < 1
}
, (10)

where FY |X (y|x) is the conditional distribution of Y given X ≤ x , i.e.

FY |X (y|x) = FXY (x, y)

FX (x)
, (11)

where FXY (x, y) = Prob (X ≤ x, Y ≤ y) is the joint distribution of (X, Y ).
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Equivalently, ∂ P (x) can be formulated as the order one quantile of the distribution
of Y given X ≤ x as

q1 (x) = inf
y

{
y ≥ 0

∣∣ FY |X (y|x) = 1
}
. (12)

One can interpret q1 (x) as theminimum output level not exceeded by any production
unit using atmost x inputs. Based on the formulation, Aragon et al. (2005) introduced
a concept of order-α quantile frontiers as the quantile functions of order α, α ∈ [0, 1],
of the distribution of Y given that X is less than or equal to a given level of inputs
and defined as

qα (x) = inf
y

{
y ≥ 0

∣∣ FY |X (y|x) ≥ α
}
. (13)

The order-α quantile frontier, qα (x), represents the output threshold exceeded by
100 (1 − α)% of production units using at most x inputs. The efficiency measure
with respect to the frontier is referred to as the order-α quantile efficiency and defined
as

λα (x, y) = inf
λ

{
λ

∣∣ FY |X (λy|x) ≥ α
}
. (14)

The order-α quantile efficiency represents the radial distance from a point in output
space representing the production unit toward the order-α quantile frontier. The
measure λα (x, y) can have values between 0 and+∞, where λα (x, y) < 1 indicates
that the production unit with input-output allocation (x, y) is above the order-α
quantile frontier (i.e. super-efficient production unit).

To estimate order-α quantile frontiers and order-α quantile efficiency, we can
apply the plug-in principle by replacing FY |X (·|·) in (13) and (14), respectively, by
its empirical analogue

q̂α,n (x) = inf
y

{
y ≥ 0

∣∣ F̂Y |X (y|x) ≥ α
}

(15)

and
λ̂α,n (x, y) = inf

λ

{
λ

∣∣ F̂Y |X (λy|x) ≥ α
}
. (16)

As an extension of Theorem 4.1 in Aragon et al. (2005), Daouia and Simar (2007)
show that under appropriate assumptions, order-α quantile efficiency estimators have
asymptotic normality with the standard parametric root-n (

√
n) rate of convergence

for a fixed value of order α. Moreover, the order-α quantile efficiency estimators
converge to the FDH estimator as α → 1

lim
α→1

λ̂α,n (x, y) = λ̂F DH (x, y) . (17)

More details on this interesting method can be found in Aragon et al. (2005) and
Daouia and Simar (2007), while in the next section we will apply it to analyze the
efficiency of public hospitals in Queensland, Australia.
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Before going to discuss the empirical results, it is worth noting here that individual
efficiency of each hospital in this study is estimated using the entire industry sample
(a sample of size n). It is also important to emphasize that while we recognize that
each hospital may use different technologies (and potentially much more complex
than anymodel can handle), the goal of this study is to measure the relative efficiency
with respect to the frontier of the unconditional technology set, where the so-called
‘separability assumption’ (Simar and Wilson 2007, 2011) is satisfied by definition.
In a sense, it is similar to a grand competition, like Olympics or country-wide student
evaluation, where everyone is measured with respect to the same criteria, regardless
of their backgrounds.

It is very well possible that further stratification of the sample is needed to account
for various conditions that each of the hospitals may face and potentially may prevent
them from reaching the frontier of the unconditional technology set. In such cases,
an alternative (as well as complementary) strategy would be to take the so-called
conditional frontier approach, where the frontier may vary across different groups
or even depend on the values of various continuous variables (and thus allow for
uncountably infinite possibilities of different frontiers).8

To be more precise, the conditional technology can be defined (following Simar
and Wilson 2007, 2011) as

� z = {
(X, Y )

∣∣X can produce Y when Z = z
}
,

where Z is a vector of conditioning variables (potentially very large one, and in reality
possibly endogenous to the production unit), and z is a particular value it may take
out of the all the possibilities, denoted by the set Z. Meanwhile, the unconditional
technology (which we focus on here) is then defined as

� =
⋃

z∈Z
� z,

which does not depend on Z .
Recently, rigorous statistical tests have been developed to verify which of the

pre-selected models fit a given data ‘tighter’ according to a selected statistical cri-
terion, for a pre-selected set of conditional variables, Z , and a pre-selected order of
the frontier and other assumptions.9 In our case, there are several dozens of potential
variables that one may hypothesize as potentially determining the conditional fron-
tiers alone or in various combinations with each other and in different combinations
with other assumptions on the model and different orders (α) of the frontier. The
number of all such unique possible combinations is very large and there is no theory

8E.g. one could use Badin et al. (2012) approach or, alternatively, a nonparametric stochastic
approach (e.g. see Simar et al. 2017; Parmeter and Zelenyuk 2019, and references therein).
9E.g. see Daraio et al. (2018) and Simar and Wilson (2020) for details. Similar tests can be also
explored for the nonparametric and semiparametric stochastic frontiers mentioned above, e.g. see
Simar et al. (2017).
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that dictates which combinations shall or shall not be considered. And so, in prin-
ciple, once this strategy is taken, it is fair to consider all the relevant combinations
in the testing to arrive to a robust conclusion, which is well beyond the scope of
this paper. In principle, such testing and selection of a tightest-fit model out of the
myriad of possibilities can be made automatic by adapting various machine learning
techniques (LASSO, best subset selection, forward step-wise selection, etc.), which
is also a subject in itself and so is left for future endeavours.

3 Variables and Data

In this study, we compare the technical efficiency of public hospitals across 15 geo-
graphically based HHSs in Queensland in the financial year 2016/17.10 Our sample
includes 111 public acute hospitals.11 The hospital data are sourced from two data
collections of Queensland Health, namely Financial and Residential Activity Collec-
tion (FRAC) and Monthly Activity Collection (MAC). We obtained the information
about hospital staffing and drug, surgical and medical supply expenditures from the
FRAC,while theMACprovided uswith the data on the number of beds, non-admitted
patient activities, and admitted patient episodes of care by Diagnosis-Related Groups
(DRGs).

Following the commonpractice in the literature,12 tomodel the production process
of hospitals,we use three inputs,which are labour input, capital input and consumable
input. Regarding the labour input, the data on hospital staffing is provided in the
form of Full-Time Equivalent (FTE) staff in six major categories including salaried
medical officers, nurses, diagnostic and health professionals, other personal care
staff, administrative and clerical staff, and domestic and other staff. To increase the
discriminant power of the nonparametric envelopment estimator, but still cover the
information contained in all the labour categories, we reduce the dimensions using
Principal Component Analysis (PCA). In particular, we adopt the variant of PCA
proposed by Daraio and Simar (2007) to aggregate the six labour categories into a
single measure of labour input, called labour factor (denoted as FLABOUR). For the
other two inputs, we use the number of beds (BEDS) as a proxy for capital input, and

10There are 16HHSs inQueensland, but only 15HHSs directlymanage and operate public hospitals
in defined local geographical areas, the remaining HHS is a specialist statewide HHS dedicated to
caring for children and young people from across Queensland.
11Public hospitals in Queensland include acute hospitals, mixed sub- and non-acute hospitals, early
parenting centres, women’s and children’s hospitals, and psychiatric hospitals. We only consider
public acute hospitals, which account for more than 90% of inpatient cases treated. Our sample
does not include hospitals that were just opened in 2017 and hospitals that are not operated by a
HHS.
12See the reviews in O’Neill et al. (2008); Kohl et al. (2019).
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drug, surgical andmedical supply expenditure (DMSEXP) as a proxy for consumable
input.13

Similarly, using Daraio and Simar’s (2007) approach, we aggregate two widely
usedmeasures of hospital outputs, namely (i) non-admitted occasions of services and
(ii) casemix weighted inpatient episodes, into a single output measure, called output
factor (we denote as FOUTPUT). The information about non-admitted occasions of
services, which include both outpatient visits and emergency department services, is
readily available in our datasets. Meanwhile, the casemix weighted inpatient episode
is constructed as the weighted sum of the number of inpatient episodes by DRG,
where the weight is the inlier DRG cost weight obtained from the Independent
Hospital Pricing Authority.14

In addition, we obtain information about hospital peer groups and geographic
location from Australian Institute of Health and Welfare (2015). Based on hospital
peer groups, in our study, hospitals are classified as large hospitals if they are principal
referral hospitals, public acute group A hospitals, or public acute group B hospitals,
and classified as small hospitals if they are public acute group C hospitals, or public
acute group D hospitals.15 Moreover, hospitals in our sample are also categorized
into two groups based on their geographic location, namely remote hospitals (located
in remote and very remote areas), and non-remote hospitals (located in major cities,
inner regional, or outer regional areas).16

Table1 provides information about the number of hospitals, proportion of remote
and small hospitals as well as total inputs utilized and total outputs provided by all
hospitals belonging to each HHS in our sample. We can see that HHS 402, HHS
403 and HHS 436 are the only HHSs where all hospitals are small hospitals.17

Moreover, almost all of their hospitals are located in remote areas. Meanwhile, the
majority of hospitals managed by HHS 408, HHS 431, HHS 487, and HHS 494 are
large hospitals and located in non-remote areas. Since the distributions of inputs and
output are highly right-skewed with the large and non-remote hospitals being on the
right tails of the distributions (see Fig. 1), the utilization of inputs and the provision
of services varies significantly across the HHSs in our sample. For instance, HHS
436 has the total number of beds of only 69. Meanwhile, the total number of beds

13Seemore discussion about the selection and construction of hospital inputs and outputs in Chowd-
hury et al. (2014); Chowdhury and Zelenyuk (2016).
14Ideally, outputs of hospitals should be measured by the improvement in medical condition of
patients. However, it is technically difficult to obtain this measure in practice, thus most of the
hospital efficiency studies use quantities of services as an alternative measure of hospital outputs
(Hollingsworth 2008).
15Public acute hospitals inAustralia are divided into five groups listed in descending order of activity
volume and service diversification, as follows: principal referral hospitals, public acute group A
hospitals, public acute group B hospitals, public acute group C hospitals, public acute group D
hospitals. According to Australian Institute of Health andWelfare (2015), hospitals in the first three
groups are generally larger than hospitals in the last two groups.
16The classification is based on the remoteness area information provided in the Australian hospital
peer groups in which the remoteness of a hospital is measured by the physical road distance to its
nearest urban centre.
17Note that the IDs here are not the real ID but randomly generated for each HHS.
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Table 1 Descriptive Statistics of variables by HHSs

Random
ID

No. of
Hospitals

Proportion
of Remote
hosptials

Proportion
of Small
hospitals

No. of
Beds
(Total)

DMSEXP
(Total)
($
millions)

FLABOUR
(Total)
FTE

FOUTPUTa

(Total)

402 4 1.00 1.00 104 3.33 159.42 0.39

403 11 0.91 1.00 166 5.09 190.88 0.53

408 2 0.00 0.00 1167 170.77 3849.69 8.34

418 5 0.00 0.80 509 44.25 1270.69 3.19

423 8 0.25 0.88 335 50.44 1033.18 2.74

431 5 0.00 0.20 2354 387.34 5516.82 16.14

435 6 1.00 0.83 119 8.76 331.07 1.04

436 5 1.00 1.00 69 2.95 110.71 0.27

442 12 0.17 0.83 526 64.35 1211.94 3.17

451 7 0.00 0.86 843 112.95 2420.74 5.04

468 8 0.38 0.88 823 97.46 2207.21 5.25

478 10 0.00 0.70 584 64.53 1406.52 4.01

481 19 0.11 0.95 701 70.22 1624.25 3.98

487 4 0.00 0.25 300 90.02 1772.83 4.23

494 5 0.00 0.20 1937 316.03 5647.32 13.65
aSince the unit of measurement of non-admitted occasions of services and casemix weighted inpa-
tient episodes are different, we normalize them by their standard deviations before the aggregation.
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operated by HHS 431 is 2354, being nearly 35 times higher than that of HHS 436.
The similar pattern is also observed on the output side, where the highest figure of
output factor is around 60 times higher than its lowest figure.

One issue with frontier estimators is the possibility of ‘gaps’ between small and
large production units on the output or input axes, which might cause difficulty in
estimating the frontiers.18 The histograms (with jittered points representing individ-
ual hospitals) in Fig. 1 help us to visualize the distributions of the inputs and output
in our sample to identify the possible ‘gaps’. Looking at Fig. 1, it seems to be that
there do not exist such “gaps” between small and large hospitals in our dataset.

4 Results and Discussions

4.1 Univariate Input-Output Illustration

In this subsection, we aim at providing a graphical illustration of different types of
frontier estimators. To do so, we utilize the same technique as discussed in Sect. 3 to
aggregate inputs further into a single variable, we denote as FINPUT, representing
all resources utilized by hospitals. In the case of univariate input-output production
technology, we can present the estimated production frontiers (i.e. production func-
tions) on a 2-D graph together with data points as shown in Fig. 2. As we can see,
DEA and FDH estimators envelope all the data points, whereas some data points are
above the estimated order-α quantile frontiers (even for a relatively high value of
α, say, α = 0.99). Moreover, when α increases to 1, the estimated order-α quantile
frontiers get closer to the estimated FDH frontier. Actually, as pointed out in Sect. 2,
the FDH frontier is a special case of order-α quantile frontiers when α = 1.

4.2 Main Analysis: Multiple Inputs Case

Before discussing the results, it is worth mentioning here that the results in this study
are reported based on the reciprocal of the output-oriented efficiency score, which
gives an efficiency measure between 0 and 1 for FDH and DEA estimators, and
an efficiency measure between 0 and +∞ for order-α quantile frontier estimators.
As a result, if a hospital has an efficiency score from the order-α quantile frontier
estimators in (0, 1), {1}, or (1,+∞), then it is interpreted, respectively, as “below”,
“on”, or “above” the corresponding order-α quantile frontier.

Figure3 shows how p (α), the percentage of hospitals being above the estimated
order-α quantile frontier, changes when the order α increases. It is remarkable that
when the order α increases from 0 to 0.8, p (α) decreases slowly, indicating that the

18We thank the anonymous referee for this insight.
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Fig. 3 Evolution of the proportion of hospitals being above the estimated order-α quantile frontier

quantile frontiers of orders α in this range are very tight. From the order of around
0.8, p (α) decreases with a faster rate, showing that the quantile frontiers become
more spaced. The values of p (α) are, however, still relatively high for the values of
α close to one. For example, p (α) is 51% for α = 0.95, 30% for α = 0.98 and still
5% for α = 0.99. This fact suggests that only quantile frontiers of orders extremely
close to one are possibly influenced by extreme values.

In the following analysis, wemeasure hospital efficiency with respect to the quan-
tile frontiers of order α = 0.99. This quantile frontier is less likely to be affected by
extreme values/outliers and still represents the output threshold exceeded by only
1% of hospitals in population using at most a given level of inputs. In our sample,
all of those super-efficient hospitals are large and non-remote hospitals.

We are interested in comparing hospital efficiency across HHSs, thus after obtain-
ing the individual estimates from various estimators (including order-0.99 quantile
frontier, FDH, VRS-DEA and CRS-DEA), we utilize the aggregate efficiency mea-
sure discussed in Sect. 2 to analyze the performance of HHSs. Table2 reports the
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Table 2 Estimated Aggregate Efficiencies

Random ID Efficiency Estimators Clusters

Order-0.99
quantile
frontiers

FDH VRS-DEA CRS-DEA

436 0.82 0.82 0.57 0.53 3

403 0.87 0.87 0.69 0.62 3

402 0.89 0.89 0.68 0.54 3

442 0.93 0.93 0.76 0.59 2

481 0.97 0.97 0.80 0.56 2

478 0.98 0.98 0.88 0.64 2

423 0.98 0.98 0.93 0.63 2

435 0.98 0.98 0.91 0.74 2

418 0.99 0.99 0.93 0.57 2

487 0.99 0.99 0.96 0.84 2

451 1.04 1.00 0.76 0.48 2

494 1.06 0.92 0.91 0.57 2

408 1.24 1.00 0.99 0.50 1

468 1.27 0.99 0.95 0.54 1

431 1.36 1.00 0.96 0.64 1

Notes
*Results are reported based on the reciprocals of the output-oriented efficiency scores
*Computations are done in R (R Core Team 2019) using ‘frontiles’ package (Daouia and Laurent
2013) and ‘Benchmarking’ package (Bogetoft and Otto 2019)

estimated aggregate efficiencies, and Fig. 4 presents the estimated aggregate effi-
ciencies by different types of estimators on a parallel coordinate plot.

For both VRS-DEA and CRS-DEA estimators, some HHSs turn out to be very
inefficient, especially for CRS-DEA estimators, where 9 out of 15 HHSs are at least
40% inefficient (see Fig. 4). On the other hand, these models give a high variation
in efficiency (or have high discriminative power) that might be explained through
additional analysis. The prevalence of inefficient HHSsmight be attributed to the fact
that the frontiers estimated by DEA estimators are particularly sensitive to extreme
values. A very few super-efficient production units can possibly shift the whole
estimated frontiers outward and substantially change the distribution of the estimated
efficiency scores. Identifying and removing these outliers from the sample (and
studying them separately) may be useful for further analysis with the CRS-DEA
model since it has value in itself. Indeed, provided there are no outliers, CRS-DEA
can be considered as the most appropriate benchmark from a social point of view to
evaluate the performance of production units in the public sector because it identifies
the level of highest utilization of inputs into outputs (or highest average productivity)
and the best practice socially optimal scale.19 In our sample, five hospitals are on the

19See more discussion in Grosskopf et al. (2020) and Nguyen and Zelenyuk (2021).
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CRS-DEA frontier, which are hospital 1119, hospital 1031, hospital 1035, hospital
1095 and hospital 1001.20 Among these five hospitals, four hospitals are small and
located in remote areas. It might be an indicator that large hospitals in our sample
are not operating near the socially optimal scale, and this can be explored in future
research.

Compared toDEAestimators, FDHestimators are less sensitive to extremevalues.
The estimated aggregate efficiencies obtained from FDH estimators are relatively
reasonable ranging from 0.8 to 1. However, the FDH model has low discriminative
power with many observations attaining high or 100% efficiency scores, of these
some appear to be very inefficient when benchmarking using DEA. Moreover, for
someHHSs, the evaluation of relative performance seems still to be influenced by the
presence of super-efficient production units. For example, looking at Fig. 4, we can
see thatHHS494 is in the top highest performanceHHSsbased onorder-0.99 quantile
aggregate efficiency, but it is in the bottom lowest performance HHSs based on FDH
aggregate efficiencies. Due to the limited space, in the following discussion, we focus
exclusively on the results obtained from order-0.99 quantile frontier estimators.

Based on order-0.99 quantile aggregate efficiencies, we use k-mean clustering
technique to classify HHSs in Queensland into three groups, namely relatively low,
medium and high efficiency (denoted as clusters 3, 2 and 1, respectively, in Table2).21

The relatively low-efficiency group includes HHS 402, HHS 403 and HHS 436. The
relatively high-efficiency group includes HHS 408, HHS 431 and HHS 468. The
relatively medium efficiency group is composed of the remaining HHSs.

20Note that the IDs here are not the real ID but randomly generated for each hospital.
21K-mean clustering is an unsupervised machine learning algorithm helping cluster data into a
predetermined number of clusters so as to minimize the within-cluster sum of squares.
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To further investigate the differences in efficiency of HHSs, we look at character-
istics of their hospitals. As discussed in Sect. 3, HHS 402, HHS 403 and HHS 436
are the only HHSs with all their hospitals being small hospitals. Moreover, almost
all of their hospitals are located in remote areas. The boxplots in Fig. 5 provide some
insights about the relative performance of hospitals according to these characteris-
tics. In our sample, large hospitals and hospitals in non-remote areas are relatively
more efficient than small hospitals and hospitals in remote areas, respectively.

The above explanatory analysis suggests that the relatively low efficiency of HHS
402, HHS 403 and HHS 436 with respect to the order-0.99 quantile frontier can be
partially explained by the fact that themajority of their hospitals are small and located
in remote areas. Rural hospitals are argued to face many disadvantageous conditions
(e.g. shortages of medical staff, high chronic illness rate in the rural population
and stagnation in the rural economy); thus they might not provide health services
as efficiently as urban hospitals do (Weisgrau 1995). Similarly, compared to large
hospitals, small hospitals might be less efficient because they usually have a lower
level of standardization and specialization, resulting in weaker communication and
coordination between hospital facilities (Munson and Zuckerman 1983).

The evidence about the relative inefficiency in utilizing healthcare resources of
small and remote hospitals might have useful policy implications for managers of
relevant HHSs as well as Queensland Health. The presence of public hospitals in
remote and very remote areas is an important vehicle to ensure equitable access to
health services for all residents in Queensland given its geographically dispersed
population. However, given the inefficiency of small and remote hospitals, other
models of health service delivery, such as Telehealth, perhaps should be given a
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Fig. 5 Boxplots (with jittered points representing individual hospitals) of estimates of order-0.99
quantile efficiencies by size and location
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higher priority to develop as an alternative measure to better meet the healthcare
needs of communities in rural areas.

It is worth recalling here that with the robust order-α quantile frontier estima-
tor, hospitals are benchmarked relative to the frontier nonparametrically estimated
from its closest peers, without imposing any assumptions of returns to scale, mono-
tonicity or convexity. This flexibility may be viewed both as an advantage in some
respects as well as a limitation in other respects. For example, the estimated effi-
ciency scores could be very high, e.g. 100% or higher, for some very large hospitals
perhaps because there are not many (or even any) peers to compare them with and
reveal their inefficiency. In particular, all such large hospitals could be very large and
very inefficient relative to the socially optimal scale frontier (see more discussion in
Nguyen and Zelenyuk 2021).

In previous studies in the Australian context, large and urban hospitals were also
found to be more efficient than small and rural hospitals (Paul 2002; Productivity
Commission 2010). However, as in the current paper, the constant returns to scale
assumption is not imposed in all these studies, and thus hospitals are not benchmarked
with respect to the socially optimal scale frontier. In future research, itmight be useful
to explore hospital efficiencywith respect to the socially optimal scale frontier using a
CRS-DEAmodel, since the scale efficiency might possibly be substantially different
between small and large hospitals and might influence their relative efficiency.

5 Concluding Remarks

In this study, we explored the state of the efficiency of public hospitals at the level of
Hospital and Health Services—independent statutory bodies who directly operate a
group of public hospitals in a defined geographical area, in Queensland, Australia. To
analyze their performance on the aggregate level, we utilize an aggregate efficiency
measure constructed from individual efficiency scores which were estimated using
various approaches. Besides the traditional nonparametric approaches like DEA and
FDH,we also use amore recent and very promising robust approach–order-α quantile
frontier estimators (Aragon et al. 2005). Our analysis suggests that efficiency scores
of some Local Hospital Networks in Queensland are relatively low, which can be
partially explained by the fact that themajority of their hospitals are small and located
in remote areas.

Care is, however, needed when interpreting the results. High-efficiency scores of
large hospitals with respect to the order-α quantile frontier do not necessarily mean
that they are efficient from a social point of view. These hospitals might utilize too
many resources to deliver what can be otherwise done by smaller sized hospitals
that operate at a socially optimal scale (see more discussion with intuitive examples
in Nguyen and Zelenyuk 2021). Indeed, operating at a socially optimal scale is of
vital importance for the healthcare systems, particularly in urgent circumstances,
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like pandemics. It allows hospitals to flexibly expand their operations to efficiently
deliver the necessary healthcare services to society.

Moreover, the relatively low aggregate efficiency scores of some HHSs do not
necessarily mean that they are not as efficient as other HHSs in operating public
hospitals. There might possibly be other factors beyond the control of managers that
are negatively affecting the performance of their hospitals. Remoteness and size are
just two among many factors that are necessary to take into account.22 Moreover,
although the above explanatory analysis is an important step to identify sources
of efficiency differentials, more analysis that will account for other confounding
factors is needed. For example, this can be done by using the truncated regression
with the bootstrap approach of Simar andWilson (2007) or the conditional efficiency
framework of Badin et al. (2012).

Similar to many other studies in the literature, due to data availability, this study
does not take into account the quality dimension when estimating hospital efficiency
and comparing the performance of HHSs. This might be unfair for those who have to
utilize more resources to maintain the high quality of services. Therefore, a natural
recommendation is to gather more data to incorporate the output quality indicator(s)
in the analysis. It is also worth remarking here that the aggregation of inputs and out-
puts in this study helps to increase discrimination power and to mitigate the curse of
dimensionality issue for nonparametric estimators, but it may come at a cost of losing
some information and incurring aggregation bias. As a result, considering different
aggregation strategies and sensitivity of results across them could be a direction for
future research. Another fruitful direction of research would be to develop and apply
statistical tests based on Central Limit Theorems for aggregate efficiency recently
developed by Simar and Zelenyuk (2018) to statistically compare the performance
of hospitals at HHS level.
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On the Behavior of Extreme
d-dimensional Spatial Quantiles Under
Minimal Assumptions

Davy Paindaveine and Joni Virta

Abstract Spatial or geometric quantiles are among the most celebrated concepts
of multivariate quantiles. The spatial quantile μα,u(P) of a probability measure P
over Rd is a point in R

d indexed by an order α ∈ [0, 1) and a direction u in the
unit sphere Sd−1 of Rd—or equivalently by a vector αu in the open unit ball of Rd .
Recently, Girard and Stupfler (2017) proved that (i) the extreme quantiles μα,u(P)

obtained as α → 1 exit all compact sets of Rd and that (ii) they do so in a direction
converging to u. These results help understanding the nature of these quantiles: the
first result is particularly striking as it holds even if P has a bounded support, whereas
the second one clarifies the delicate dependence of spatial quantiles on u. However,
they were established under assumptions imposing that P is non-atomic, so that it
is unclear whether they hold for empirical probability measures. We improve on
this by proving these results under much milder conditions, allowing for the sample
case. This prevents using gradient condition arguments, which makes the proofs very
challenging. We also weaken the well-known sufficient condition for the uniqueness
of finite-dimensional spatial quantiles.

1 Introduction

The problem of defining a satisfactory concept of multivariate quantiles in R
d is a

classical one and has generated a huge literature in nonparametric statistics; we refer
to Serfling (2002) and the references therein. One of the most famous solutions is
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given by the spatial or geometric quantiles introduced in Chaudhuri (1996), which
are a particular case of the multivariate M-quantiles from Breckling and Chambers
(1988); see also Koltchinski (1997). Spatial quantiles are defined as follows.

Definition 1 Let P be a probability measure over Rd . Fix α ∈ [0, 1) and u ∈ Sd−1,
where Sd−1 := {z ∈ R

d : ‖z‖2 = z′z = 1} is the unit sphere in R
d . We will say

that μα,u = μα,u(P) is a spatial quantile of order α in direction u for P if and
only if it minimizes the objective function

μ �→ OP
α,u(μ) :=

∫
Rd

{‖z − μ‖ − ‖z‖ − αu′μ
}
dP(z)

overRd (the second term in the integrand may look superfluous as it does not depend
on μ, but it actually allows avoiding any moment conditions on P).

Existence and uniqueness of μα,u will be discussed in the next section. It is easy
to check that, for d = 1, spatial quantiles reduce to the usual univariate quantiles.
The success of spatial quantiles is partly explained by their ability to cope with high-
dimensional data and even functional data; see, e.g., Cardot et al. (2017), Cardot
et al. (2013), Chakraborty and Chaudhuri (2014) and Chakraborty and Chaudhuri
(2014). These quantiles were also usedwithmuch success to conductmultiple-output
quantile regression, again also in the framework of functional data analysis; we refer
to Chaouch and Laïb (2013), Cheng and De Gooijer (2007), and Chowdhury and
Chaudhuri (2019). The present work, however, focuses on the finite-dimensional
case.

In a slightly different perspective, spatial quantiles allow measuring the centrality
of any given location in Rd with respect to the probability measure P at hand: if the
location z in R

d coincides with the quantile μα,u , then a centrality measure for z is
given by its spatial depth 1 − α; see Gao (2003), Serfling (2002) or Vardi and Zhang
(2000). This also leads to a spatial concept of multivariate ranks; see, e.g., Serfling
(2010). For recent results on spatial depth and spatial ranks, we refer to Serfling
(2021a, b) and to the references therein. The deepest point of P , equivalently its
most central quantile, is the quantile μ0 := μ0,u obtained for α = 0 (the dependence
on u of course vanishes at α = 0). This is the celebrated spatial median, which is
one of the earliest robust location functionals; see, e.g., Brown (1983) or Haldane
(1948). For the other quantiles, the larger α is, the less central the quantiles μα,u are
in each direction u.

The focus of the present work is on the extreme spatial quantiles that are obtained
as α converges to one. Recently, Girard and Stupfler (2017) derived striking results
on the behavior of such extreme spatial quantiles; see alsoGirard and Stupfler (2015).
In particular, they showed that, under some assumptions on P that do not require
that P has a bounded support, these quantiles exit all compact sets of Rd . Their
results, however, require in particular that P is non-atomic, hence remain silent about
empirical distributions Pn associated with a random sample of size n from P . Of
course, consistency results will imply that the behavior of sample extreme quantiles
will mimic the behavior of the corresponding population quantiles as n diverges to
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infinity; yet for any fixed n, even for large n, there is no guarantee that the results
of Girard and Stupfler (2017) will apply. The goal of the present work is therefore
to establish some of these results on extreme spatial quantiles under less stringent
assumptions, that will allow for the sample case. Beyond this, we will also weaken
the well-known sufficient condition for uniqueness of spatial quantiles. Our results
are stated and discussed in Sect. 2, then are proved in Sect. 3.

2 Results

We will say that P is concentrated on a line with direction u∗(∈ Sd−1) if and only
if there exists z0 ∈ R

d such that P[{z0 + λu∗ : λ ∈ R}] = 1. Of course, we will say
that P is concentrated on a line if and only if there exists u∗ ∈ Sd−1 such that P is
concentrated on a line with direction u∗. We then have the following existence and
uniqueness result.

Theorem 1 Let P be a probability measure over Rd . Fix α ∈ [0, 1) and u ∈ Sd−1.
Then, (i) P admits a spatial quantile μα,u. (ii) If P is not concentrated on a line,
then μα,u is unique. (iii) If P is not concentrated on a line with direction u, then μα,u

is unique for any α > 0. (iv) If P is concentrated on a line with direction u, say, the
line L = {z0 + λu, λ ∈ R}, then any spatial quantile μα,u belongs to L; in this case,
any such quantile is of the form μα,u = z0 + �αu, where �α is a spatial quantile of
order α in direction 1 for Pz0,u, with Pz0,u the distribution of u

′(Z − z0) when Z has
distribution P.

The existence result in Theorem 1(i) was established by Kemperman (1987), but,
since this paper is not easily accessible, we provide our own proof in Sect. 3. The
uniqueness result in Theorem 1(ii) is well-known and can be proved by generaliz-
ing to an arbitrary quantile the proof for the median in Milasevic and Ducharme
(1987). The result in Theorem 1(iii) is original and shows that the only case where
uniqueness ofμα,u , α > 0, may fail is the one where P is concentrated on a line with
the corresponding direction u. If P is indeed of this form, then uniqueness may fail
exactly as for univariate (spatial) quantiles; for instance, if P is the uniform distri-
bution on {(−2, 0), (−1, 0), (0, 0), (1, 0), (2, 0)}, then any point of the form (z, 0)
with 1 ≤ z ≤ 2 is a spatial quantile of order α = .6 in direction u = (1, 0) (recall
that the indexing of the classical univariate quantiles differs from the center-outward
indexing used for spatial quantiles). Finally, note that, in case (iii), the spatial quan-
tile μα,u may belong to the line on which P is concentrated (an example is given
below the proof of Lemma 3).

Our main goal is to establish, under very mild conditions, two results that were
recently proved in Girard and Stupfler (2017) under the assumptions that P is non-
atomic and is not concentrated on a line. The first result states that, as α converges
to one, spatial quantiles with order α will exit all compact sets in Rd . Our extension
of this result is the following.
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Theorem 2 Let P be a probability measure overRd . Let (αn) be a sequence in [0, 1)
that converges to one and let (un) be a sequence in Sd−1. Assume that, for any
accumulation point u∗ of (un), P is not concentrated on a line with direction u∗ or

∫
Rd

(‖z‖ + u′
∗z) dP(z) = ∞. (1)

Then, ‖μαn ,un‖ → ∞ as n → ∞ for any sequence of quantiles (μαn ,un ).

Some comments are in order. First, the result does not require that spatial quantiles
are unique, which materializes in the fact that the result is stated “for any sequence
of quantiles”. Second, the result allows for distributions that are concentrated on
a line, provided that the “moment-type” Condition (1) is satisfied. Clearly, it is
necessary that P has infinite first-order moments (hence, an unbounded support) for
this condition to be satisfied. It is not sufficient, though, as can be seen by considering
the limiting behavior, as α → 1, of μα,u for a probability measure that would be the
distribution of the random vector Z = −|�|u, where � is Cauchy. Third, note that
the result applies as soon as P is not concentrated on (typically, a few) specific
lines, namely those with a direction given by an accumulation point of (un). For
instance, if un = u for any n, then the result applies in particular as soon as P is
not concentrated on a line with direction u. But this condition is not even necessary,
as the above Cauchy example shows: for instance, in the Cauchy example above,
‖μα,−u‖ → ∞ as α → 1. Last but not least, Theorem 2 does not require that P is
non-atomic.

We illustrate this result on the basis of the following four examples, in which P =
Pn is the empirical measure associated with a sample z1, . . . , zn ∈ R

2. In Exam-
ple (a), n = 4 and the zi ’s were randomly drawn from the uniform distribution
over [−2, 2]2. The zi ’s in Example (b) are obtained by projecting those inExample (a)
onto the line {(λ, 0) : λ ∈ R}, whereas those in Example (c) are zi = (cos θi , sin θi ),
i = 1, 2, 3, with θi = 2π i/3, hence are the vertices of an equilateral triangle.
Finally, the four zi ’s in Example (d) are the vertices (±2,±1) of a rectangle.
These four settings were chosen since they represent point patterns in general
position, along a line, on the vertices of a regular polygon, and on the vertices
of a stretched regular polygon, respectively. For each of these examples, Fig. 1
shows the corresponding zi ’s as well as, for four different directions u (namely,
u = (cos(π j/6), sin(π j/6)), j = 0, 1, 2, 3), (linear interpolations of) the spatial
quantiles μαm ,u , αm = .001, .002, . . . , .999. The results are perfectly in line with
Theorem 2. Note in particular that, in Example (b), in which P is concentrated on
the line with direction u∗ = (1, 0), the spatial quantiles μα,u exit all compact sets
ofR2 when u 
= (±)u∗, as anticipated by Theorem 2. This fails to happen for u = u∗,
which is the only case in Fig. 1 for which our theoretical result remains silent.

The second result fromGirard and Stupfler (2017) we generalize essentially states
that the extreme spatial quantilesμα,u are eventually to be found in direction u, which
gives a clear interpretation to the direction u in which quantiles are considered (the
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Fig. 1 For u = (cos(π j/6), sin(π j/6)), with j = 0 (red), 1 (blue), 2 (green), and 3 (purple), the
plots show (linear interpolations of) the spatial quantiles μαm ,u , αm = 0.001, 0.002, . . . , 0.999,
in each of the examples a–d described in Sect. 2. Dashed lines are showing the halflines with
corresponding directions u originating from the spatial median

directions of non-extreme spatial quantiles do not allow for such a clear interpreta-
tion). Our version of this result is the following.

Theorem 3 Let P be a probability measure overRd . Let (αn) be a sequence in [0, 1)
that converges to one and let (un) be a sequence in Sd−1 that converges to u. Assume
that P is not concentrated on a line with direction u or that

∫
Rd

(‖z‖ + u′z) dP(z) = ∞

Then, μαn ,un/‖μαn ,un‖ → u as n → ∞ for any sequence of quantiles (μαn ,un ).
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The same comments made below Theorem 2 can be repeated here, but for the
fact that the sequence (un) here may only have one accumulation point, namely
its limit u. Again, the result holds for atomic probability measures, which allows
us to illustrate the results in Examples (a)–(d) above. Clearly, Fig. 1 reflects well
the conclusion of Theorem 3 in all cases, including those where the probability
measure P is concentrated on a line (again, the case associated with u = (1, 0) in
Example (b) is the only one for which our result remains silent).

3 Proofs

The proof of Theorem 1 requires the following three lemmas.

Lemma 1 Let P be a probability measure over Rd . Fix α ∈ [0, 1) and u ∈ Sd−1.
Then, (i)μ �→ OP

α,u(μ) is convex overRd , that is, forμ0, μ1 ∈ R
d (μ0 
= μ1) and t ∈

(0, 1), one has OP
α,u(μt ) ≤ (1 − t)OP

α,u(μ0) + t OP
α,u(μ1), where we let μt := (1 −

t)μ0 + tμ1. (ii) With the same notation, if P is not concentrated on the line contain-
ing μ0 and μ1, then OP

α,u(μt ) < (1 − t)OP
α,u(μ0) + t OP

α,u(μ1).

Proof of Lemma 1. Fix μ0, μ1 ∈ R
d and t ∈ (0, 1). Then, with μt = (1 − t)μ0 +

tμ1, we readily have

‖z − μt‖ − ‖z‖ − αu′μt

≤(1 − t){‖z − μ0‖ − ‖z‖ − αu′μ0} + t{‖z − μ1‖ − ‖z‖ − αu′μ1}. (2)

Part (i) of the result is then obtained by integrating over Rd with respect to P . As for
Part (ii), it follows from the fact that the inequality in (2) is strict for any z that does
not belong to the line containing μ0 and μ1. �

Lemma 2 Let P be a probability measure over Rd . Fix α ∈ [0, 1) and u ∈ Sd−1.
Then, P admits a spatial quantile μα,u.

Proof of Lemma 2. Write BR := {z ∈ R
d : ‖z‖ ≤ R} and fix λ > (1 + α)/(1 − α).

Pick R0 large enough so that P[BR0 ] ≥ λ/(λ + 1). Then,

OP
α,u(μ) =

∫
Rd

{‖z − μ‖ − ‖z‖ − αu′μ
}
dP(z) = O1(μ) + O2(μ),

where we have
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O1(μ) :=
∫
BR0

{‖z − μ‖ − ‖z‖ − αu′μ
}
dP(z)

≥
∫
BR0

{‖μ‖ − 2‖z‖ − α‖μ‖} dP(z)

≥λ(1 − α)‖μ‖
λ + 1

− 2R0

and

O2(μ) :=
∫
Rd\BR0

{‖z − μ‖ − ‖z‖ − αu′μ
}
dP(z)

≥
∫
Rd\BR0

{ − ‖μ‖ − α‖μ‖} dP(z)

≥ − (1 + α)‖μ‖
λ + 1

·

Therefore, for any μ, we have

OP
α,u(μ) ≥ λ(1 − α) − (1 + α)

λ + 1
‖μ‖ − 2R0 =: cλ,α‖μ‖ − 2R0,

where cλ,α is strictly positive. To conclude, pick R > 0 so that cλ,αR − 2R0 >

OP
α,u(0). As a convex function, μ �→ OP

α,u(μ) is continuous, hence admits a min-
imum, μ∗ say, in the compact set K := {μ ∈ R

d : ‖μ‖ ≤ R}. Since any μ /∈ K is
such that

OP
α,u(μ) ≥ cλ,αR − 2R0 > OP

α,u(0) ≥ min
μ∈K OP

α,u(μ),

we conclude that μ∗ also minimizes μ �→ OP
α,u(μ) over Rd , which establishes the

result. �

Lemma 3 Let P be a probability measure over Rd that is concentrated on a line, L
say,with directionu∗ ∈ Sd−1. Fixα ∈ (0, 1)andu ∈ Sd−1 \ {±u∗}. Then, eitherμα,u

is unique and belongs to L, or there exists a quantile μα,u that does not belong to L.
Proof of Lemma 3. By Lemma 2, there exists at least a quantile μα,u . Trivially, the
same proof also shows that μ �→ OP

α,u(μ) has a minimizer on L. Fix then μ∗(∈ L)

arbitrarily such that OP
α,u(μ∗) ≤ OP

α,u(μ) for any μ ∈ L.
Let Z be a random d-vector with distribution P . By assumption, Z = μ∗ + �u∗

for some random variable�, with distribution P� say. For any v ∈ Sd−1 and any h >

0, we then have
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OP
α,u(μ∗ + hv) − OP

α,u(μ∗)
h

= −αu′v +
∫
Rd

‖z − (μ∗ + hv)‖ − ‖z − μ∗‖
h

dP(z)

= −αu′v +
∫
R

‖λu∗ − hv‖ − ‖λu∗‖
h

dP�(λ),

so that

OP
α,u(μ∗ + hv) − OP

α,u(μ∗)
h

− {
P�[{0}] − sPu

′
∗v − αu′v

} =
∫
R

�h(λ) dP�(λ),

where we let sP := E[Sign(�)] and

�h(λ) := ‖λu∗ − hv‖ − ‖λu∗‖
h

−
{
I[λ = 0] − Sign(λ)(u′

∗v)I[λ 
= 0]
}
.

It is easy to check that, for any λ ∈ R, the limit of �h(λ) as h → 0 from above exists
and is equal to zero. Moreover, by using the inequality |‖x‖ − ‖y‖| ≤ ‖x − y‖, it
is readily seen that the function λ �→ |�h(λ)| is upper-bounded by the function λ �→
2 + |u′∗v| that does not depend on h and is P�-integrable. Therefore, Lebesgue’s
Dominated Convergence Theorem entails that μ �→ OP

α,u(μ) admits a directional
derivative in direction v at μ∗, and that this directional derivative is given by

∂OP
α,u

∂v
(μ∗) = P�[{0}] − v′(sPu∗ + αu). (3)

Now, using the fact that u∗ and u are linearly independent and that α > 0, one has

mα,u(μ∗) := min
v∈Sd−1

∂OP
α,u

∂v
(μ∗) = P�[{0}] − ‖sPu∗ + αu‖,

where the minimum is reached at v0 := (sPu∗ + αu)/‖sPu∗ + αu‖( 
= u∗) only.
We then consider two cases. (i) mα,u(μ∗) < 0: then, there exists h > 0 such that
OP

α,u(μ∗ + hv0) < OP
α,u(μ∗), in which case OP

α,u(μ∗ + hv0) < OP
α,u(μ) for any μ ∈

L, so that any global minimizer of μ �→ OP
α,u(μ) does not belong to L. (ii)

mα,u(μ∗) ≥ 0: then, any directional derivative in (3) associated with v ∈ Sd−1 \ {v0}
is strictly positive, so that, for any such v, one has OP

α,u(μ∗ + hv) > OP
α,u(μ∗) for

any h in an interval of the form (0, εv). Pick then, for a fixed v ∈ Sd−1 \ {v0} and
the corresponding interval (0, εv), an arbitrary h ∈ [εv,∞) and any hε ∈ (0, εv),
and write hε = (1 − λ) × 0 + λh, for λ := hε/h ∈ (0, 1). The convexity of OP

α,u
(Lemma 1(i)) entails that

λ{OP
α,u(μ∗ + hv) − OP

α,u(μ∗)} ≥ OP
α,u(μ∗ + hεv) − OP

α,u(μ∗) > 0,

showing that actually OP
α,u(μ∗ + hv) > OP

α,u(μ∗) for any h > 0. Continuity ofμ �→
OP

α,u(μ) (which also follows from convexity) implies that f (h) := OP
α,u(μ∗ +
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hv0) ≥ f (0) for any h > 0 (would there exist h > 0 such that OP
α,u(μ∗ + hv0) −

OP
α,u(μ∗) = f (h) − f (0) < 0, then, from continuity, there would exist v ∈ Sd−1 \

{v0} such that OP
α,u(μ∗ + hv) − OP

α,u(μ∗) < 0, a contradiction). It follows that μ∗
minimizesμ �→ OP

α,u(μ) overRd . If f (h) > f (0) for any h > 0, then thisminimizer
is unique, whereas if OP

α,u(μ∗ + h0v0) = f (h0) = f (0) = OP
α,u(μ∗) for some h0 >

0, then μ∗ + h0v0 /∈ L also minimizes μ �→ OP
α,u(μ) over Rd . The result follows. �

In the framework of Lemma 3, it may indeed happen that μα,u is unique and
belongs to L. For instance, if P is the uniform distribution over {(−1, 0), (0, 0),
(1, 0)} ⊂ R

2, α ∈ (0, 1
3 ) and u = (0, 1), then P is concentrated on the line L =

{λu∗ : λ ∈ R}, with u∗ = (1, 0), andμα,u = (0, 0) ∈ L is the unique order-α quantile
in direction u for P (this can be checked by proceeding as in the proof of Lemma 3).

We can now prove Theorem 1.

Proof of Theorem 1. (i) The result is an exact restatement of Lemma 2.

(ii) The proof is a straightforward extension of the one inMilasevic andDucharme
(1987). By contradiction, assume that there exist μ0 and μ1, with μ0 
= μ1, such
that OP

α,u(μ0) = OP
α,u(μ1) is the minimum of μ �→ OP

α,u(μ) over Rd . Since, by
assumption, P is not concentrated on the line containing μ0 and μ1, Lemma 1(ii)
readily yields that, for any t ∈ (0, 1),

OP
α,u((1 − t)μ0 + tμ1) < (1 − t)OP

α,u(μ0) + t OP
α,u(μ1) = OP

α,u(μ0),

which contradicts the fact that μ0 minimizes μ �→ OP
α,u(μ).

(iii) As in the proof of Part (ii), assume by contradiction that μ �→ OP
α,u(μ) has

at least two minimizers in Rd , now with α > 0. In view of Part (ii) of the result, it is
enough to consider the case where P would be concentrated on a line L with direc-
tion u∗( 
= ±u). Lemma 3 thus applies and guarantees that there exists a minimizer
ofμ �→ OP

α,u(μ) that does not belong toL. Thus, it is possible to pick minimizersμ0

andμ1 ofμ �→ OP
α,u(μ), withμ0 /∈ L andμ0 
= μ1. Clearly, P is not concentrated on

the line containing μ0 and μ1 (would it be the case, then P would be the Dirac mea-
sure at the intersection, {μ} say, between L and the line containing μ0 and μ1, hence
in particular would be concentrated on the line {μ + λu : λ ∈ R} that has direction u,
a contradiction). Therefore, Lemma 1(ii) again yields that, for any t ∈ (0, 1),

OP
α,u((1 − t)μ0 + tμ1) < (1 − t)OP

α,u(μ0) + t OP
α,u(μ1) = OP

α,u(μ0),

which contradicts the fact that μ0 minimizes μ �→ OP
α,u(μ).

(iv) Assume that P is concentrated on L = {z0 + λu, λ ∈ R}. Fix μ /∈ L. Let us
first show that μ is not a spatial quantile of order α in direction u for P . To do so,
write Z = μL + �u, where μL is the orthogonal projection of μ onto L. Define
further w := (μL − μ)/c, with c := ‖μL − μ‖. Since u′w = 0, we then have
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OP
α,u(μ + hw) − OP

α,u(μ)

h
= −αu′w +

∫
Rd

‖z − (μ + hw)‖ − ‖z − μ‖
h

dP(z)

=
∫
R

‖(μL + λu) − (μ + hw)‖ − ‖(μL + λu) − μ‖
h

dP�(λ)

=
∫
R

‖λu + cw − hw‖ − ‖λu + cw‖
h

dP�(λ).

This yields

OP
α,u(μ + hw) − OP

α,u(μ)

h
+

∫
R

w′(λu + cw)

‖λu + cw‖ dP�(λ) =
∫
R

gh(λ) dP�(λ),

where

gh(λ) := ‖λu + cw − hw‖ − ‖λu + cw‖
h

+ w′(λu + cw)

‖λu + cw‖
= h2 − 2hw′(λu + cw)

h(‖λu + cw − hw‖ + ‖λu + cw‖) + w′(λu + cw)

‖λu + cw‖ ·

Clearly, λ �→ |gh(λ)| is, for h ∈ (0, 1) say, upper-bounded by the function λ �→
(1/‖λu + cw‖) + 3 that is P�-integrable and does not depend on h (integrabil-
ity follows from the fact that ‖λu + cw‖2 = λ2 + c2 ≥ c2). Moreover, gh(λ) → 0
as h → 0 for any λ. Lebesgue’s Dominated Convergence Theorem thus shows that
the directional derivative of OP

α,u at μ in direction w exists and is equal to

∂OP
α,u

∂w
(μ) = −

∫
R

w′(λu + cw)

‖λu + cw‖ dP�(λ) = −
∫
R

c

‖λu + cw‖ dP�(λ) < 0.

Therefore, μ is not a spatial quantile of order α in direction u for P .
Consequently, all spatial quantiles of order α in direction u for P belong to L.

These can be characterized as follows. Redefine the random variable� through Z =
z0 + �u (in other words, � = u′(Z − z0)). Spatial quantiles are the minimizers
of μ �→ OP

α,u(μ) over Rd , which (we just showed it) coincide with the minimizers
of the same mapping over L. These minimizers take the form z0 + �αu, where �α

minimizes

λ �→ OP
α,u(z0 + λu) =

∫
Rd

{‖z − (z0 + λu)‖ − ‖z‖ − αu′(z0 + λu)} dP(z)

= −αu′z0 +
∫
R

{|t − λ| − ‖z0 + tu‖ − αλ} dP�(t),

or, equivalently, minimizes
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λ �→
∫
R

{|t − λ| − |t | − αλ} dP�(t)

(note that this last (objective) function, hence also the corresponding minimizers, do
not depend on u, which a posteriori justifies the notation �α). In other words, �α is a
spatial quantile of order α in direction 1 for P�. �

The proof of Theorem 2 requires both following preliminary results.

Lemma 4 Let P be a probability measure over Rd . Then, the function

(α, u, μ) �→ OP
α,u(μ) =

∫
Rd

{‖z − μ‖ − ‖z‖ − αu′μ
}
dP(z) (4)

is continuous over [0, 1] × Sd−1 × R
d .

Proof of Lemma 4. Since

|OP
α2,u2(μ2) − OP

α1,u1(μ1)|
≤

∫
Rd

∣∣‖z − μ2‖ − ‖z − μ1‖ − (α2u
′
2μ2 − α1u

′
1μ1)

∣∣ dP(z)

≤ ‖μ2 − μ1‖ + |α2u
′
2μ2 − α1u

′
1μ1|

≤ ‖μ2‖|α2 − α1| + ‖μ2‖‖u2 − u1‖ + (1 + α1)‖μ2 − μ1‖,

the function in (4) is Lipschitz over any bounded subset of [0, 1] × Sd−1 × R
d . The

result follows. �

Lemma 5 Let P be a probability measure overRd and fix u ∈ Sd−1. Assume that P
is not concentrated on a line with direction u or that

∫
Rd

(‖z‖ + u′z) dP(z) = ∞. (5)

Then the function

μ �→ OP
1,u(μ) :=

∫
Rd

{‖z − μ‖ − ‖z‖ − u′μ
}
dP(z)

does not have a minimum in R
d .

Proof of Lemma 5. Since P and u are fixed, we will write g(μ) := OP
1,u(μ)

throughout the proof. Letting μn := nu (with n a positive integer), this allows us to
write
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g(μn) =
∫
Rd

{‖z − nu‖ − (‖z‖ + n)
}
dP(z)

= −2n
∫
Rd

‖z‖ + u′z
‖z − nu‖ + ‖z‖ + n

dP(z)

= g<(μn) + g≥(μn),

where we let

g<(μn) := −2n
∫
Rd

(‖z‖ + u′z)I[u′z < 0]
‖z − nu‖ + ‖z‖ + n

dP(z) (≤ 0)

and

g≥(μn) := −2n
∫
Rd

(‖z‖ + u′z)I[u′z ≥ 0]
‖z − nu‖ + ‖z‖ + n

dP(z) (≤ 0).

Now, note that if (5) holds, then

∫
Rd

‖z‖I[u′z ≥ 0] dP(z) = ∞ or
∫
Rd

(‖z‖ + u′z)I[u′z < 0] dP(z) = ∞

(or both integrals are infinite). This leads to consider three cases.
Case (A):

∫
Rd ‖z‖I[u′z ≥ 0] dP(z) = ∞. Of course, we have

−g≥(μn) ≥ 2n
∫
Rd

‖z‖I[u′z ≥ 0]
‖z − nu‖ + ‖z‖ + n

dP(z).

Since (‖z‖ + n)2 − ‖z − nu‖2 = 2n‖z‖ + 2nu′z ≥ 0, we also have

− g≥(μn) ≥
∫
Rd

n‖z‖I[u′z ≥ 0]
‖z‖ + n

dP(z) =:
∫
Rd

hn(z) dP(z). (6)

Since hn(z) ≤ hn+1(z) for any z and the pointwise limit of hn is the function h defined
by h(z) := ‖z‖I[u′z ≥ 0], the Monotone Convergence Theorem yields

∫
Rd

hn(z) dP(z) →
∫
Rd

h(z) dP(z) = ∞,

which, jointly with (6), establishes that g≥(μn) → −∞. Since g(μn) ≤ g≥(μn), we
conclude that g(μn) → −∞, so that g does not have a minimum in Case (A).

Case (B):
∫
Rd (‖z‖ + u′z)I[u′z < 0] dP(z) = ∞. Using the Monotone Conver-

gence Theorem as in Case (A) readily provides that
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−g<(μn) = 2n
∫
Rd

(‖z‖ + u′z)I[u′z < 0]
‖z − nu‖ + ‖z‖ + n

dP(z)

= 2
∫
Rd

(‖z‖ + u′z)I[u′z < 0]√
1
n2 ‖z‖2 + 1 + 2

n |u′z| + 1
n ‖z‖ + 1

dP(z)

converges to ∫
Rd

(‖z‖ + u′z)I[u′z < 0] dP(z) = ∞

as n → ∞. Since g(μn) ≤ g<(μn), this yields g(μn) → −∞. It follows that g does
not have a minimum in Case (B).

Case (C):
∫
Rd ‖z‖I[u′z ≥ 0] dP(z) < ∞ and

∫
Rd (‖z‖ + u′z)I[u′z < 0] dP(z) <

∞. Using the finiteness of the first and second integrals, Lebesgue’s Dominated
Convergence Theorem readily yields

g≥(μn) → −
∫
Rd

(‖z‖ + u′z)I[u′z ≥ 0] dP(z)

and

g<(μn) → −
∫
Rd

(‖z‖ + u′z)I[u′z < 0] dP(z),

respectively. Therefore,

g(μn) = g<(μn) + g≥(μn) → −
∫
Rd

(‖z‖ + u′z) dP(z) =: i Pu .

In Case (C), P is not concentrated on a line with direction u by assumption, which
implies that, for any μ ∈ R

d ,

g(μ) − i Pu =
∫
Rd

{‖z − μ‖ + u′(z − μ)
}
dP(z) > 0.

This shows that the function g does not have a minimum in Case (C) either. The
result is thus proved. �

Theorem 2 then follows from Lemmas 4–5 in the same way as Theorem 2.1(i)
in Girard and Stupfler (2017) (but for the fact that we are considering distributions
that do not ensure uniqueness of quantiles). We still report the proof for the sake of
completeness.

Proof of Theorem 2. Ad absurdum, assume that there exists a sequence of quan-
tiles (μαn ,un ) such that ‖μαn ,un‖ does not diverge to infinity. Then, (μαn ,un , un) has
a subsequence that is bounded, hence from compactness, possesses a further sub-
sequence, (μαn�

,un�
, un�

) say, that converges in R
d × Sd−1, to (μ∞, u∞), say. By

construction, u∞ is an accumulation point of the sequence (un). For any �, we have



256 D. Paindaveine and J. Virta

OP
αn�

,un�
(μαn�

,un�
) ≤ OP

αn�
,un�

(μ)

for any μ ∈ R
d . In view of Lemma 4, taking limits as � → ∞ then provides

OP
1,u∞(μ∞) ≤ OP

1,u∞(μ)

for any μ ∈ R
d . Since this contradicts Lemma 5, the result is proved. �

The proof of Theorem 3 requires the following lemma.

Lemma 6 Let P be a probability measure over Rd and fix m ∈ (0, 2). Then,

tP(r) :=
∫
Rd

‖z‖√
(‖z‖ − r)2 + mr‖z‖ dP(z) → 0

as r → ∞.

Proof of Lemma 6. Fix δ > 0. For any r > 0, let Yr := ‖Z‖/r , where Z is a random
d-vector with distribution P . Then, with h := mδ2/4,

tP(r) = E

[ ‖Z‖√
(‖Z‖ − r)2 + mr‖Z‖

]
= E

[
Yr√

(Yr − 1)2 + mYr

]

= E

[
Yr I[Yr ≤ h]√

(Yr − 1)2 + mYr

]
+ E

[
Yr I[Yr > h]√

(Yr − 1)2 + mYr

]
.

Since y/
√

(y − 1)2 + my ≤ 2/
√
m(4 − m) for any y ≥ 0, this provides

tP(r) ≤ E

[√
Yr I[Yr ≤ h]√

m

]
+ 2√

m(4 − m)
P[Yr > h]

≤ δ

2
+ 2√

m(4 − m)
P[‖Z‖ > rh] < δ,

for r large enough. �
Proof of Theorem 3. In this proof, we use the notation

S in
u,c := Sd−1 ∩ {z ∈ R

d : u′z ≥ 1 − c}

and
Sout
u,c := Sd−1 ∩ {z ∈ R

d : u′z ≤ 1 − c}.

Ad absurdum, assume that there exists a sequence of quantiles (μαn ,un ) such that
(wn := μαn ,un/‖μαn ,un‖) does not converge to u. Thus, there exists ε > 0 such that
wn ∈ Sout

u,ε for infinitely many n. Upon extraction of a subsequence, we may assume
that wn belongs to Sout

u,ε for any n. By assumption, we may, still upon extraction of
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a subsequence, assume that un ∈ S in
u,ε/2 for any n. Assume for a moment that there

exist R > 0 and η ∈ (0, 1) such that

OP
α,v(rw) > OP

α,v(rv) (7)

for any α ∈ [η, 1), r ≥ R, v ∈ S in
u,ε/2 and w ∈ Sout

u,ε . Pick then n large enough to
have αn ≥ η and ‖μαn ,un‖ ≥ R (existence follows from Theorem 2). By definition,
this implies that

OP
αn ,un (‖μαn ,un‖wn) = OP

αn ,un (μαn ,un ) ≤ OP
αn ,un (‖μαn ,un‖un),

which contradicts (7).
Therefore, it is sufficient to prove (7). To do so, fix v ∈ S in

u,ε/2, w ∈ Sout
u,ε and η ∈

(0, 1) (we show that (7) holds, actually, not just for some η ∈ (0, 1) but for any η ∈
(0, 1)). Note that one has

√
2(1 − v′w) = ‖v − w‖ ≥ u′(v − w) = u′v − u′w ≥

(1 − ε/2) − (1 − ε) = ε/2 so that 2(1 − v′w) ≥ ε2/4, hence

v′w ≤ 1 − ε2

8
·

Write then

OP
α,v(rw) − OP

α,v(rv) =
∫
Rd

{‖z − rw‖ − ‖z − rv‖ − α(rv′w − r)
}
dP(z)

= rα(1 − v′w) +
∫
Rd

‖z − rw‖2 − ‖z − rv‖2
‖z − rw‖ + ‖z − rv‖ dP(z)

≥ rηε2

8
+

∫
Rd

2r(v − w)′z
‖z − rv‖ + ‖z − rw‖ dP(z)

≥ r

[
ηε2

8
− 4

∫
Rd

‖z‖
‖z − rv‖ + ‖z − rw‖ dP(z)

]
.

Now, using the fact that ‖v + w‖2 = 2(1 + v′w) ≤ 2(2 − ε2/8), we obtain

{‖z − rv‖ + ‖z − rw‖}2 ≥ ‖z − rv‖2 + ‖z − rw‖2
= 2‖z‖2 + 2r2 − 2r(v + w)′z ≥ 2‖z‖2 + 2r2 − 2

√
2(2 − ε2/8)r‖z‖

= 2{(‖z‖ − r)2 + √
2(

√
2 −

√
2 − ε2/8)r‖z‖} =: 2{(‖z‖ − r)2 + mεr‖z‖},

which provides

OP
α,v(rw) − OP

α,v(rv) ≥ r

[
ηε2

8
− 2

√
2

∫
Rd

‖z‖√
(‖z‖ − r)2 + mεr‖z‖

dP(z)

]
.
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Sincemε ∈ (0, 2), Lemma 6 guarantees that there exists R > 0, not depending on the
choice of v,w, η and α, such that for any r ≥ R, OP

α,v(rw) − OP
α,v(rv) ≥ rηε2/16 >

0. This proves (7), hence the result. �
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Modelling Flow in Gas Transmission
Networks Using Shape-Constrained
Expectile Regression

Fabian Otto-Sobotka, Radoslava Mirkov, Benjamin Hofner,
and Thomas Kneib

Abstract The flow of natural gas within a gas transmission network is studied with
the aim to model high-demand situations. Knowledge about the latter can be used
to optimise such networks. The analysis of data using shape-constrained expectile
regression provides deeper insights into the behaviour of gas flow within the net-
work. The models describe dependence of the maximal daily gas flow on the air
temperature, including further effects, like day of the week and type of node. Partic-
ular attention is given to spatial effects. Geoadditive models offer a combination of
such effects and are easily estimated with penalised mean regression. In order to put
special emphasis on the highest demands, we use expectile regression, a quantile-like
extension of mean regression that offers the same flexibility. Additional assumptions
on the influence of the temperature can be added via shape-constraints. The forecast
of gas loads for very low temperatures based on this approach and the application of
the obtained results is discussed.
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1 Introduction

Stochastic properties of the flowof gas in transmission networks are the subject of our
study, where we aim to support the optimisation of such networks. Statistical models
are suitable to describe the gas loads on nodes of the network, and enable viable
prediction of the future gas flow. This leads to the reduction of operational costs,
as the cost of control energy necessary to satisfy peak demand at low temperatures
can be minimised with a good forecast. Additionally, gas transportation operators
are obliged to sustain the supply of gas even during very cold days. Since there is
not much data available for very low temperatures, a good prediction is crucial for
reliable operation.Also, an evaluation of riskmeasures is important for the estimation
of flow limits at a given temperature.

Similar problems are investigated in Friedl et al. (2012),Mirkov and Friedl (2011),
where various nonlinear parametric and semiparametric regression models are sug-
gested to tackle the problem. The methodology suggested therein is suitable for
assessing the maximal gas loads at a single node but neglects the interplay of nodes
and the spatial effects within the network.

In this chapter,wepropose aversatile andflexible semiparametric expectile regres-
sion model with shape- constraints. Expectile regression was introduced by Newey
and Powell (1987) and constructed in analogy to quantile regression. The latter had
been proposed by Koenker and Bassett (1978) just a few years earlier. In a regression
scenario

yi = ηi,τ + εi,τ , i = 1 . . . , n, (1)

with quantile-specific predictorηi,τ , they relied on the assumption that for the quantile
function of the error term we have Qεi,τ (τ ) = 0 for some fixed quantile level τ ∈
(0, 1), i.e. the τ -quantile of the error distribution is considered to be zero. From this
assumption, it follows that the conditional quantile of level τ for the response yi
is given by the predictor ηi,τ , i.e. Qyi (τ ) = ηi,τ . Although the assumption on the
error term can only hold for one specific quantile level τ , one can still estimate a
series of regression specifications with dense set of quantile levels to allow for the
characterisation of the complete conditional distribution of the response variable y
instead of only the mean. We basically construct an empirical distribution from the
quantile estimates.

Especially in the present case, where extreme scenarios of gas usage and not just
the mean are of interest, such methods are preferable. Estimation of quantile-specific
predictors relies on minimising the asymmetrically weighted absolute residuals cri-
terion

n∑

i=1

wi,τ |yi − ηi,τ |

with weights

wi,τ = wi,τ (ηi,τ , yi ) =
{

τ, for yi ≥ ηi,τ

1 − τ, for yi < ηi,τ .
(2)
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However, it is not at all straightforward to include a flexible semiparametric model
structure with nonlinear, parametric, and spatial effects into a quantile regression
model. Especially a spatial effect usually relies on a quadratic penalty for smooth
results. Those penalties are natural partners to a least-squares estimate. Therefore,
we use expectile regression estimates that are obtained by minimising

n∑

i=1

wi,τ (yi − ηi,τ )
2.

with the underlying assumption that in regression model (1) the τ -expectiles eτ of
the error terms, defined as

eτ = arg mineE
[
wi,τ (e, εi,τ )(εi,τ − e)2

]

are zero. This definition also allows the estimation of the tails of the response dis-
tribution while simultaneously enabling easy smoothing. Hence, we can analyse the
properties of the gas flow through the pipelines of the network not only in dependence
on the air temperature, and the weekday type, but also consider further covariates
like the type of nodes, and the geographic location of the node within the network.
Shape-constraints induce realistic behaviour of the estimated gas flow for low air
temperatures. We, therefore, use additional asymmetric penalties for monotonicity
and introduce additional boundary constraints. The modelling assumptions ensure
the estimation of an adequate probability distribution and a good assessment of risk.

SemiparametricM-Quantile regression (Pratesi et al. 2009) or generalised additive
models for location, scale and shape (GAMLSS) (Rigby and Stasinopoulos 2005;
Mayr et al. 2012) could be alternative approaches for this scenario. However, M-
Quantiles incorporate a certain robustness against extreme observations, while we
are aiming explicitly at the tails of the response. GAMLSS, on the other hand, still
require the selection of an appropriate parametrised distribution for the response.
We, therefore, choose the most flexible approach that also allows for the estimation
of a risk for scenarios of extreme usage.

This chapter is organised as follows: Section 2 describes the available data and
motivates the choice of the studied models. The utilised methods are presented in
Sect. 3, whereas Sect. 4 provides details about the application of the methods to
model the gas flow and analyse the risk. The obtained results are also compared with
previous analyses. Section 5 concludes the chapter.
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2 Description of Data and Motivation

2.1 Data

Data for this study was provided by a large German energy company in the context
of a larger research project. The data set contains hourly gas flow for 238 network
nodes for the period between June 2009 andMay2010.Meandaily temperatures from
the corresponding weather stations are also provided. Additionally, we distinguish
several types of nodes. Typical nodes in such networks are public utilities, industrial
and areal consumers, as well as nodes on border and market crossings. Continuous
geographic coordinates, i.e. longitude and latitude for every node are also included.

We study the dependence of gas loads on the air temperature, the type of weekday,
the node type and the geographic location of nodes within the network, simultane-
ously on all nodes along the pipelines of the gas transmission network. Since wewant
to maximise the transportation capacity through the pipelines, we concentrate on the
daily maximum flows ymax

i,k , k = 1, . . . , 238, i = 1, . . . , n (n = 365), at each node,
for all 238 nodes of the network. This results in a sample size of 86,870. The temper-
ature and gas flow data is shown in a scatter plot in Fig. 2. Due to the high number
of observations in our data, all scatterplots in this chapter are smoothed according
to Eilers and Goeman (2004). The set of network exits is shown on a map in Fig. 3.
We note here that in this study we concentrate on the so-called H-network, which
denotes the network with high Wobbe Index (Energy Charter Secretariat 2004). The
response values have been standardised per node as the range of values was originally
very heterogenous.

An important aspect of this modelling approach is the forecast of gas loads on
nodes at the so-called design temperature. The design temperature is defined as the
lowest temperature at which the gas operator is still obliged to supply gas without
failure, and varies within Germany, depending on the climate conditions in dif-
ferent regions. It usually lies between −12 ◦C and −16 ◦C. Such low mean daily
temperatures are very uncommon in Germany, and there is no observed gas flow
data available at the design temperature. For this reason, gas operators are forced to
use predicted gas loads at the design temperature, and we utilise shape-constrained
geoadditive expectile regression for this purpose. Shape-constraints are introduced
to prevent further increase of the predicted gas loads below the design temperature.
As in Friedl et al. (2012), the way the society uses the gas supply system influences
the choice of the model. On the one end, there is the maximum possible gas usage
at low temperatures. And even on very hot days there will usually be a constant
minimum of used gas. In between we expected the gas usage to strongly depend on
the daily temperature. Hence, we chose to model the effect of the temperature in a
sigmoid shape.

We are also interested in estimating the upper bound of the gas flow at each
node, and we are looking for a tail expectation, i.e. the maximum gas loads that
will not be exceeded for the given level of risk at the given fixed temperature. In
particular, according toTaylor (2008), a dependence between quantiles and expectiles
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is convenient for the estimation of a tail expectation as the conditional value-at-risk
is also called expected shortfall (ES).

Finally, we would like to estimate the probability distribution of the flow at each
node, in order to generate gas network nominations. A nomination describes the
balanced in- and outflow of gas at entries and nodes of the network, and needs to be
feasible for every temperature, including the design temperature. A nomination is
said to be feasible, or validated, if for the given inflow and outflow allocation, a flow
of gas through the network can exist, taking into account all technical limitations of
the gas network and physical properties of gas. The distribution of the maximal gas
inflow on nodes of the network over the whole temperature range necessary for the
nomination validation can be estimated using the expectiles.

In what follows, we study the standardised daily maximum flows

yi,k = ymax
i,k − ȳk
σ̂ (yk)

, (3)

where ȳk denotes the empirical mean of all maximal daily gas flows and σ̂ (yk) is the
standard deviation estimated from the data available for node k.

2.2 Previous Models and Advantages of the New Approach

Friedl et al. (2012) and Mirkov and Friedl (2011) provide models for the maximum
gas loads for a single node in dependence of the temperature and the weekday using
mean regression, whereas additional information like the type of node or the spatial
location of the node is neglected. Each node within the network is observed inde-
pendently, while the interdependence of nodes and their location within the network
is ignored. Hence, the previous models are of the form

yi,k = β0 + x′
iβ1 + f (tempi,k) + εi,k

where β0 represents the intercept, the weekday covariate information is included in
x′
iβ1 and f (tempi,k) is a nonlinear temperature effect. Furthermore, these models

assume a homogeneous error distribution with zero mean and constant variance.
For convenience, the Gaussian distribution is applied, although it is not compatible
with the data. Since the forecast includes the level of uncertainty described by the
confidence or prediction intervals, the assumption about the distribution of the error
termsplays an important role here.Under an appropriate distributional assumption for
the error term and the variance homogeneity, the flow limits for the given acceptable
level of risk at the given temperature are assessed. Also, the mean value as well
as the upper bound of the flow are the basis for the evaluation of several types of
temperature-dependent contracts. Here, the adequate probability distribution for the
given temperature is of particular interest.
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The newapproachbased on shape-constrained geoadditive expectilemodels offers
a solution to all inconsistencies mentioned above. The geoadditive component in
models enables the estimation of the maximum gas loads in dependence of the
temperature and the weekday at each node for the whole network simultaneously,
as the model embodies the effect of the geographic location of the nodes within the
network. Additional information like the type of node is also included.

Also, the models proposed in this chapter do not specify the error distribution,
but estimate it from the data. Thus, the appropriate distribution of the gas flow for
each node can be obtained from the model. This enables the adequate quantification
of the upper limit of gas flow at each node. Also, quantiles of the distribution can be
determined and used for the assessment of risk and the evaluation of some contracts,
as mentioned above.

Shape-constraints allow for the flexible modelling of gas flow behaviour for very
low or very high temperatures. In particular, the shape of the increase of gas loads is
easily controlled by the means of these additional conditions. The discussed features
of the shape-constrained geoadditive expectile regression models provide us with a
tool for more reliable and accurate prediction of gas flow for very low and generally
non-observed temperatures, and thus improve the results obtained in Friedl et al.
(2012).

3 Methods

3.1 Geoadditive Regression Models

We aim to predict gas usage using categorical, continuous and spatial covariates in
a least squares regression setting. We make use of geoadditive models as introduced
by Kammann and Wand (2003) and include all available external information like
longitude, latitude and type of node. The distinction between working days and
weekend/holidays is a sensible covariate. For our analysis we define the following
model:

yi,k = β0 + x′
1,iβ1 + x′

2,kβ2 + f (tempi,k) + g(longk, latk) + εi,k (4)

for k = 1, . . . , 238 and i = 1, . . . , 365 with the standardised gas flow as response y,
working day indicator x1, the category of a node x2, a nonlinear function f modelling
the effect of the temperature and a smooth surface g for the effect of the location
given by longitude and latitude.

As the functions f and g are unknown, they are approximated in terms of basis
function representations

f (x) =
J∑

j=1

β j, f B j (x)
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with the number of basis elements J . For the possibly nonlinear effect of the tempera-
ture, we construct a cubic B-spline basis on the range between−15 ◦C and 30 ◦Cwith
J − 6 = 20 inner knots and a penalty matrix consisting of second-order differences
D between neighbouring coefficients as suggested by Eilers and Marx (1996).

The set of 238 different locations for the observations is neither equally spaced
nor observed in a rectangular domain. Hence, we choose to model the spatial effect
using aKriging basis instead of a tensor-product P-spline basis.WhenKriging is used
to approximate an unknown spatial function, we start by selecting the knots for the
basis functions as a subset of all observed locations {k1, . . . , kp} ⊂ {x1, . . . , xn}. For
our purposes, we choose 100 knots that best cover all the observations as suggested
by Johnson et al. (1990). As the spatial effects β = (β1, . . . , βp)

′ at the knots should
model similarities between nearby observations, we use a Matérn basis function to
model the connection between the locations and construct each basis element Bk for
node k as

Bk(r, φ) = exp(−|r/φ|)(1 + |r/φ|)

with r = ||k − x || and fixed φ ∝ maxi, j (||ki − k j ||). Smoothness is achieved with
a penalty β ′K 1β based on the proximity of the knots K 1 = (Bki (||ki − k j ||), φ)i, j .
This allows us to effectively estimate a spatial effect in this scenario containing rather
spread out nodes as well as clustered nodes in the Ruhr area.

3.2 Shape-Constrained P-splines

While penalised splines allow for the flexible approximation of any unknown func-
tion, further content-driven information about the overall shape of the function might
be available. In our case, a sigmoid shape for the effect of the temperature is assumed.
Acertain shape for the estimated function canbe achievedbyadding linear constraints
to the least-squares estimation or—much simpler—by extending the P-splines with
a further penalty. For specific areas where the estimated function deviates from the
assumed shape, this penalty can take effect and thus prevent unwanted behaviour.

A sigmoidal function estimate for temperature—in the sense that the estimate
is monotonic and has constant boundaries—is anticipated. An asymmetric penalty
enforces monotonic function estimates (Eilers 2005). We extend the approach
described in Bollaerts et al. (2006) by addingmultiple shape penalties to our estimate
in order to gain flexibility. This penalty is given as

β ′K 2β = β ′D′
(c)V D(c)β =

J−c∑

j=c+1

v j (�
cβ j )

2, (5)

where c is the order of the difference penalty � (monotonicity for c = 1), the asym-
metric weights are given as
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v j =
{
0 if �cβ j > 0

1 if �cβ j ≤ 0

and are collected in the diagonal matrix V = diag(v). The associated penalty param-
eter λ2 is chosen a priori and should be quite large (e.g. 106). For more details see
Eilers (2005) and Hofner et al. (2011).

Previous approaches also concentrate on achieving monotonicity. However, we
also want to include boundary constraints. Constant boundaries are obtained by a
strong penalty on the first differences for the outer three spline coefficients at each
end. Consequently, extrapolation does not depend on the temperature anymore. We
get a constant effect for the minimum and maximum gas usage, respectively. These
boundary constraints are enforced by the penalty

β ′K 3β = β ′D′
(e)V

(3)D(e)β =
J−c∑

j=e+1

v
(3)
j (�eβ j )

2, (6)

where v
(3)
j is one if the corresponding knot is subject to a boundary constraint. Thus,

here the first and the last three elements of v(3) are equal to one and the remaining
weights are equal to zero. The weight matrix is constructed as V (3) = diag(v(3)).
As we use cubic splines, the three outer splines cover the appropriate temperature
intervals. The difference order e controls the type of boundary constraint: differences
of order one correspond to constant boundaries, differences of order two correspond
to linear boundaries, etc. The associated penalty parameter λ3 is chosen quite large
(as is λ2).

If we combine P-splines with the two penalties introduced above, we obtain
monotonic, smooth effect estimateswith boundary constraints. Settingλ2 = 0 results
in P-splines with boundary constraints only, i.e. without monotonicity assumptions.
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Fig. 1 Example of estimated gas flow for one node without and with shape-constraints
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Setting λ3 = 0 leads to P-splines without boundary constraints. Note that if the
monotonicity constraint is active, one needs to iteratively solve the penalised least
squares equation as V depends on β, and β depends on V . An example of the effects
of shape-constraints is given in Fig. 1.

3.3 Semiparametric Expectile Regression

We consider two types of model fitting in this study. The first method directly min-
imises the sum of the asymmetrically weighted squared residuals via iteratively
weighted least squares. The secondmethod is based on a boosting approach and relies
on a functional gradient descent approach based on the asymmetrically weighted
squares loss function.

3.3.1 Least Asymmetrically Weighted Squares

For the estimation, all the bases of the semiparametric model (4) are combined in
a complete design matrix B = (1, X, Bspline, Bspat) and the penalties are ordered in
block-diagonal form K k = diag(0, 0X , K spline, K spat), k = 1, . . . , 3. The vector of
regression coefficients is β = (β0, β1,β2,β f ,βg). However, to maintain full rank in
the design matrix a reparameterisation has to be applied to the basis matrices (except
the shape-constrained P-splines) as presented in Fahrmeir et al. (2004). An expectile
regression estimate is obtained by minimising the asymmetrically weighted squared
residuals

β̂τ = argmin
β

n∑

i=1

wi,τ (yi − biβ)2 + λ1β
′K1β + λ2β

′K2β + λ3β
′K3β

with bi as the i th row of the combined basis matrix B from the semiparametric model
andpenaltymatricesK1 for the smoothness, andK2 andK3 for the shape-constraints.
In practice, iteratively weighted penalised least squares updates are performed. The
estimation starts with weights of wi,τ = 0.5 irrespective of τ and the estimate

β̂
[k]
τ = (B′W [k−1]

τ B + λ1K1 + λ2K2 + λ3K3)
−1BW [k−1]

τ y

withweightmatrixW [k]
τ = diag (w[k]

1,τ , . . . ,w
[k]
n,τ ) is calculated. In the following steps,

the weights w[k]
i,τ are determined according to Eq. (2) using β̂

[k−1]
τ and a new estimate

β̂
[k]
τ is obtained. This is repeated until convergence, i.e. the weights do not change

anymore. Afterwards, the shape penalties λ2 or λ3 are increased if the final estimate
does not meet the assumed shape-constraints. The previous procedure has to be
repeated once. This estimation works for a fixed vector of smoothing parameters
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λ1, one for each penalised covariate. The optimal values of λ1 can be estimated by
minimising the generalised cross-validation criterion

Vw
g = n

∑n
i=1 wi,τ (yi − Bi β̂τ )

2

[tr(1 − H (τ ))]2

numerically, given the generalised hat matrix

H (τ ) = (W τ )
1/2B(B′W τ B + λ1K1 + λ2K2 + λ3K3)

−1B′(W τ )
1/2. (7)

This has been introduced to expectile regression by Schnabel and Eilers (2009) and
adapted to additive models in Sobotka and Kneib (2012).

3.3.2 Boosting

As an alternative to directly solving the multidimensional optimisation problem,
component-wise functional gradient boosting (Bühlmann and Hothorn 2007) has
proven to be a valuable method: Boosting algorithms are especially attractive due
to their intrinsic variable selection properties and the ease of combining a wide
range of modelling alternatives (such as linear effects, smooth effects, constrained
smooth effects and spatial effects) in a single model specification (Kneib et al. 2009;
Hofner et al. 2011). Furthermore, smoothing parameters are also optimised within
the algorithm, based on the data.

In short, one begins with a constant model f̂ ≡ 0 and computes the negative
gradient of the loss function ρ evaluated at the fit of the previous iteration f̂ [m−1]

i

u = (u1, . . . , un)
′ :=

(
− ∂

∂ f
ρ

(
yi , f̂ [m−1]

i

))

i=1,...,n

(See Bühlmann and Hothorn 2007; Hofner et al. 2014). Here, the negative gradient
is given by the weighted residuals

ui =
{
2τ · (yi − f̂ [m−1]

i ) if (yi − f̂ [m−1]
i ) > 0

2(1 − τ) · (yi − f̂ [m−1]
i ) if (yi − f̂ [m−1]

i ) < 0.

For each component in our model (4) we specify a so-called “base-learner”. A
model component usually represents a single variable (or a group of variables in the
case of spatial effects). Thus we get separate base-learners for each linear effect (i.e.
one base-learner per variable), one base-learner for the smooth effect of temperature
fspline and one base-learner for the spatial effect fspat. Each base-learner is then fitted
separately to the weighted residuals u by penalised least squares, and only the model
component that describes these residuals best is updated by adding a small proportion
of the fit (e.g. 10%) to the current model fit. Subsequently, the residuals are updated
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and the whole procedure is iterated until a fixed number of iterations is reached. The
final model η̂ is defined as the sum of all models fitted in this process. As we update
only one base-learner in each boosting iteration and as each base-learner usually
only depends on one or very few variables, variable selection can be obtained by
stopping the boosting procedure after an appropriate number of iterations. This is the
major tuning parameter of boosting and is usually optimised using cross-validation
techniques.

Base-learners

To achieve the desired model structure, we only need to define appropriate base-
learners for each predictor: For example, linear effects are fitted using linear base-
learners (which are just simple regression models with the negative gradient as out-
come and one predictor). Smooth effects can be fitted using P-spline base-learners
(Schmid and Hothorn 2008), and spatial effects can be fitted using a radial basis
function base-learners, i.e. Kriging base-learners (Hofner 2011). Additionally, con-
strained effect estimates can be specified. Monotonicity-constrained base-learners
are studied in Hofner et al. (2011, 2014). Here, we expand monotonicity constrained
base-learners to monotonic effects with additional boundary constraints. For the
negative gradient vector u = (u1, . . . , un)′, i.e. the (continuous) vector of weighted
residuals, we can estimate a smooth monotonic function using P-splines with addi-
tional asymmetric difference penalty (5) and an additional penalty for the boundary
effects (6) via the penalised least squares criterion

(u − Bβ)′(u − Bβ) + λ1β
′K1β + λ2β

′K2β + λ3β
′K3β, (8)

where B denotes the B-spline basis matrix, and β the regression coefficients of a
single nonlinear function. Let furthermore K spline = D′

d Dd be the standard P-spline
penalty with difference order d, and let λ1 be the associated smoothing parameter.

Note that the base-learner (8) does not contain the weights wi,τ but is a sim-
ple unweighted penalised least squares criterion. The weights wi,τ are only used in
the derivation of the negative gradient vector u. Still, the resulting model can be
interpreted as an expectile regression model.

3.3.3 Interpretation of Expectiles as Risk Measure

While the interpretation of the mean or a quantile is relatively straightforward, there
is in general no intuitive interpretation for a single expectile. This becomes obvious
when from the definition of a univariate τ -expectile μτ for a random variable Y ,
which is only available in the implicit form
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τ =
∫ μτ

−∞ |y − μτ | fY (y)dy
∫ ∞
−∞ |y − μτ | fY (y)dy

= G(μτ ) − μτ F(μτ )

2(G(μτ ) − μτ F(μτ )) + (μτ − μ0.5)
,

where G(e) =
e∫

−∞
y fY (y)dy is the partial moment function, F is the cdf, and

G(∞) = μ0.5 is the expectation of Y . In most cases, expectile regression will be
performed in order to have a complete overview over the whole conditional distri-
bution of the response variable. However, as it is the case in this chapter, one can
be interested in only the upper tail of this distribution, for example. We make use of
the connection between expectiles and the risk measure expected shortfall (ES) to
facilitate an interpretation. The expected shortfall is originally defined as

ESp(t) = E(Y (x)|Y (x) > ỹp(x))

denoting the mean beyond a pre-specified p-quantile ỹp. This equation has been
rewritten, for example, by Taylor (2008), as a function of a τ -expectile μτ and its
value p = F(μτ (x)) of the unknown distribution function F , resulting in

ESp(x) =
(
1 + 1 − τ

(1 − 2τ)p

)
μτ (x) − 1 − τ

(1 − 2τ)p
μ0.5(x). (9)

For the estimation of F , Taylor (2008) suggested to start by estimating a dense set of
expectiles for asymmetries 0 < τ1 < · · · < τT < 1 and then construct an empirical
distribution function from this set. Given the fixed quantile value p, an expectile
has to be selected that best fits this quantile as suggested by Efron (1991). A more
advanced solution to this problem is given by Schulze Waltrup et al. (2015) and will
be used here. We calculated a smooth density based on the dense set of expectiles,
where quantiles for every p ∈ [0, 1] can be extracted. The fixed p, the appropriate
τ and the estimated expectile μτ are then entered into Eq. (9). Then the expected
shortfall can be estimated.With thatwe can supplymore results than the distributional
estimate of the response, we can construct an estimate for an upper tail expectation.

3.3.4 Confidence Intervals

While parametric confidence intervals for boosting estimates cannot be derived, an
asymptotic result for a least asymmetrically weighted least squares estimate has been
constructed in Sobotka et al. (2013). The resulting vector of regression coefficients
is asymptotically normal

β̂τ

a∼ N (β0
τ ,Cov(β

0
τ ))

with

Cov(β0
τ ) = (B′W τ B + K)−1B′W 2

τ diag(Var ( y − Bβ0
τ ))B(B′W τ B + K)−1,
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where the heteroscedastic residual variance is estimated by

V̂ar(yi − Bβ0
τ ) = (yi − Bβ̂τ )

2

1 − H (τ )
i i

given the generalised hat matrix (7). Confidence intervals can then be constructed
point-wise for a fixed covariate value. For boosting estimates, confidence intervals
can be derived using bootstrap techniques.

4 Estimating and Forecasting Gas Flow

The data, as presented in Sect. 2, contains a few, very important possible covariates
that should allow for an accurate prediction of the gas usage. For each observed
amount of gas flow, we have the mean daily temperature at the node, the binary
distinction betweenworkday andweekend/holiday, the type of node in five categories
and the location of the node.

The response needs to be standardised according to Eq. (3) in order to allow the
inclusion of all nodes into the same model. For this regression problem we have
constructed a model covering the whole data set instead of single nodes, and two
estimation procedures, iteratively reweighted least squares and boosting, each with
different strengths.

4.1 Results

The categorical effects in Table 1 show a significant difference in gas usage between
weekdays and the weekend throughout the whole distribution of the response. Fur-
ther, we mainly find a difference between industry nodes and municipalities. Inter-
estingly, this distinction is not significant for the mean regression (τ = 0.5) but only

Table 1 Categorical effects for the upper half of the conditional distribution of the response.
Significant effects are set in bold

τ 0.5 0.9 0.95 0.99

Weekday 0.289 0.328 0.348 0.454

Type Reference: “industry”

Municipal −0.040 −0.226 −0.292 −0.376

Areal 0.019 −0.018 −0.042 −0.067

Border −0.035 0.052 0.059 0.031

Market −0.058 −0.069 −0.064 0.029
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Fig. 2 Standardised flow for
predefined temperature
interval [−15; 30].
Combined results for 238
knots. 6 expectiles calculated
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in the upper tail of the conditional distribution of the response. The nonlinear effect
of the temperature in Fig. 2 shows the modelled constant effects for very high and
very low temperatures which state a minimum amount of gas usage independent
from a further increase in temperature, for example, in households for cooking and
in factories, and also a gas flow that does not exceed a practical limit. Otherwise,
we see a decrease in gas usage with increasing temperatures, but also a change in
variance and skewness of the conditional distribution of the response. This means
that the effect of the temperature for the upper tail is different from the mean effect.
The contrast is even stronger in the spatial effect depicted in Fig. 3. For the mean
regression, we observe almost no dependence between the mean gas flow and the
location of the nodes. However, for expectiles from the upper tail we observe a spe-
cific region with increased gas flow, in the south-west of Germany. This model shows
that for the prediction of extreme scenarios of gas usage a mean regression is just not
sufficient and results from the upper extremes of the response strongly differ from the
mean. An extreme scenario can now be constructed by choosing a prediction from
one node and a high expectile and revert the standardisation of the response (3). As
expected, we found stronger change throughout Germany from west to east while,
for example, the estimated gas usage was almost constant throughout the Ruhr area
where housing is dense and the industries are very similar.

The results based on boosting are very similar and are provided in the appendix.
The application of boosting includes possible variable selection and automatic selec-
tion of all smoothing parameters by an overall cross-validation. Hence, we observe
that all small parametric effects are close to zero, especially for the areal, border
and market dummies. The differences in the selection of smoothing parameters also
explain small differences in the spatial effects, but the overall results do not change.
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Fig. 3 Partial spatial effect of standardised flow for four expectiles. Lighter colours indicate higher
values of gas flow, i.e. white represents a partial effect of 0.5 and dark red stands for−0.5. Observed
locations are included as black points

4.2 Risk Analysis

In order to estimate the expected shortfall of the gas flow in the geoadditive model
we start by estimating 99 expectiles from τ = 0.01 to τ = 0.99. We then obtain the
expectile from τ = 0.98 which best corresponds to the properties of a 0.95-quantile
such that 5% of the observations are above the estimated expectile. This expectile
is then transformed as described in Sect. 3.3.3. The resulting risk measure is then
depicted in Fig. 4. Especially the estimated temperature curve predicts the desired
extreme scenario of gas flow and delivers a smooth estimate in a region of very few
observations.
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Fig. 4 Expected shortfall for a level of 0.95 estimated from a dense set of 99 expectiles. Estimated
effects of the temperature and the location, where black dots again denote the nodes of the network

5 Conclusion

In this chapter, we present a novel modelling approach useful for forecasting gas
flow on nodes of gas transmission networks. This approach extends the previous
work on the same topic introduced in Friedl et al. (2012) and offers solutions to
the inconsistencies mentioned there. In particular, we show that the modelling of
high-demand scenarios in a gas transmission network can be improved in several
ways. Geoadditive regression models considering the whole network simultaneously
instead of a single node make use of similarities between different nodes, either
on a spatial or on a behavioural level. Differences in gas usage can be uncovered
depending on the coordinates of the nodes, however, those dependencies mainly arise
in high-demand situations and not in the previously applied mean regression.

The use of expectiles improves our knowledge about extreme scenarios of gas
usage from the previous mean regression attempts. We find strong effects of the
covariates in the upper tail of the distribution of gas usage while there is little to find
in the mean. However, we still retain the simplicity of a least-squares estimate with
its asymptotic normal confidence and the flexibility of spatial and shape-constrained
modelling.

The inclusion of spatial information into the model also brings up further possi-
bilities for future research. Since we could use the information of the gas loads over
the course of one year also as a time series, spatio-temporal models as introduced to
expectiles by Spiegel et al. (2019) could be applied. By introducing an interaction
termbetween the temperature or time information and the coordinate information,we
could have one gas usage curve per node while still maintaining spatial similarities.
Further, the results from our geoadditive model have shown an artefact effect in areas
where the network is not present. This could possibly be improved by restricting the
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spatial smoothing to those areas where the network is observed. Soap film smooth-
ingWood et al. (2008) could be applied within an expectile regression regarding this
problem.
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Appendix

For comparison we also provide boosting estimates for the geoadditive model. With
such a large data set we do not expect a lot of variable selection taking place, however,
the selection of smoothness should be easier, especially for the spatial effect. We
estimate the expectiles using 10000 initial boosting iterations and a tenfold cross-
validation to find the optimal stopping iteration.

The temperature curves in Fig. 5 also show the changes in skewness of the response
distribution and the deviation from normality in the tails. The categorical effects in
Table 2 also support the previous results. In the mean regression model (τ = 0.5)
effects for “municipal” and “market” node types have been selected to enter the
boosting model. For the other expectiles only an effect for the municipal node was
selected in the boosting model. This effect increases with increasing expectile. The
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Fig. 5 Standardised flow for temperature interval. Overall results for 238 knots. 6 expectiles cal-
culated
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Table 2 Estimated categorical effects for the upper half of the conditional distribution of the
response. Unselected effects are set to zero

τ 0.5 0.9 0.95 0.99

Weekday 0.288 0.288 0.293 0.338

Type Reference: “industry”

Municipal −0.010 −0.178 −0.241 −0.324

Areal 0 0 0 0

Border 0 0 0 0

Market 0.006 0 0 0
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Fig. 6 Partial spatial effect of standardised flow for four expectiles. Lighter colours indicate higher
values. Observed locations are included as black points
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distinction between working day and holiday is again strong for all expectiles of the
response.

In the spatial effect shown in Fig. 6 we again see a rather small change for the
mean. In extreme scenarios, on the other hand, it becomes more clear with boosting
that there is a difference in gas usage between the south-west and the centre of
Germany.

Overall, these results support the use of expectile regression and the importance of
effects in the upper tail of the conditional distribution of the response for forecasting
gas flow.
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Asymptotic Analysis of Maximum
Likelihood Estimation of Covariance
Parameters for Gaussian Processes: An
Introduction with Proofs

François Bachoc

Abstract This article provides an introduction to the asymptotic analysis of
covariance parameter estimation for Gaussian processes. Maximum likelihood esti-
mation is considered. The aim of this introduction is to be accessible to a wide audi-
ence and to present some existing results and proof techniques from the literature.
The increasing-domain and fixed-domain asymptotic settings are considered. Under
increasing-domain asymptotics, it is shown that in general all the components of the
covariance parameter can be estimated consistently by maximum likelihood and that
asymptotic normality holds. In contrast, under fixed-domain asymptotics, only some
components of the covariance parameter, constituting the microergodic parameter,
can be estimated consistently. Under fixed-domain asymptotics, the special case of
the family of isotropic Matérn covariance functions is considered. It is shown that
only a combination of the variance and spatial scale parameter is microergodic. A
consistency and asymptotic normality proof is sketched for maximum likelihood
estimators.

1 Introduction

Kriging Stein (1999), Rasmussen andWilliams (2006) consists of inferring the values
of a (Gaussian) process given observations at a finite set of points. It has become
a popular method for a large range of applications such as geostatistics Matheron
(1970), numerical code approximation Sacks et al. (1989), Santner et al. (2003),
Bachoc et al. (2016), calibration Paulo et al. (2012), Bachoc et al. (2014), Kennedy
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and O’Hagan (2001), global optimization Jones et al. (1998), and machine learning
Rasmussen and Williams (2006).

If the mean and covariance function of the Gaussian process are known, then the
unknown values of the Gaussian process can be predicted based on Gaussian condi-
tioning Rasmussen and Williams (2006), Santner et al. (2003). Confidence intervals
are associated with the predictions. In addition, in the case where the observation
points of the Gaussian process can be selected, efficient goal-oriented sequential
sampling techniques are available, for instance, for optimization Jones et al. (1998)
or estimation of failure domains Bect et al. (2012).

Nevertheless, the mean and covariance functions are typically unknown, so that
the above methods are typically carried out based on a mean and covariance function
selected by the user, that differs from the true ones. Here we shall consider the
case where the mean function is known to be equal to zero and the covariance
function is known to belong to a parametric set of covariance functions. In this case,
selecting a covariance function amounts to estimating the covariance parameter.
Large estimation errors of the covariance parameter can be harmful to the quality
of the above methods based on Gaussian processes. Hence, one may hope to obtain
theoretical guarantees that estimators of the covariance parameters converge to the
true ones.

Here we will review some of such guarantees in the case of maximum likeli-
hood estimation Rasmussen and Williams (2006), Stein (1999), which is the most
standard estimation method of covariance parameters. The two main settings for
these guarantees are the increasing and fixed-domain asymptotic frameworks. Under
increasing-domain asymptotics, we will show that, generally speaking, the covari-
ance parameter is fully estimable consistently and asymptotic normality holds. Under
fixed-domain asymptotics, only a subcomponent of the covariance parameter, called
the microergodic parameter, can be estimated consistently. We will show that the
microergodic parameter is estimated consistently by maximum likelihood in the
case of the family of isotropic Matérn covariance functions, with asymptotic nor-
mality. In both asymptotic settings, we will provide sketches of the proofs. We will
also highlight the technical differences between the proofs in the two settings.

The rest of the article is organized as follows. Gaussian processes, estimation of
covariance parameters andmaximum likelihood are introduced in Sect. 2. Increasing-
domain asymptotics is studied in Sect. 3. Fixed-domain asymptotics is studied in
Sect. 4. Concluding remarks and pointers to additional references are provided in
Sect. 5. A supplementary material contains the asymptotic normality results for the
Matérn model and the expressions of means and covariances of quadratic forms of a
Gaussian vector.
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2 Framework and Notations

2.1 Gaussian Processes and Covariance Functions

We consider a Gaussian process ξ : Rd → R. We recall that ξ is a stochastic pro-
cess such that for any m ∈ N and for any u1, . . . , um ∈ R

d , the random vector
(ξ(u1), . . . , ξ(um)) is a Gaussian vector Rasmussen and Williams (2006). Here and
in the rest of the paper, N is the set of positive integers.

We assume throughout that ξ has mean function zero, that is E(ξ(u)) = 0 for
u ∈ R

d . Thus, the distribution of ξ is characterized by its covariance function

(u, v) ∈ R
2d �→ cov(ξ(u), ξ(v)).

We assume in all the paper that the covariance function of ξ is stationary, that is,
there exists a function k� : Rd → R such that for u, v ∈ R

d ,

cov(ξ(u), ξ(v)) = k�(u − v).

In a slight abuse of language, we will also refer to k� as the (stationary) covari-
ance function of ξ . The function k� is symmetric because for u ∈ R

d , k�(u) =
cov(ξ(u), ξ(0)) = cov(ξ(0), ξ(u)) = k�(−u). This function is positive definite in
the sense of the following definition.

Definition 1 A functionφ : Rd → R is positive definite if for anym ∈ N and for any
u1, . . . , um ∈ R

d , the m × m matrix [φ(ui − u j )]i, j=1,...,m is positive semi-definite.

The function k� is positive definite because the matrices [k�(ui − u j )]i, j=1,...,m of
the form of Definition 1 are covariance matrices (of Gaussian vectors).

We then consider a set of functions {kθ ; θ ∈ �} where � ⊂ R
p and where for

θ ∈ �, kθ is a function from R
d → R that is symmetric and positive definite. We

also call kθ a covariance function and θ a covariance parameter for θ ∈ �.
The set {kθ ; θ ∈ �} is a set of candidate covariance functions for ξ , that is, this

set is known to the statistician who aims at selecting an appropriate parameter θ such
that kθ is as close as possible to k�. In the rest of the paper, we will consider that k�

belongs to {kθ ; θ ∈ �}. Hence, there exists θ0 ∈ � such that k� = kθ0 . This setting is
called thewell-specified case in Bachoc (2013a, b, 2018). Under this setting, we have
a classical parametric statistical estimation problem, where the goal is to estimate
the true covariance parameter θ0.

2.2 Classical Families of Covariance Functions

For q ∈ N and for a vector x in R
q , we let ||x || be the Euclidean norm of x . A first

classical family of covariance functions is composed by the isotropic exponential
ones with � ⊂ (0,∞)2 and
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kθ (x) = σ 2e−α||x ||,

for θ = (σ 2, α) and x ∈ R
d . A second classical family is composed by the isotropic

Gaussian covariance functions, with � ⊂ (0,∞)2 and

kθ (x) = σ 2e−α2||x ||2 ,

for θ = (σ 2, α) and x ∈ R
d .

Finally, a third classical family is composed by the isotropic Matérn covariance
functions, with � ⊂ (0,∞)3 and

kθ (x) = σ 221−ν


(ν)
(α||x ||)ν Kν (α||x ||) , (1)

where
 is the gamma function,Kν is themodifiedBessel function of the secondkind,
for θ = (σ 2, α, ν) and x ∈ R

d . These families of covariance functions, and other
ones, can be found, for instance, in Bevilacqua et al. (2019), Genton and Kleiber
(2015), Gneiting and Schlather (2004), Rasmussen and Williams (2006), Santner
et al. (2003), Stein (1999). We remark that the isotropic exponential covariance
functions are special cases of the isotropicMatérn covariance functions with ν = 1/2
Stein (1999).

For these three families of covariance functions, one can check that kθ (0) = σ 2 (in
theMatérn case the function is extended at zero by continuity). Hence σ 2 is called the
variance parameter, because if ξ has covariance function kθ we have var(ξ(u)) = σ 2

for u ∈ R
d . In these three families of covariance functions, for u, v ∈ R

d , if ξ has
covariance function kθ we have that cov(ξ(u), ξ(v)) depends on α||u − v||. Hence
α is called the spatial scale parameter because changing α can be interpreted as
changing the spatial scale when measuring differences between input locations of ξ .
In the three examples, kθ (x) is a decreasing function of ||x ||, thus a large α makes
the covariance decrease more quickly with ||x || and provides a small spatial scale
of variation of ξ . Conversely, a small α makes the covariance decrease more slowly
and provides a large spatial scale of variation of ξ .

Finally, for the family of Matérn covariance functions, ν is called the smoothness
parameter. To interpret this, for θ ∈ �, let us call spectral density the function k̂θ :
R

d → R such that for u ∈ R
d

kθ (u) =
∫
Rd

k̂θ (ω)eiω
�udω,

with i2 = −1. Under mild regularity assumptions, that hold for the three families
above, the function k̂θ is the Fourier transform of kθ . When kθ is a Matérn covariance
function, we have

k̂θ (ω) = σ 2 
(ν + d/2)α2ν


(ν)πd/2

1

(α2 + ||ω||2)ν+d/2
, (2)
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for ω ∈ R
d Gneiting et al. (2010). Hence, we see that for larger ν, the Fourier trans-

form k̂θ (ω) converges to zero faster as ||ω|| → ∞, which implies that the function
kθ is smoother at zero (this function is already infinitely differentiable on R

d\{0}).
This is why ν is called the smoothness parameter.

There is an important body of literature on the interplay between the smoothness
of the covariance function of ξ and the smoothness of ξ Adler (1981), Adler (1990),
Azaïs andWschebor (2009). In our case, if ξ has an exponential covariance function,
then it is continuous and not differentiable (almost surely and in quadratic mean).
If ξ has a Gaussian covariance function, then it is infinitely differentiable (almost
surely and in quadratic mean). TheMatérn covariance functions provide, so to speak,
a continuum of smoothness in between these two cases. Indeed, consider ξ with
Matérn covariance function with smoothness parameter ν > 0. Then ξ is m times
differentiable (almost surely and in quadratic mean) if ν > m.

2.3 Maximum Likelihood

Consider a sequence (si )i∈N of spatial locations at which we observe ξ , with
si ∈ R

d . Assume from now on that the locations (si )i∈N are two-by-two distinct.
Then, for n ∈ N, we consider the Gaussian observation vector y = (y1, . . . , yn)

� =
(ξ(s1), . . . , ξ(sn))

�.
We consider a family of covariance functions {kθ ; θ ∈ �} and assume further

that for n ∈ N, the covariance matrix Rθ := [kθ (si − s j )]i, j=1,...,n is invertible. Then,
when ξ has covariance function kθ , the Gaussian density of y is

Ln(θ) = 1√|Rθ |(2π)n/2
e− 1

2 y� R−1
θ y,

with |Rθ | the determinant of Rθ . The focus of this paper will be on maximum likeli-
hood estimation. A maximum likelihood estimator is a (measurable) estimator of θ0
that satisfies

θ̂ML ∈ argmax
θ∈�

Ln(θ). (3)

We remark that, in general, there may not be a unique estimator θ̂ML satisfying (3).
Furthermore, the existence of measurable estimators satisfying (3) is not a trivial
problem. We refer, for instance, to Giné and Nickl (2016), Molchanov (2005) on this
point.

In this paper, we assume that there exists at least onemeasurable estimator satisfy-
ing (3) and the results hold for any choice of such an estimator. A notable particular
case is when � = (0,∞), θ = σ 2 and kθ = σ 2k�. In this case, there is a unique
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estimator satisfying (3) (see also (21) in Sect. 4). In this special case, we can call θ̂ML

the maximum likelihood estimator. In general, one may rather call it a maximum
likelihood estimator.

It is convenient to consider the following decreasing transformation of the loga-
rithm of the likelihood:

Ln(θ) = 1

n
log(|Rθ |) + 1

n
y� R−1

θ y, (4)

for θ ∈ �. We have
θ̂ML ∈ argmin

θ∈�

Ln(θ).

The problem of studying the asymptotic properties of θ̂ML as n → ∞ presents sev-
eral differences compared to the most standard parametric estimation setting where
the observations are independent and identically distributed Van der Vaart (2000).
Indeed, in our case the components of the observation vector y are dependent, so
the logarithm of the likelihood is not a sum of independent random variables. Fur-
thermore, the likelihood function involves the quantities |Rθ | and R−1

θ for which,
often, no explicit expressions exist. Finally, for asymptotic statistics with indepen-
dent and identically distributed data, there is a single asymptotic setting as n → ∞.
Here there exist several possible asymptotic settings, depending on how the spatial
locations s1, . . . , sn behave as n → ∞. The proof techniques and the results obtained
strongly depend on the asymptotic setting. We will now review some results under
the two main existing asymptotic frameworks: increasing-domain and fixed-domain
asymptotics.

3 Increasing-Domain Asymptotics

In Section 3, we assume that there exists a fixed  > 0 such that

inf
i, j∈N
i 	= j

||si − s j || ≥ . (5)

This assumption is the main assumption considered in the literature for increasing-
domain asymptotics (see Bachoc 2014, for instance, and see also Bachoc 2018 for
one of the few exceptions). This assumption implies that the spatial locations (si )i∈N
are not restricted to a bounded set. The results and proofs that will be presented in
Sect. 3 can mainly be found in Bachoc (2014).
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3.1 Consistency

Here the aim is to show that θ̂ML converges to θ0, weakly. We consider a general
family of covariance functions {kθ ; θ ∈ �}, where � is compact, that satisfies

sup
θ∈�

|kθ (x)| ≤ Csup

1 + ||x ||d+Cinf
(6)

and

max
s=1,2,3

max
i1,...,is=
1,...,p

sup
θ∈�

∣∣∣∣ ∂s

∂θi1, . . . , ∂θis

kθ (x)

∣∣∣∣ ≤ Csup

1 + ||x ||d+Cinf
, (7)

where 0 < Cinf and Csup < ∞ are fixed constants and for x ∈ R
d .

We also assume that

(θ, ω) ∈ � × R
d �→ k̂θ (ω) is continuous and strictly positive. (8)

The families of isotropic exponential, Gaussian, and Matérn covariance functions
do satisfy (6) and (7), when � is compact, and ν is fixed for Matérn. Indeed, these
functions and their partial derivatives, with respect to σ 2 and α, are exponentially
decaying as ||x || → ∞, where x is their input. For the exponential and Gaussian
covariance functions, this can be seen simply and for theMatérn covariance function,
this follows from the properties of the modified Bessel functions of the second kind
Abramowitz and Stegun (1964). Also, when � is compact, exponentially decaying
functions bounding the covariance functions and their partial derivatives can be
chosen uniformly over θ ∈ � (see againAbramowitz and Stegun 1964 for theMatérn
covariance functions).

These three families of covariance functions also satisfy (8). The expressions of
the Fourier transforms of these covariance functions can be found, for instance, in
Gneiting et al. (2010) and Stein (1999).

Then the next lemma enables to control the term R−1
θ in (4). We let λinf(M) be

the smallest eigenvalue of a symmetric matrix M .

Lemma 1 (Proposition D.4 in Bachoc 2014, Theorem 5 in Bachoc and Furrer 2016)
Assume that (5), (6) and (8) hold. We have

inf
n∈N

inf
θ∈�

λinf(Rθ ) > 0.

Proof (sketch) We have, for n ∈ N and λ1, . . . , λn ∈ R,
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n∑
i, j=1

λiλ j (Rθ )i, j =
n∑

i, j=1

λiλ j kθ (si − s j )

=
n∑

i, j=1

λiλ j

∫
Rd

k̂θ (ω)eiω
�(si −s j )dω

=
∫
Rd

k̂θ (ω)

⎛
⎝ n∑

i, j=1

λiλ j e
iω�si e−iω�s j

⎞
⎠ dω

=
∫
Rd

k̂θ (ω)

∣∣∣∣∣
n∑

i=1

λi e
iω�si

∣∣∣∣∣
2

dω, (9)

where |z| is the modulus of a complex number z. In (9), k̂θ (ω) is strictly posi-
tive. Furthermore, because s1, . . . , sn are two-by-two distinct, the family of func-
tions (ω �→ eiω

�si )i=1,...,n is linearly independent. Hence,
∑n

i, j=1 λiλ j (Rθ )i, j > 0
for (λ1, . . . , λn) 	= 0. This shows that λinf(Rθ ) > 0 for n ∈ N and θ ∈ �. Proving
that the infimum in the lemma is also strictly positive is also based on (9). We refer
to the proofs of Proposition D.4 in Bachoc (2014) or of Theorem 5 in Bachoc and
Furrer (2016). �

The next lemma will enable to control the variance of the likelihood criterion and
the order of magnitude of its derivatives.

Lemma 2 Assume that (5)–(8) hold. For any θ ∈ �, as n → ∞,

var(Ln(θ)) = o(1).

Furthermore

max
i=1,...,p

sup
θ∈�

∣∣∣∣ ∂

∂θi
Ln(θ)

∣∣∣∣ = Op(1).

Proof (sketch) Using that y is a centered Gaussian vector, we have, with cov(z)
the covariance matrix of a random vector z, from Appendix B in the supplementary
material

var(Ln(θ)) = 1

n2
var(y� R−1

θ y) = 2

n2
tr

(
R−1

θ cov(y)R−1
θ cov(y)

)
= 2

n2
tr

(
R−1

θ Rθ0 R−1
θ Rθ0

)
.

Let λsup(M) be the largest eigenvalue of a symmetric matrix M . From Gershgorin
circle theorem, we have
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λsup(Rθ0) ≤ max
i=1,...,n

n∑
j=1

∣∣(Rθ0)i, j

∣∣

= max
i=1,...,n

n∑
j=1

∣∣kθ0(si − s j )
∣∣

(from (6) :) ≤ max
i=1,...,n

n∑
j=1

Csup

1 + ||si − s j ||d+Cinf
.

It is shown in Bachoc (2014) that (5) implies that

max
i=1,...,∞

∞∑
j=1

Csup

1 + ||si − s j ||d+Cinf
< ∞.

Hence there is a constant A1 < ∞ such that λsup(Rθ0) ≤ A1. Also, from
Lemma 1, there is a constant A2 < ∞ such that supθ∈� λsup(R−1

θ ) ≤ A2. Hence,
we have var(Ln(θ)) ≤ 2A2

1 A2
2/n which proves the first part of the lemma.

For the second part of the lemma, let ρsup(M) be the largest singular value of a
matrix M . Using Gershgorin circle theorem again, together with (7), we show that
there is a constant A3 < ∞ such that

max
i=1,...,p

sup
θ∈�

ρsup

(
∂ Rθ

∂θi

)
≤ A3.

With this, we have

max
i=1,...,p

sup
θ∈�

∣∣∣∣ ∂

∂θi
Ln(θ)

∣∣∣∣ = max
i=1,...,p

sup
θ∈�

∣∣∣∣1n tr
(

R−1
θ

∂ Rθ

∂θi

)
− 1

n
y� R−1

θ

∂ Rθ

∂θi
R−1

θ y

∣∣∣∣
≤ A2 A3 + A2

2 A3
||y||2

n
.

This last quantity is a Op(1) because ||y||2/n is non-negative with (bounded) expec-
tation var(ξ(0)). �

The consistency result will rely on the following asymptotic identifiability
assumption. We assume that for all ε > 0,

lim inf
n→∞ inf

θ∈�||θ−θ0||≥ε

1

n

n∑
i, j=1

(
kθ (si − s j ) − kθ0(si − s j )

)2
> 0. (10)

This assumption means that for θ bounded away from θ0, there is sufficient infor-
mation in the spatial locations s1, . . . , sn to distinguish between the two covariance
functions kθ and kθ0 . In Bachoc (2014), an explicit example is provided for which
(10) holds.
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We remark that, even though there are n2 terms in the sum in (10), this sum can be
shown to be a O(n) for any fixed θ ∈ �, because of (6) (by proceeding as in the proof
of Lemma 2). The intuition is that, asymptotically, for many pairs i, j ∈ {1, . . . , n},
kθ (si − s j ) and kθ0(si − s j ) are small. This is why the normalization factor is 1/n
rather than 1/n2 in (10).

With the assumption (10), we can now state the consistency result.

Theorem 1 (Bachoc (2014)) Assume that (5)–(8) and (10) hold. As n → ∞

θ̂ML →p θ0.

Proof (sketch) From Lemma 2 we have, for any θ ∈ �,

Ln(θ) − E(Ln(θ)) →p
n→∞ 0.

Furthermore one can show, similarly as in Lemma 2,

max
i=1,...,p

sup
θ∈�

∣∣∣∣ ∂

∂θi
E(Ln(θ))

∣∣∣∣ = O(1).

Hence, using Lemma 2, we obtain

sup
θ∈�

|Ln(θ) − E(Ln(θ))| = op(1). (11)

Next, it is shown in Bachoc (2014) that there exists a constant A4 > 0 such that for
θ ∈ �

E(Ln(θ)) − E(Ln(θ0)) ≥ A4
1

n

n∑
i, j=1

(
kθ (si − s j ) − kθ0(si − s j )

)2
. (12)

From (12) and (10), we then obtain, for ε > 0, with a strictly positive constant A5,
for n large enough,

inf
θ∈�||θ−θ0||≥ε

(E(Ln(θ)) − E(Ln(θ0))) ≥ A5. (13)

Combining (11) and (13) enables to conclude the proof with a standard M-estimator
argument (for instance, as in the proof of Theorem 5.7 in Van der Vaart 2000). �

3.2 Asymptotic Normality

For i ∈ {1, . . . , p}, we have seen in the proof ofLemma2 that the i th partial derivative
of Ln at θ0 is
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∂

∂θi
Ln(θ0) = 1

n
tr

(
R−1

θ0

∂ Rθ0

∂θi

)
− 1

n
y� R−1

θ0

∂ Rθ0

∂θi
R−1

θ0
y.

Since y is a centered Gaussian vector and using Appendix B in the supplementary
material, the element i, j of the covariance matrix of the gradient of Ln at θ is thus,
for i, j = 1, . . . , p,

cov

(
∂

∂θi
Ln(θ0),

∂

∂θ j
Ln(θ0)

)
= 2

n2
tr

(
R−1

θ0

∂ Rθ0

∂θi
R−1

θ0
Rθ0 R−1

θ0

∂ Rθ0

∂θ j
R−1

θ0
Rθ0

)

= 2

n2
tr

(
R−1

θ0

∂ Rθ0

∂θi
R−1

θ0

∂ Rθ0

∂θ j

)
. (14)

It is shown in Bachoc (2014) that for i, j ∈ {1, . . . , p},

E

(
∂2

∂θi∂θ j
Ln(θ0)

)
= 1

n
tr

(
R−1

θ0

∂ Rθ0

∂θi
R−1

θ0

∂ Rθ0

∂θ j

)
.

We will thus need to ensure that the p × p matrix with element i, j equal to

1

n
tr

(
R−1

θ0

∂ Rθ0

∂θi
R−1

θ0

∂ Rθ0

∂θ j

)

is asymptotically invertible. For this, we assume that for all (λ1, . . . , λp) ∈ R
p\{0},

lim inf
n→∞

1

n

n∑
i, j=1

(
p∑

m=1

λm
∂kθ0(si − s j )

∂θm

)2

> 0. (15)

This assumption is interpreted as a local identifiability condition around θ0. InBachoc
(2014), an explicit example is provided for which (15) holds.

We can now state the asymptotic normality result for maximum likelihood esti-
mators.

Theorem 2 Assume that (5)–(8), (10) and (15) hold. Let �θ0 be the p × p matrix
with element i, j equal to

1

2

1

n
tr

(
R−1

θ0

∂ Rθ0

∂θi
R−1

θ0

∂ Rθ0

∂θ j

)
.

Then
0 < lim inf

n→∞ λinf(�θ0) ≤ lim sup
n→∞

λsup(�θ0) < ∞. (16)

Furthermore, with M−1/2 the unique symmetric matrix square root of M−1 for a
symmetric strictly positive definite M, we have
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√
n

(
�−1

θ0

)−1/2
(θ̂ML − θ0) →d

n→∞ N(0, Ip). (17)

We remark that inTheorem2,�−1
θ0

is the asymptotic covariancematrix, but thismatrix
is not necessarily assumed to converge as n → ∞. This matrix has its eigenvalues
bounded away from zero and infinity asymptotically, so that the rate of convergence
is

√
n in Theorem 2.

Remark 1 Here the element i, j of n�θ0 is n2/4 times the covariance between the
elements i and j of the gradient of Ln , from (14). Note that Ln is −2/n times the
log-likelihood (up to a constant not depending on y or θ ). Consider now the score
vector that is equal to the gradient of the log-likelihood. Then, we obtain that the
covariance between the elements i and j of the score is n2/4 times 4/n2 times the
element i, j of n�θ0 .

In other words, n�θ0 is the (theoretical) Fisher information matrix. In agreement
with this, remark that from Theorem 2 the inverse of n�θ0 provides the asymptotic
covariance matrix of maximum likelihood estimators as n → ∞.

Proof (sketch) In Bachoc (2014), it is shown that there exists a strictly positive
constant A6 such that for any λ1, . . . , λp with λ2

1 + · · · + λ2
p = 1, we have

p∑
i, j=1

λiλ j
1

2

1

n
tr

(
R−1

θ0

∂ Rθ0

∂θi
R−1

θ0

∂ Rθ0

∂θ j

)
≥ A6

1

n

n∑
i, j=1

(
p∑

m=1

λm
∂kθ0(si − s j )

∂θm

)2

.

Hence, from (15),
0 < lim inf

n→∞ λinf(�θ0).

Hence �θ0 is invertible for n large enough. Let n be large enough so that this is the
case in the rest of the proof.

One can show as in the proof of Lemma 2 (see also Bachoc 2014) that

lim sup
n→∞

λsup(�θ0) < ∞.

Hence (16) is proved. Let us now prove (17).
It is shown in Bachoc (2014) (see also Bachoc et al. 2020), using a standard

M-estimator argument together with techniques similar as above, that

√
n(θ̂ML − θ0) = −

⎛
⎝

[
E

(
∂2

∂θi ∂θ j
Ln(θ0)

)]

i, j=1,...,p

⎞
⎠

−1
√

n

(
∂

∂θi
Ln(θ0)

)
i=1,...,p

+ op(1)

= − 1

2
�−1

θ0

√
n

(
∂

∂θi
Ln(θ0)

)
i=1,...,p

+ op(1).

Hence to conclude the proof, it is sufficient to show that
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(
4�θ0

)−1/2 √
n

(
∂

∂θi
Ln(θ0)

)
i=1,...,p

→d
n→∞ N(0, Ip).

Let us show this using linear combinations. Let us write the p × 1 gradient vector

∂

∂θ
Ln(θ0) =

(
∂

∂θi
Ln(θ0)

)
i=1,...,p

.

Let λ = (λ1, . . . , λp)
� ∈ R

p be fixed with λ2
1 + · · · + λ2

p = 1. We have

p∑
i=1

λi

((
4�θ0

)−1/2 √
n

∂

∂θ
Ln(θ0)

)
i

=
p∑

i=1

((
4�θ0

)−1/2
λ
)

i

√
n

∂

∂θi
Ln(θ0).

Let us now write βi =
((
4�θ0

)−1/2
λ
)

i
. We have

p∑
i=1

λi

((
4�θ0

)−1/2 √
n

∂

∂θ
Ln(θ0)

)
i

=
p∑

i=1

βi
√

n
∂

∂θi
Ln(θ0)

= −√
n

(
y�

(
1

n

p∑
i=1

βi R−1
θ0

∂ Rθ0

∂θi
R−1

θ0

)
y − E

(
y�

(
1

n

p∑
i=1

βi R−1
θ0

∂ Rθ0

∂θi
R−1

θ0

)
y

))
,

using for the last equality that the gradient of the logarithm of the likelihood at θ0 has
mean zero. Letting z = (z1, . . . , zn)

� = R−1/2
θ0

y, the negative of the above quantity
is equal to

√
n

(
z�

(
1

n

p∑
i=1

βi R−1/2
θ0

∂ Rθ0

∂θi
R−1/2

θ0

)
z − E

(
z�

(
1

n

p∑
i=1

βi R−1/2
θ0

∂ Rθ0

∂θi
R−1/2

θ0

)
z

))
.

(18)
Letting ρ1, . . . , ρn be the eigenvalues of (1/n)

∑p
i=1 βi R−1/2

θ0

∂ Rθ0
∂θi

R−1/2
θ0

and letting
w = (w1, . . . , wn) ∼ N(0, In), (18) is equal, in distribution, to

√
n

n∑
i=1

(w2
i − 1)ρi . (19)

Let us show that (19) converges to a standard Gaussian distribution. We have
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var

(√
n

n∑
i=1

(w2
i − 1)ρi

)
= 2n

n∑
i=1

ρ2
i

= var

(
p∑

i=1

λi

((
4�θ0

)−1/2 √
n

∂

∂θ
Ln(θ0)

)
i

)

= λ�cov
((

4�θ0

)−1/2 √
n

∂

∂θ
Ln(θ0)

)
λ

(from (14) :) = λ� Ipλ

= 1.

One can show as in the proof of Lemma 2 (see also Bachoc 2014) that maxn
i=1 |ρi | =

O(1/n). Hence, the classical Lindeberg–Feller central limit theorem enables to con-
clude that (19) converges to a standard Gaussian distribution (see also Istas and Lang
1997). This concludes the proof. �

To conclude Sect. 3, the consistency and asymptotic normality results given here
are quite generally applicable to families of stationary covariance functions and to
Gaussian processes with zero mean functions. Some extensions to non-zero con-
stant mean functions are discussed in Bachoc et al. (2020). It would be interesting
to provide extensions to non-stationary covariance functions or to unknown non-
constant mean functions, with a parametric family of mean functions. It is possible
that some of the proof techniques and intermediary results presented in Sect. 3 and in
Bachoc (2014) would be relevant for these extensions. Nevertheless, new arguments
would also need to be developed, and appropriate assumptions, on the non-stationary
covariance functions and non-constant mean functions, would need to be considered.

4 Fixed-Domain Asymptotics

4.1 What Changes

Under fixed-domain asymptotics, the spatial locations s1, . . . , sn are restricted to
a compact set D ⊂ R

d . In this case, almost none of the proof techniques above for
increasing-domain asymptotics can be applied. Indeed, they are based on the fact that
for a given i ∈ {1, . . . , n}, ξ(si ) has a very small covariance with ξ(s j ) for most s j ,
j = 1, . . . , n. On the contrary, under fixed-domain asymptotics, for instance if kθ0 is
non-zero onRd , ξ(si ) has a non negligible covariancewith all the ξ(s j ), j = 1, . . . , n.

In particular, contrary to Lemma 1, if θ ∈ � is such that kθ is continuous at zero,
then the smallest eigenvalue of Rθ goes to zero as n → ∞. This is seen by considering
a sequence of 2 × 2 submatrices based on sin , s jn with ||sin − s jn || → 0 as n → ∞.
Similarly, the largest eigenvalue of Rθ goes to infinity as n → ∞ for any θ ∈ � if
kθ is, for instance, non-zero on R

d .
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4.2 Microergodic and Non-microergodic Parameters

The conclusion of Sect. 3 on increasing-domain asymptotics is that the family of
stationary covariance functions {kθ ; θ ∈ �} can be fairly general to prove the con-
sistency and asymptotic normality of maximum likelihood estimators of θ0. In par-
ticular, under the reasonable conditions (10) and (15), θ0 can be entirely consistently
estimable.

Wewill now see that, in contrast, for a family {kθ ; θ ∈ �} of covariance functions,
under fixed-domain asymptotics, it can regularly be the case that θ0 is not entirely
consistently estimable.

The notion that makes this more precise is that of the equivalence of Gaussian
measures Ibragimov and Rozanov (1978), Stein (1999). Consider two covariance
parameters θ1, θ2 ∈ �, θ1 	= θ2. If ξ has covariance function kθ1 , ξ yields a measure
Mθ1 on the set of functions from D to R, with respect to the cylindrical sigma-
algebra.1 Similarly, if ξ has covariance function kθ2 , ξ yields ameasureMθ2 .When D
is compact, these twomeasures can be equivalent (for a set A of functions,Mθ1(A) =
0 if and only if Mθ2(A) = 0) even when the covariance functions kθ1 and kθ2 are
different.

The notion of equivalence of Gaussian measures enables to definition non-
microergodic parameters.

Definition 2 Let � be a function from � to R
q for q ∈ N. We say that �(θ0) is

non-microergodic if there exists θ1 ∈ � such that �(θ1) 	= �(θ0) and the measures
Mθ1 and Mθ0 are equivalent.

If a covariance parameter is non-microergodic, it cannot be estimated consistently.

Lemma 3 Let (si )i∈N be any sequence of points in D. If �(θ0) is non-microergodic,
there does not exist a sequence of functions �̂n : Rn → R

q such that, for any θ ∈ �,
if ξ has covariance function kθ then �̂n(ξ(s1), . . . , ξ(sn)) goes to �(θ) in probability
as n → ∞.

Proof Let �(θ0) be non-microergodic. Then fix θ1 ∈ � such that �(θ1) 	= �(θ0)

and the measures Mθ1 and Mθ0 are equivalent.
Assume that an estimator sequence �̂n as described in the lemma exists. Then,

when ξ has covariance function kθ0 , as n → ∞,

�̂n(ξ(s1), . . . , ξ(sn)) →p �(θ0).

Hence there exists a subsequence n′ such that as n′ → ∞, almost surely,

�̂n′(ξ(s1), . . . , ξ(sn′)) → �(θ0).

1If Gaussian processes with continuous realizations on compact sets are considered, one can also
defineGaussianmeasures over theBanach space of continuous functions (on a compact set) endowed
with the supremum norm and the corresponding Borel sigma-algebra.
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This can be written in the form

Mθ0

({
f function from D to R such that �̂n′ ( f (s1), . . . , f (sn′ )) →n′→∞ �(θ0)

})
= 1.

Then since the measures Mθ1 and Mθ0 are equivalent

Mθ1

({
f function from D to R such that �̂n′ ( f (s1), . . . , f (sn′ )) →n′→∞ �(θ0)

})
= 1.

This means that, when ξ has covariance function kθ1 , the sequence �̂n′(ξ(s1), . . . ,
ξ(sn′)) goes almost surely to �(θ0) 	= �(θ1). Hence the sequence �̂n(ξ(s1), . . . ,
ξ(sn)) does not go to �(θ1) in probability as n → ∞. This is a contradiction which
concludes the proof. �

Hence, one should not expect to have accurate estimators of non-microergodic
parameters under fixed-domain asymptotics. The interpretation of non-microergodic
parameters is that, even if �(θ0) and �(θ1) are different, there is not enough infor-
mation in a single realization of the random function {ξ(s); s ∈ D} (even if this
realization was observed continuously) to distinguish between �(θ0) and �(θ1).
This lack of information stems from the boundedness of D.

It is important to remark that there exist results showing that non-microergodic
parameters have an asymptotically negligible impact on prediction of unknown val-
ues of ξ Stein (1988), Stein (1990a), Stein (1990c), Zhang (2004). In Stein (1999),
this situation is interpreted as an instance of the following principle, called Jeffreys’s
law: “things we shall never find much out about cannot be very important for pre-
diction”.

Finally, we can define microergodic parameters.

Definition 3 Let � be a function from � to R
q for q ∈ N. We say that �(θ0) is

microergodic if for any θ1 ∈ � such that �(θ1) 	= �(θ0), the measures Mθ1 and
Mθ0 are orthogonal (i.e., there exists a set of functions A such thatMθ1(A) = 0 and
Mθ0(A) = 1).

4.3 Consistent Estimation of the Microergodic Parameter of
the Isotropic Matérn Model

Let us now focus on the family of isotropic Matérn covariance functions (1), in the
case where the smoothness parameter ν is known. We thus consider θ = (σ 2, α) ∈
� = (0,∞) × [αinf , αsup] with 0 < αinf < αsup < ∞ fixed. We thus have

kθ (x) = σ 221−ν


(ν)
(α||x ||)ν Kν (α||x ||) , (20)
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for x ∈ R
d where 0 < ν < ∞ is fixed and known. We let θ0 = (σ 2

0 , α0). In the rest
of Sect. 4, we set the dimension as d ∈ {1, 2, 3}.

Then the parameters σ 2
0 and α0 are non-microergodic, while the parameter σ 2

0 α2ν
0

is microergodic.

Proposition 1 (Zhang 2004) With the family of covariance functions given by (20),
the measures Mθ1 and Mθ0 are equivalent if σ 2

1 α2ν
1 = σ 2

0 α2ν
0 and are orthogonal

if σ 2
1 α2ν

1 	= σ 2
0 α2ν

0 . Hence, σ 2
0 α2ν

0 is microergodic, and in particular σ 2
0 and α0 are

non-microergodic.

We remark that Proposition 1 holds for d ∈ {1, 2, 3}, which is the ambient assump-
tion in Sect. 4.3.When d ≥ 5, Anderes (2010) proved that the full parameter (σ 2

0 , α0)

is microergodic (thus in particular σ 2
0 and α0 are microergodic). At the time of

Anderes (2010), it was mentioned there that the case d = 4 was open, that is, it was
not known if σ 2

0 and α0 are microergodic in this case. Currently, this case is still
open, to the best of our knowledge.

Then, Zhang (2004) finds a consistent estimator ofσ 2
0 α2ν

0 byfixingα to an arbitrary
value and by maximizing the likelihood with respect to σ 2 only. Hence, for α ∈
[αinf , αsup], let

σ̂ 2(α) = argmin
σ 2∈(0,∞)

Ln(σ
2, α).

We remark that the argmin is unique from (22) in the proof of Theorem 3. By
canceling the derivative of Ln(σ

2, α) with respect to σ 2, we find

σ̂ 2(α) = 1

n
y��−1

α y, (21)

with �α = Rσ 2,α/σ 2, based on (22) in the proof of Theorem 3.

Theorem 3 (Zhang 2004) Let α1 be any fixed element of [αinf , αsup]. As n → ∞,
almost surely,

σ̂ 2(α1)α
2ν
1 → σ 2

0 α2ν
0 .

Proof (sketch) Let

σ 2
1 = σ 2

0 α2ν
0

α2ν
1

.

Let ε > 0. From Proposition 1, the measures Mσ 2
0 ,α0

and Mσ 2
1 ,α1

are equivalent and
the measures Mσ 2

0 ,α0
and Mσ 2

1 +ε,α1
are orthogonal. Hence, Zhang (2004), based on

Gikhman and Skorokhod (2004), obtains that, almost surely,

nLn(σ
2
1 + ε, α1) − nLn(σ

2
1 , α1) → ∞.

Similarly, we can show that, almost surely,

nLn(σ
2
1 − ε, α1) − nLn(σ

2
1 , α1) → ∞.
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Let �α1 = Rσ 2,α1/σ
2. Then

Ln(σ
2, α1) = log(σ 2) + 1

n
log(|�α1 |) + 1

σ 2

1

n
y��−1

α1
y. (22)

Hence, 1/σ 2 �→ nLn(σ
2, α1) is convex, and thus by convexity we obtain, as n → ∞,

⎛
⎜⎝ inf

σ 2∈(0,∞)

|σ 2−σ 2
1 |≥ε

nLn(σ
2, α1)

⎞
⎟⎠ − nLn(σ

2
1 , α1) → ∞

almost surely. This implies that σ̂ 2(α1) → σ 2
1 almost surely as n → ∞ which con-

cludes the proof. �

In the supplementary material, still for the Matérn covariance functions, we also
provide asymptotic normality results for the estimator σ̂ 2(α1)α

2ν
1 and for the “full”

maximum likelihood estimator, where the likelihood is maximized with respect to
both σ 2 and α.

We remark that, in general and outside of the Matérn case, consistency results for
maximum likelihood under fixed-domain asymptotics are quite scarce. We mention
a few such other consistency results at the end of Appendix A in the supplementary
material and in Sect. 5.

5 Conclusion

Wehavepresented someasymptotic results on covariance parameter estimation under
increasing and fixed-domain asymptotics. The presentation highlights the strong
differences between the two settings. Under increasing-domain asymptotics, with
mild identifiability conditions, all the components of the covariance parameter can be
estimated consistently, and with asymptotic normality. The proof techniques hold for
general families of stationary covariance functions. They are based on the asymptotic
independence betweenmost pairs of observations, as n → ∞, that enables to control
the logarithm of the likelihood and its gradient and to apply general methods for M-
estimators.

In contrast, under fixed-domain asymptotics, typically all pairs of observations
have a covariance that is not small. As a consequence, some components of the covari-
ance parameter cannot be estimated consistently, even if changing the component
changes the covariance function. The notion of equivalence of Gaussian measures,
yielding the notion of microergodicity, is central. The results and proofs are not
general in the current state of the literature. Here we have presented results and
proofs related to the family of isotropic Matérn covariance functions in dimension
d = 1, 2, 3. The presented proofs rely on the Fourier transforms of these covariance
functions (through the results taken from the cited references) and also on the explicit
expression of the logarithm of the likelihood as a function of the variance parameter
σ 2.
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There are many other existing contributions in the literature that we have not
presented here. Under increasing-domain asymptotics, earlier results on maximum
likelihood were provided by Mardia and Marshall (1984), using general results
from Sweeting (1980) (the latter not necessarily considering Gaussian processes).
Restrictedmaximum likelihoodwas then studied in Cressie and Lahiri (1993). Cross-
validation was considered in Bachoc (2014), Bachoc (2018). Extensions to trans-
formed Gaussian processes were studied in Bachoc et al. (2020). Pairwise likelihood
was studied in Bevilacqua and Gaetan (2015). Multivariate processes were consid-
ered in Furrer et al. (2016), Shaby and Ruppert (2012). Finally, more generally,
the increasing-domain asymptotic framework is investigated in spatial statistics, for
instance, in Hallin et al. (2009), Lahiri and Robinson (2016), Lahiri (2003), Lahiri
and Mukherjee (2004).

Under fixed-domain asymptotics, earlier results for the estimation of the microer-
godic parameter in the family of exponential covariance functions in dimension one
were obtained in Ying (1991). The estimation of parameters for the Brownianmotion
is addressed in Stein (1990b). Various additional results on maximum likelihood are
obtained in Loh (2005), Loh and Lam (2000), Van der Vaart (1996), Ying (1993).
Variation-based estimators are studied in Anderes (2010), Blanke and Vial (2014),
Istas and Lang (1997), Loh (2015). Composite likelihood is addressed in Bachoc
et al. (2019). The case of covariance parameter estimation for constrained Gaus-
sian processes is addressed in Bachoc et al. (2019), López-Lopera et al. (2018).
Cross-validation is addressed in Bachoc et al. (2017). Finally, extensions of the
fixed-domain asymptotic results presented here to the family of isotropic Wendland
covariance functions are provided in Bevilacqua et al. (2019).
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Global Scan Methods for Comparing
Two Spatial Point Processes

Florent Bonneu and Lionel Cucala

Abstract In many scientific areas such as forestry, ecology, or epidemiology, decid-
ing whether two spatial point patterns are equally distributed is an important issue.
This work proposes an adaptation of spatial scan methods, originally designed for
local cluster detection, in order to test for the global similarity between two spatial
point patterns. We design two spatial global scan statistics based on likelihood ratio
on the one hand and on moments on the other, and explain how to compute their sig-
nificance. A simulation procedure is conducted to compare these global scanmethods
to others based on kernel density estimation or second-order summary statistics. We
also apply them to a dataset of wildfires registered in France.

1 Introduction

In the past years, the analysis of spatial point patterns has received much attention
(Baddeley et al. 2015; Diggle 2003; Moller andWaagepetersen 2003). Thanks to the
daily use of sensors, many datasets consist nowadays of spatial locations of random
events: earthquakes epicentres, tree species in a forest, addresses of people affected
by a certain disease... These spatial locations are often completed by a mark, that
can be either binary, continuous, or any other type. In many cases, a comparison is
needed between the spatial distribution of two point patterns: for example, Diggle
et al. (1990) compare the spatial distribution of larynx cancers with the underlying
population. The main concern is often to know whether events from the first dataset
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tend to cluster around one or more hotspots compared to events from the second
dataset.

In this case-control framework, tests of spatial clustering can be split into three
types (Lawson and Denison 2002; Gelfand et al. 2010). Focussed tests are designed
to check whether events are abnormally clustered around a specific point, such as a
pollution source (Diggle 2003). Global tests measure how events tend to cluster in
the whole observation domain: some are based on the comparison of kernel intensity
estimators (Fuentes-Santos et al. 2017) or similarly analyse the kernel estimation
of the relative risk (Kelsall and Diggle 1995), others are based on the partitioning
of the observation domain in cells (Alba-Fernández et al. 2016; Allard and Fraley
1997) whereas distance-based methods compare second-order characteristics such
as their K functions (Diggle and Chetwynd 1991; Bonneu and Thomas-Agnan 2015).
A number of papers also investigate the distribution properties of themarks, either by
testing the mark independence (Grabarnik et al. 2011) or by computing the sample
crossK-function (Illian et al. 2008). Finally, local tests identify the specific areawhere
events are most clustered, for example, with LISA functions (Moraga and Montes
2011). Among these local tests, variable-window scan statistics play an essential
role since the initial role by Kulldorff and Nagarwalla (1995). A scan statistic is the
maximum value of a clustering index measured on a set of candidate clusters.

The idea we investigate in this paper is the adaptation of scan statistics from local
tests to global tests by considering all the clustering indicesmeasured on the potential
clusters instead of only retaining the maximum one. Section2 describes the global
scan statistics and their computational aspects. These scan statistics are then applied
to real and simulated datasets in Sect. 3. The paper concludes with a discussion.

2 Methodology

Let X = {x1, . . . , xn} be a realization of a spatial point process observed in a bounded
region W ⊂ R

2. Suppose that a bivariate mark is associated to each location xi :
∀i = 1, . . . , n, mi ∈ {0, 1}without loss of generality. Thus, the initial point pattern
can be split up:

X = X0 ∪ X1,

where X0 = {x0,1, . . . , x0,n0} and X1 = {x1,1, . . . , x1,n1} are, respectively, the spatial
patterns of type 0 and 1, and n0 + n1 = n.

We would like to test for H0: “Conditionally to the events locations X1, . . . , Xn ,
themarksM1, . . . , Mn are independent and identically distributed”. This corresponds
to the so-called random labeling hypothesis (events of a single point process are inde-
pendently assigned to the two groups) rather than the so-called random superposition
hypothesis (superposition of two independent populations of events) (Diggle 2010).

A direct consequence of this hypothesis is that the marginal spatial distributions
X0 and X1 correspond to random thinned versions of the same spatial point process
model. This assumption is the starting point of spatial scanmethods, whose objective
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is to detect the most significant cluster, i.e. the area of W in which the “distance”
between what we observe and what should be observed under H0 is the greatest.
Remark that this null hypothesis does not assume anything about the spatial distribu-
tion of X but just considers that the distribution of the mark Mi does not depend on
the location Xi . Contrarily to our test, many other procedures for comparing point
patterns rely on a Poisson assumption (Fuentes-Santos et al. 2017).

2.1 Spatial Scan Statistics for Bivariate Data

As said before, a scan statistic, as originally defined by Cressie (1977), is the max-
imum value of a clustering index on a set of candidate clusters. Let a Borel set
Z ⊂ W be any candidate cluster. The clustering index, denoted by I (Z), measures
the clustering of abnormal marks in Z with respect to H0. We will describe later on
the clustering indices that can be considered.

The set of candidate clusters can be chosen in different ways. In this article, we
will focus on circular clusters, such as Kulldorff (1997), but all our definitions in
the sequel are valid for any set of candidate clusters. The set of potential clusters,
denoted byD, is the set of discs centred on one location and passing through another
one:

D = {Di, j , 1 ≤ i ≤ n, 1 ≤ j ≤ n},

where Di, j := {s ∈ W : ‖s − xi‖ ≤ ‖x j − xi‖} is the closed disc centred on xi and
passing through x j . Since the disc may have null radius (if i = j), the number of
potential clusters is n2.

The original idea for comparing all these candidate clusters has been introduced by
Kulldorff (1997). It relies on the likelihood ratio between two parametric hypotheses.
Under H0, the marks M1, . . . , Mn are independent and identically distributed. Since
they are bivariate, they follow a Bernoulli distribution with parameter p, B(p). The
likelihood ratio relating to the null hypothesis is thus

LR0(m1, . . . ,mn; p) =
n∏

i=1

pmi (1 − p)1−mi .

For any candidate cluster Z ⊂ W , an alternative hypothesis H1,Z is introduced, stat-
ing that the marks are still independent but follow a Bernoulli distribution with
different parameters in Z and in Zc, the complementary set of Z in W :

{
Mi ∼ B(pZ ) if xi ∈ Z ,

Mi ∼ B(pZc) if xi ∈ Zc,

and the likelihood ratio relating to this alternative hypothesis is thus
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LR1,Z (m1, . . . ,mn; pZ , pZc ) =
∏

i :xi∈Z
(pZ )mi (1 − pZ )1−mi

∏

i :xi∈Zc

(pZc )mi (1 − pZc )1−mi .

Let p∗, p∗
Z and p∗

Zc be the maximum likelihood estimators of p, pZ and pZc , respec-
tively. Their computation is straightforward:

p∗ = arg max
p∈[0,1]

LR0(m1, . . . ,mn; p) = n1
n

and

(p∗
Z , p∗

Zc) = arg max
(pZ ,pZc )∈[0,1]2

LR1,Z (m1, . . . ,mn; pZ , pZc) =
(
n1(Z)

n(Z)
,
n1(Zc)

n(Zc)

)
,

where n(Z) = ∑n
i=1 1(xi ∈ Z) and n1(Z) = ∑n

i=1 mi1(xi ∈ Z) are, respectively,
the total number of events and the number of type 1 events in Z . The log-likelihood
ratio (LLR) between hypotheses H0 and H1,Z can thus be computed:

LLR(Z) = log
(
LR1,Z (m1, . . . ,mn; p∗

Z , p∗
Zc)

) − log
(
LR0(m1, . . . ,mn; p∗)

)

= n1(Z) log

(
n1(Z)

n(Z)

)
+ (n(Z) − n1(Z)) log

(
1 − n1(Z)

n(Z)

)

+ n1(Z
c) log

(
n1(Zc)

n(Zc)

)
+ (

n(Zc) − n1(Z
c)

)
log

(
1 − n1(Zc)

n(Zc)

)

− n1 log
(n1
n

)
− (n − n1) log

(
1 − n1

n

)
.

This log-likelihood ratio LLR(Z), which has already been used by Allard and Fraley
(1997) to estimate the support domain of a bounded point process in presence of
background noise, is a relevant clustering index for abnormal marks in Z since it
increases when the proportions of type 1 events differ between Z and Zc. However,
it does not indicate whether the proportion of type 1 events in Z is higher or lower
than in Zc. Therefore, in order to collect this information, we propose to use the
following LLR-based clustering index:

ILLR(Z) = LLR(Z)

[
1

(
n1(Z)

n(Z)
>

n1(Zc)

n(Zc)

)
− 1

(
n1(Z)

n(Z)
<

n1(Zc)

n(Zc)

)]
.

Another clustering index for comparing candidate clusters has been introduced by
Cucala (2014). This one is not restricted to bivariate marks but can be applied to
any numerical marks since it does not rely on any distribution assumption. Under
H0, the marks M1, . . . , Mn are all independent and identically distributed, so that
their means and variances are equal. Therefore, the number of type 1 events in Z ,
N1(Z), follows the binomial distribution Bin

(
n(Z), n1

n

)
. SinceE

(
N1(Z)

) = n(Z) n1n
and Var

(
N1(Z)

) = n(Z) n0n1n2 , the moment-based clustering index
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IM(Z) = N1(Z) − n(Z) n1n√
n(Z) n0n1n2

has null mean and unit variance for every Z ⊂ W . Since it increases when the pro-
portion of type 1 events in Z is higher than in Zc and decreases when it is lower in
Z than in Zc, its behaviour is very similar to ILLR(Z).

Both indices have been designed for computing local spatial scan statistics and
detecting the area where the hypothesis H0 is most violated. If one looks for either
excess or default of type 1 events, the relevant local spatial scan statistic is

�max = max
Z∈D |I (Z)|

and the most likely cluster is

Ĉ = arg max
Z∈D

|I (Z)|.

From now on, �max
LLR and �max

M will denote the local spatial scan statistics computed
using respectively ILLR(Z) and IM(Z). Remark that, if one looks only for excess
of type 1 events or only for default of type 1 events, maxZ∈C I (Z) or minZ∈C I (Z)

should be, respectively, investigated.
These local spatial scan statistics are not designed for global investigation of

the differences of spatial distribution between X0 and X1 since they only retain the
maximum (in absolute value) of the abnormality index. A consequence of X0 and
X1 being differently spatially distributed would be the presence of many candidate
clusters with high index I (Z) (i.e. excess of type 1 events), and also many candidate
clusters with low index I (Z) (i.e. default of type 1 events). Thus, it is necessary to
introduce summary statistics measuring the empirical distribution of these indices.
To this end, we propose the following global spatial scan statistics

�var
LLR = Var({ILLR(Z), Z ∈ D}) :

and
�var

M = Var({IM(Z), Z ∈ D}),

where Var() stands for the empirical variance of a real sample.

2.2 Significance Issues

Once a scan statistic (either local or global) is computed, we need to evaluate its
significance. Unfortunately, its null distribution is untractable due to the dependence
between I (Z) and I (Z ′) if n(Z ∩ Z ′) �= 0. Another solution, chosen by Kulldorff
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(1997) or Kulldorff et al. (2009), would be to simulate random datasets under the null
hypothesis but this is only possiblewhen one can simulate random locations similarly
to the ones in X . Here, since we do not want to assume anything about the spatial
distribution of the events, we decided to run a technique called random labelling:
a simulated dataset is obtained by randomly associating the marks to the spatial
locations. When doing this, the overall spatial structure of locations is preserved
so that the simulated dataset satisfies the H0 hypothesis of a random distribution of
marks conditionally to the point locations. Notice that the random labelling technique
allows to satisfy the requirements of a good Monte Carlo procedure mentioned by
Baddeley et al. (2015) and in particular the exchangeability condition (Mrkvička
et al. 2020).

Let T denote the number of randomized datasets and�(1), . . . , �(T ) be the obser-
vations of the spatial scan statistic associated with these datasets. Throughout this
paper, for the simulation study or the application to forest fire occurrences, T is
always fixed to 99 simulated patterns under H0. According to Dwass (1957), the
Monte-Carlo-based p-value of the scan statistic �, observed on the initial sample, is
R

T+1 , where R is the rank of � in the (T + 1)-sample (�(1), . . . , �(T ), �). Note that
this p-value is unbiased in the sense that under the null hypothesis, the probability of
observing a p-value less than or equal to p is exactly p. According to the classical
test theory, the most likely cluster Ĉ is said to be significant if the associated p-value
is less than the type I error α.

3 Applications

We illustrate our global clustering tests on a simulation study comparing the results
of different methods and on a real dataset of forest fire occurrences in France. All the
implementation is made in R code,1 using sometimes existing functions available in
R packages.

3.1 Simulation Study

In order to evaluate the performance of our tests based on �var
M , �max

M , �var
LLR and

�max
LLR , we design three simulated scenarios of bivariate data with different spatial

structures: absence of spatial variation in risk (model ASVR), presence of spatial
variation in risk (model PSVR) and stationary spatial clustering (model SSC) and
we compare them with existing tests constructed with �F and �DC statistics.

The statistic�F is amodified version of the statistic introduced by Fuentes-Santos
et al. (2017) in the spatial point process framework corresponding to the following
square discrepancy measure

1Available on demand at the authors’ email addresses.
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�F =
∫

W
( f̂0(x) − f̂1(x))

2dx,

where f̂0 and f̂1 are, respectively, the estimated densities of event locations of type
0 and 1. Our statistic �F differs from that in Fuentes-Santos et al. (2017) in the
estimation procedure of the case and control densities.We use here a Gaussian kernel
and the bandwidth selection in Cronie and Van Lieshout (2018) instead of a radial
kernel and the plug-in bandwidth selector described in Fuentes-Santos et al. (2017).
The test based on �F is realized with the kde.test function of the R package
kde. The statistic �DC is the statistic introduced by Diggle and Chetwynd (1991)
defined by

�DC =
∑m

k=1 D̂(rk)√
Var({D̂(rk), k = 1, . . . ,m})

where D̂(rk) = K̂0(rk) − K̂1(rk) is the differenceof the estimatedRipley K functions
of cases and controls and rk are equally spaced distances for k = 1, . . . ,m.

The significances of the six statistics are estimated via the random labelling
approach described in the previous section, and using the same permuted samples in
order to avoid overdispersion. The type I error is set to α = 5%.

We now describe the bivariate point process models considered in our simulation
study.

• ASVR model: spatial Poisson point process with intensity function λ(x, y) =
N exp(−3y) and types 0 and 1 allocated by random labelling.

• PSVR model: superimposed Poisson point processes with intensity functions
λ0(x, y) = N1 exp(−3y) for type 0 and λ1(x, y) = N2(x2 + y2) for type 1.

• SSCmodel: superimposed 50 points uniformly distributed for type 0 and a Thomas
cluster point pattern for type 1 with intensity of the Poisson process of cluster
centres equal to 5, a standard deviation of random displacement corresponding to
0.1 and a mean number of points per cluster equal to 10.

The constants N , N1 and N2 are chosen so that the mean number of points per
marginal point process is equal to 50.

Table1 shows the rejection rate of the null hypothesis obtained with 100 simula-
tions of each scenario for the six tests considered. The results are relatively equivalent
between the different test procedures except for theDiggle–Chetwynd statistic which
is based on the second-order structure of the spatial point patterns and is not adapted
to detect differences of concentration at the first order. Remark that the rejection rates
for scenario ASVR are very close to the nominal type I error since this satisfies the
null hypothesis.

Because the chosen scenarios PSVRandSSCare far from the null hypothesis of no
spatial variation in risk, we construct several other examples with a rate ε indicating
the departure from H0. For ε = 0, we are under the ASVR model and for ε = 1 we
are further than ever from the null hypothesis H0. Considering ε values between 0
and 1 allows us to detect the range where the departure from the null hypothesis is
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Table 1 Rejection rate of the null hypothesis for the six tests computed on 100 simulations of each
model

Model �max
M �var

M �max
LLR �var

LLR �DC �F

ASVR 0.04 0.03 0.07 0.05 0.04 0.04

PSVR 1.00 1.00 1.00 1.00 0.03 0.98

SSC 1.00 1.00 1.00 0.95 1.00 1.00
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Fig. 1 Simulated patterns of bivariate data of type 0 in blue circles and of type 1 in red triangles
with an epsilon parameter equal to 0.5 for model PSVReps (left) and for model SSCeps (right)

detected and thus to have an indication of the power of the test. We present below the
two new models named PSVReps and SSCeps and show in Fig. 1 simulated patterns
for each one with ε = 0.5 and the most likely clusters, i.e. the discs maximizing
|IM(Z)| and |ILLR(Z)|, respectively, coloured in green and magenta.

• PSVReps model: superimposed Poisson point processes with intensity func-
tions λ0(x, y) = N1 exp(−2y) for type 0 and λ1(x, y) = N1 exp(−2y) + ε 50

N1

1
4

−2

1{0.5 < x < 0.75; 0.5 < y < 0.75} for type 1.
• SSCeps model: superimposed 50 points uniformly distributed for type 0 and a
Thomas cluster point pattern for type 1 with intensity of the Poisson process of
cluster centres equal to 50(1 − 0.9ε), a standard deviation of random displacement
corresponding to 0.1 − 0.09ε and a mean number of points per cluster equal to
1 + 9ε.

Tables2 and 3 present the rejection rates of the null hypothesis for the two models
PSVReps and SSCeps for different values of ε from 0 to 1 by step 0.2. For the
PSVReps model, we notice that the test based on�F appears to be the most sensitive
and gives the best global results. The local scan statistics �max

M and �max
LLR give good

results, similar to�F , when ε is low and are less sensitive for average values of ε. On
the opposite, the statistic�DC is not adequate in this situation. For the SSCepsmodel,
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Table 2 Rejection rate of the null hypothesis for the six tests computed on 100 simulations for
each epsilon in {0, 0.2, 0.4, 0.6, 0.8, 1} with model PSVReps

Model ε = 0 ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1

�max
M 0.02 0.24 0.66 0.86 0.90 0.96

�var
M 0.05 0.18 0.66 0.91 0.99 0.99

�max
LLR 0.02 0.28 0.74 0.94 0.99 0.99

�var
LLR 0.04 0.18 0.65 0.92 0.99 0.99

�DC 0.04 0.11 0.42 0.75 0.98 0.97

�F 0.04 0.26 0.82 0.99 1.00 1.00

Table 3 Rejection rate of the null hypothesis for the six tests computed on 100 simulations for
each epsilon in {0, 0.2, 0.4, 0.6, 0.8, 1} with model SSCeps

Model ε = 0 ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1

�max
M 0.04 0.25 0.45 0.81 0.92 1.00

�var
M 0.05 0.21 0.31 0.43 0.76 1.00

�max
LLR 0.03 0.30 0.45 0.53 0.95 1.00

�var
LLR 0.05 0.22 0.29 0.41 0.89 0.95

�DC 0.04 0.28 0.61 0.85 0.99 1.00

�F 0.03 0.18 0.49 0.92 1.00 1.00

we observe approximately the same results: �max
M and �max

LLR are very sensitive to
detect departure from H0 with low ε but not necessary for ε values around 0.6. The
test based on �DC gives here very good results due to the fact that the second-order
distribution of points is very different between type 0 and 1.

In conclusion, the tests basedon local scan statistics�max
M and�max

LLR give relatively
good results near from those of �F and are competitive in the case where few points
are far from the null hypothesis which it is the case when ε is low. The tests based on
global scan statistics �var

M and �var
LLR are slightly less powerful than the local ones

but this might be improved by the choice of another set of candidate clusters. Finally,
the choice of the clustering index does not seem to be crucial since the results are
similar between methods based on LLR index and moment-based index.

3.2 Forest Fire Occurrences

Forest fires have substantial worldwide impacts on human societies causing notably
health issues, environmental disasters, and economic losses. To limit wildfire occur-
rences and their negative effects, fire risk prevention begins with describing and
understanding the stochastic mechanisms governing the spatio-temporal distribu-
tions of locations and the propagation dynamics of forest fires. To reach this goal,
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many statistical analyses and modelling techniques have been used in the spatio-
temporal point process framework, for example, in Opitz et al. (2020) and references
therein. In our study, we focus on the French Mediterranean basin which is very
exposed to wildfires due to its climate with hot/dry summers and cool/wet winters,
its vegetation with highly inflammable species and its important human activity.
Forest fires are the primary cause of forest destruction in this region.

Since 1973 in the French Mediterranean region, Fire Departments recorded the
locations and characteristics of forest fire occurrences in the Prométhée2 database
in order to analyse them by statistical tools for improving the knowledge of the
spatio-temporal distribution of wildfires and their causes. Historically, the spatial
location ofwildfires is given by theirDFCI coordinates spanning a gridwith quadratic
cells of 4 km2, causing a loss of information due to positional uncertainties. For
this reason and because of the growth of GPS3 resources and powerful statistical
techniques for spatio-temporal point patterns, the authorities started to record theGPS
locations for some forest fires. We consider the overall database of GPS locations
of wildfire occurrences registered between 2013 and 2019 in the Var and Haute-
Corse departments, two french administrative units with, respectively, 5973 km2 and
4666 km2.

In forest fire analysis, it is of particular interest to detect and measure spatial
distribution differences between two or more sub-samples of forest fire point pat-
terns. For example, we want to know whether the spatial distribution for one year is
different from that of the previous year. Another issue consists in assessing whether
the spatial distribution for arsons is different for involuntary forest fires (natural, due
to negligence…). We have applied the statistical tests described previously to detect
overall spatial distribution differences for two types of recorded wildfires for the two
issues described above.

For our first application, we focus on the testing of spatial distribution differences
between all wildfire locations recorded byGPSover two successive years. TheseGPS
datasets represent samples of all the forest fires recorded at theDFCI scale.Our testing
procedure is equivalent to applying first-order separability tests in time. Pairwise
comparisons between all the couples of spatial point patterns at the annual scale
are feasible but we decide to be concise and restrict our attention to the three most
relevant examples. Figure2 shows the spatial distribution of forest fire occurrences
in Var and Haute-Corse departments and the cluster of points with the maximum
index value defined, respectively, by |IM(Z)| and |ILLR(Z)|, without taking into
account if they are significant for the moment. We can observe that the cluster with
maximum |ILLR(Z)| has often a larger radius than the one with maximum |IM(Z)|:
this phenomenon has already been noticed by Cucala (2017) when doing cluster
detection.

Table4 gives the p-values of the separability tests for the three cases: Var1516,
Var1617 and HauteCorse1314, corresponding, respectively, to the spatial point
patterns of wildfires in left, middle and right panels in Fig. 2. For Var1516, all the

2http://www.promethee.com/.
3Global Positioning System.

http://www.promethee.com/
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Fig. 2 Locations of forest fire occurrences recorded by GPS in the Var (left-middle) and Haute-
Corse (right) departments. Left-middle: 54 locations in 2016 are in red triangles whereas the blue
circles represent 66 locations in 2015 (left) and 123 locations in 2017 (middle). Right: 165 locations
in 2013 in blue circles and 266 locations in 2014 in red triangles. Green circles represent the
clusters with maximum |IM (Z)| value and the magenta circles represent the clusters with maximum
|ILLR(Z)| value. Geographical scales are different for the two administrative units: Var and Haute-
Corse

Table 4 P-values of the separability tests of the spatial distributions of forest fires recorded during
two successive years in the Var and Haute-Corse departments

Samples �max
M �var

M �max
LLR �max

LLR �DC �F

Var1516 0.99 0.9 0.43 0.76 0.25 0.93

Var1617 0.02 0.1 0.02 0.02 0.54 0.4

HauteCorse1314 0.01 0.01 0.01 0.01 0.99 0.01

tests conclude to non-significant differences between the distributions of locations
in 2015 and 2016. For the years 2016 and 2017, the tests based on scan statistics
�max

M ,�max
LLR ,�

var
M and�var

LLR indicate significant differences whereas the tests based
on �DC and �F do not. The �F statistic seems to ignore the differences between
the two spatial point patterns when they are spatially distributed in nearby areas,
because the main difficulty of this approach is the global bandwidth selection, when
the number of points is low as it is suggested in Fuentes-Santos et al. (2017). The test
based on�DC indicates that the two spatial point patterns have the same second-order
structure. These results are consistent with our knowledge on forest fires occurrences
because when the conditions are approximately similar (climate, vegetation...) the
second-order structure is unchanged whereas the first-order structure is modified by
previous occurrences of large and/or many wildfires that burnt the vegetation locally
and avoids new forest fires in the future. In example HauteCorse1314, all the tests
conclude to spatial distribution difference except the one based on�DC that suggests
no-difference in the second-order spatial structure.

For our second application, we group wildfires into two types depending on their
nature (arson or not) or their burnt area (less or greater than 1 hectare). Figure3
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Fig. 3 Left: GPS locations of arsons in red triangles and non-arsons in blue circles in the Var
department during the year 2017. Right: GPS locations of forest fire occurrences with a burnt area
less than 1 hectare in red triangles and greater than 1 hectare in blue circles in the Haute-Corse
department during the year 2016

Table 5 P-values of the comparison tests between spatial distributions of wildfires with burnt area
less or greater than 1 hectare in 2017 in the Var department, and arsons and others types (natural,
due to negligence…) in 2016 in the Haute-Corse department

Categories �max
M �max

M �max
LLR �var

LLR �DC �F

Arsons/non-
Arsons

0.53 0.43 0.4 0.33 0.89 0.35

< 1 ha / > 1
ha

0.35 0.13 0.34 0.11 0.78 0.06

presents the considered samples and the cluster with the largest value for the indices
|IM(Z)| and |ILLR(Z)|.

The p-values of all the tests are larger than 5% in Table5, so we do not reject the
null hypothesis of spatial differences between the two point patterns in each case.
We notice than the test based on �F is very close to 5% and the rejection of H0,
maybe because it does not depend on a fixed cluster family based on discs and so it
can detect difference notably in the South East of the Haute-Corse department.

4 Discussion

The scan methods introduced in this article are parameter-free competitive tech-
niques for detecting significant differences between two spatial point patterns. The
application to forest fire occurrences has shown that they can be more efficient than
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others on a certain type of data. As already mentioned, the global scan methods are
more sensitive to the choice of the set of candidate clusters so it could be worth ana-
lyzing whether the performances of these methods vary when this set is modified.
For example, candidate clusters with a radius higher than a given threshold could be
eliminated, such as done by Kulldorff (1997) for cluster detection.

In the simulation study, we compared the local and global scan statistics to a
density-based statistic and another comparing the second-order structure of the point
pattern. Notice that this study could be completed by computing also distance-based
statistics (Hahn 2012) or area-based statistics (Andresen 2009), and by analysing the
influence of the number of events of each type.

Theglobal scan statisticswe introduced in this paper are only basedon the different
values of a clustering index computed on candidate clusters. However, the additional
information concerning these candidate clusters (centre and radius) could be used
by a post-processing technique to obtain the most relevant cluster areas, using for
example a density-based method.

Finally, the scan tests that have been designed here for comparing two spatial
point patterns could be extended to compare as many point patterns as wanted by
using the concentration index introduced by Jung et al. (2010) for multinomial data.
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Assessing Spillover Effects of Spatial
Policies with Semiparametric
Zero-Inflated Models and Random
Forests

Hervé Cardot and Antonio Musolesi

Abstract The aim of this work is to estimate the variation over time of the spatial
spillover effects of a public policy that was devoted to boost rural development in
France over the period 1993–2002. At a micro data level, it is often observed that the
dependent variable, such as local employment in a municipality, does not vary along
time, so that we face a kind of zero inflated phenomenon that cannot be dealt with
a classical continuous response model or propensity score approaches. We consider
two recent non parametric techniques that are able to deal with that estimation issue.
The first approach consists in fitting two generalized additivemodels to estimate both
the probability of no variation as well as the variation along time of the continuous
part of the response. The second approach is based on the use of random forestswhich
can naturally handle the observation of a mixture of a discrete response as well as a
continuous one. Instead of estimating average treatment effects, we take advantage
of the flexibility of the non parametric approaches to estimate what would have
been the potential outcome under treatment, as well as treatment of the neighboring
municipalities, on some particular municipalities chosen as being representative or
as being of particular interest. The results indicate the evidence of interesting patterns
of temporal spatially-mediated spillover effects of the policy with relevant nonlinear
effects. Policy spillovers matter, even if they are generally not high in magnitude, for
some municipalities with specific demographic and economic characteristics.
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1 Introduction

This work is motivated by the evaluation of the variation along time of the spatial
spillover effects of a public policy that was devoted to boost rural development in
France over the period 1993–2002. Economic and demographic characteristics are
measured at the municipality level for a sample of more than 25000 municipalities
and the aim is to estimate the effect of the rural policy on the variation of local
employment, taking also account of the treatment of the neighboring municipalities.
More generally, the main goal of this paper is to propose statistical non parametric
methods that are suitable to assess spillover effects of spatial policies at a micro level.

The notion of spillovers is related to the idea that the effect of a variable on another
variable may spill over to other statistical units of the sample. Such an idea has a
long tradition in economics and there exists a huge literature, theoretical as well
empirical on such a relevant issue at all levels of aggregation. A typical field of study
of spillover effects is economics and econometrics of innovation, research and devel-
opment and productivity/economic growth (Griliches 1998; Ertur and Koch 2007;
Ertur andMusolesi 2017; Charlot et al. 2015). Also note that spillovers may arise not
only through geographical proximity and that alternative channels of spillovers can
be effective, such as trade, foreign direct investment, bilateral technological proxim-
ity, patent citations between countries, language skills and genetic proximity (Coe
and Helpman 1995; Potterie van Pottelsberghe and Lichtenberg 2001; Spolaore and
Wacziarg 2009).

However, while the issue of policy spillover effects is extremely relevant for
properly designingpublic policies, such a topic is still at an early stage of development
and, to the best of our knowledge, only few studies exist (see, e.g. Angelucci and Di
Maro 2015; Clarke 2017).

From a methodological viewpoint, a common practice with panel data, when the
model contains individual random effects that may be correlatedwith the explanatory
variables and in particular with the treatment variable, is to assume, for identification
purposes, that the conditional independence assumption holds for the difference of
the outcome after and before the beginning of the policy. At the same time, at a micro
data level, it is often observed that the dependent variable, such as local employment
in a municipality, does not vary along time, so that when considering the distribution
of the individual differences over timewe face a kindof zero inflatedphenomenon that
cannot be simply handled with a classical continuous response model or propensity
score approaches.

When dealing with large samples, non parametric approaches allow modeling
complex nonlinear relations, threshold effects and interactions and can be preferred
tomore rigid parametric statisticalmodels (see e.g.Wood 2017 for a discussion). Fur-
thermore, as being more flexible, non parametric models may be employed success-
fully to estimate treatment effects for particular configurations of the conditioning
variables.

We consider in this work two recent non parametric techniques that are able to
deal with the zero inflation phenomenon and that allow a relevant degree of flexibility
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and permit to estimate heterogeneous policy effects. We first extend the approach
developed in Cardot and Musolesi (2020) in order to take into account eventual
spillover effects of the policy. This first approach consists in fitting two generalized
additivemodels to estimate both the probability of no variation aswell as the variation
along time of the continuous part of the response. As far as the second approach is
concerned, it is not unusual anymore to have to deal with large databases and there
is a growing interest in considering modern machine learning tools for evaluating
treatment effects in the literature (see for example Zhao et al. 2016; Belloni et al.
2017; Goller et al. 2019). Random forests (see Breiman 2001 for a seminal paper),
which are built by aggregating regression trees fitted on subsamples of the initial
sample, are particularly interesting in our micro data context since they can naturally
deal with a zero inflated continuous response. Random forests are known to be highly
efficient in terms of prediction in many situations (see Hastie et al. 2009 for a general
presentation) and freely available libraries, such as ranger in R (see Wright and
Ziegler 2017), allow for fast computation on large samples of high dimensional
data. Recently, some asymptotic convergence results for random forests have been
obtained by Scornet et al. (2015) whereas a guided tour on recent development of
random forests is proposed in Biau and Scornet (2016).

Most of the policy evaluation studies considering random forests are based on
propensity score matching (see for example Zhao et al. 2016; Belloni et al. 2017;
Goller et al. 2019). The originality of our work is to deal with selection bias by
non-parametrically estimating the counterfactual with random forests, taking into
account many covariates that can be related with the potential outcome and the
selection variables.

The paper is organized as follows. First, we introduce in Sect. 2 notations as
well as the fundamental conditional independence assumption that ensures that the
effects of the policy as well as the spill over effects can be estimated. Section3
presents the two non parametric econometric models considered in this study to
estimate counterfactuals expected responses, given the set of confounding variables.
We illustrate in Sect. 4 our methodology on the evaluation of a local development
policy based on a large sample of more than 25000 municipalities in France. We
consider the example of four municipalities chosen by a clustering method based
on k-medoids (see Kaufman and Rousseeuw 1990). These municipalities can be
seen as a representative unit, in terms of being the most central municipality, of
each corresponding cluster. This allows us to estimate localized effects of the policy
for central statistical units and to avoid the non common support classical issue in
treatment effect evaluation.
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2 Conditional Average Treatment Effect, Identification and
Model Specification

Let i denote a statistical unit (a municipality in our framework) which is assigned to
some treatment. We denote by Y r

i (t) the potential employment level for municipality
i at time t under treatment (incentive) r , for r ∈ {0, 1}, with the convention that r = 0
corresponds to no treatment. Time t is discrete, taking values in t0 < t1 < · · · < tm .
We assume that the incentives are allocated after t0 and that they may produce an
effect from period k, with tk > t0. All the counterfactuals are assumed to be equal
before the treatment begins, that is to say Y 1

i (t) = Y 0
i (t) for t0 ≤ t < tk .

To account for spatial spillover effects of the policy we also introduce a binary
indicator of treatment, denoted byW , taking the value 1 (some) when the considered
unit has some neighboring municipalities that also receive the treatment and the
value 0 (none) when all its neighboring municipalities do not receive any treatment.
We introduce the counterfactual response Y r,w(t) which represents the response that
would have been observed at time t under treatment r ∈ {0, 1} and neighbors values
w ∈ {0, 1}.

For each municipality i ∈ {1, . . . , n}, we denote by Xi = (Xi1, . . . , Xip) a set
of characteristics observed during the first period of time t0, which are the initial
conditions. We denote by Di , with Di ∈ {0, 1}, the treatment status of municipality
i , that is supposed to be a binary random variable.

Our aim is to estimate, for t ≥ tk , the expected treatment effect given X = x ,
according to the treatment status (w0,w1) ∈ {0, 1} × {0, 1}, of the neighboring
municipalities,

τ(t, x,w0,w1) = E
[
Y 1,w1(t) − Y 0,w0(t)|X = x

]
(1)

based on the observation of
(
Y 0
i (t0), . . . ,Y 0

i (tk−1),Y
Di ,Wi
i (tk), . . . ,Y

Di ,Wi
i (tm), Xi ,

Di ,Wi ), for i = 1, . . . , n. Spillover effects of the policy can be captured by con-
sidering different configuration for w0 and w1. For instance, if w0 = 1 and w1 = 1,
τ(t, x, 1, 1) is the expected treatment effect at time t when some of the neighboring
municipalities have been treated. If w0 = 0 and w1 = 1, τ(t, x, 0, 1) is the expected
effect of the policy combined with the fact that some neighbors have received the
treatment compared to no policy and no treated neighbors.

2.1 Identification Issues and Conditional Independence
Assumption

In order to be able to identify and to estimate the conditional treatment effect (1)
and taking advantage of the fact that we have panel data, we consider a before-after
approach and thus assume that the conditional independence assumption holds for
the difference of the outcome after and before the beginning of the policy,
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Y r,w(t) − Y 0(t0) ⊥⊥ (D,W ) | X, r ∈ {0, 1}, w ∈ {0, 1}, t ∈ {tk, . . . , tm}. (2)

The above condition is more general than the standard conditional indepen-
dence assumption, unconfoundedness or selection on observables, which is typi-
cally employed with cross-sectional data. Indeed, since selection bias may not be
completely eliminated after controlling for the observables, it is important to note
that exploiting the longitudinal structure of the data may help to address the issue
of selection on unobservables. The conditional independence assumption (2) holds
for example when the unobservable part of the model contains correlated random
(individual) time invariant effects, thus allowing for any kind of dependence between
selection into the treatment and time-invariant individual characteristics. Since our
aim is to estimate the treatment effect given X = x , we do not consider the propensity
score as an interesting minimal conditioning variable as it is often advised when one
is interested in estimating average effects (see Rosenbaum and Rubin 1983).

When the conditional independence assumption (2) holds, we can expand τ(t, x,
w0,w1) as follows to obtain a difference-in-differences expansion, as discussed in
Abadie (2005),

τ(t, x,w0,w1) = E
[
Y 1,w1(t) − Y 0(t0)|X = x

] − E
[
Y 0,w0(t) − Y 0(t0)|X = x

]

(3)

and estimate each term at the right-hand side of (3) separately.
Note that (2) is a non parametric identification condition. However, adopting a

parametric specification for difference-in-differences expansion (3) implies a specific
parametric form and any deviation from such a form may invalidate the estimates
(Abadie 2005). Theoretical results about identification indicate that the validity of
the common trend assumption implicit in difference-in-differences models is func-
tional form dependent (Lechner 2011, 2015). These reasons suggests that adopting
a flexible non parametric model is useful for credible identification.

As far as the set of confounding variables X is concerned, we gather demographic,
education and work’s qualification information aggregated at the municipality level.
We also have at hand information on land use, obtained thanks to satellite images.
These variables are indicated as relevant by the related literature on local employment
growth (Carlino andMills 1987).We consider pre-treatment covariates, to ensure that
D (and eventually also W ) causes X and Y causes X do not occur (Lee 2016). This
is likely to be relevant in our economic context where it could be expected that the
covariates prior the introduction of the policy, such as the share of qualified workers
or the existing stock of infrastructure, cause both the inclusion in the program D, and
the potential local employment Y . After the introduction of the policy, the level of
such covariates is likely to be affected by their past values, by the treatments D and
finally also by the response variable Y . In such a causal framework, pre-treatment
covariates should be controlled for whereas post-treatment covariates should not (see
Lee 2016; Lechner 2011). Another relevant variable included in the model which is
worthmentioning is the initial level of employment. Including the initial outcome as a
regressor implies assuming unconfoundedness given lagged outcome. This inclusion
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avoids having an omitted variable bias which would be particularly relevant if the
average outcome of the treated and control groups differs substantially at the first
period (Imbens and Wooldridge 2009), as in this case.

2.2 Zero Inflation and Conditional Mixtures

When dealing with micro count data a non negligible fraction of the dependent
variable Y may not vary at all over a period of time. This means that, for t ≥ tk ,

P
[
Y r,w(t) − Y 0(t0) = 0 | X = x

]
> 0,

inducing a zero inflation phenomenon. A conditional mixture model was introduced
in Cardot and Musolesi (2020) to describe the probability law of Y r (t) − Y 0(t0)
with a mixture of a Dirac at 0 and a continuous distribution, with mixture weights
depending on the treatment status D and the conditioning variables X . Taking account
of the neighbor’s treatment indicator, we slightly modify the mixture model studied
in Cardot and Musolesi (2020) and we assume that, in distribution, for W = w and
given X = x , we have

Y r,w(t) − Y 0(t0)|X = x ∼ π r (t, x,w)δ0 + (1 − π r (t, x,w)) f r (t, x,w) (4)

where ∼ denotes equality in distribution, π r (t, x,w) = P
[
Y r,w(t) − Y 0(t0) = 0|

X = x] is the probability of no variation, δ0 is the Dirac mass at zero and f r (t, x,w)

is a continuous density that varies over time t .
Combining (3) and the conditional mixture assumption (4), we can write

τ(t, x,w0,w1) = E

[
Y 1,w1 (t) − Y 0(t0) | X = x,�1,w1 (t) �= 0

]
×

(
1 − π1(t, x,w1)

)

− E

[
Y 0,w0 (t) − Y 0(t0) | X = x,�0,w0 (t) �= 0

]
×

(
1 − π0(t, x,w0)

)
, (5)

where �r,w(t) = Y r,w(t) − Y 0(t0), r ∈ {0, 1}. The decomposition given in (5) takes
explicitly account of the zero inflation feature of the counterfactual outcome varia-
tions and allows for direct econometric estimation.

3 Econometric Modeling and Estimation Procedures

For t ∈ {t1, . . . , tm} and i = 1, . . . , n, we denote by

�
Di ,Wi
i (t) = Y Di ,Wi

i (t) − Y 0
i (t0) (6)



Assessing Spillover Effects of Spatial Policies with Semiparametric … 325

the outcome variation for municipality i between t and t0, with the convention that
Y Di ,Wi
i (t) = Y 0

i (t) before the treatment begins, that is to say when t ∈ {t1, . . . , tk−1}.
We consider two different approaches for estimating τ(t, x,w0,w1). The first one

is directly based on decomposition (5) and relies on the use of additive and gener-
alized additive models for estimating the conditional expectation for the continuous
parts and the conditional probability of no variation for the discrete part of�Di ,Wi

i (t)
given Xi . The second one is more simple in some sense and is based on the decom-
position (3) and the ability of random forests to naturally deal with the zero inflation
phenomenon and a relatively large number p of potential covariates.

3.1 A Flexible Semi-parametric Modeling Approach Based
on Additive Models and Conditional Mixtures

Additive and generalized additive models are generally assumed to be an interesting
compromise between parametric models, which may not be flexible enough and may
not let the data a chance to speak, and purely non parametric models based on kernel
smoothers or splines which suffer from the curse of dimensionality and have very
poor rates of convergence even if the number of covariates is moderate (see Stone
1985 for convergence properties of non parametric estimators for additive models
and Wood (2017) for efficient implementations in R). We suppose that the following
additive model holds for the continuous part, for r ∈ {0, 1} and w ∈ {0, 1},

E
[
�r,w(t)|X = (x1, . . . , xp),�

r,w(t) �= 0
] = α

r,w
0 (t) +

p∑

j=1

α
r,w
j (x j , t), (7)

where, for each t ∈ {t1, . . . , tm}, α
r,w
0 (t) is an unknown coefficient and α

r,w
j (x j , t)

are unknown smooth functions of x j , j = 1, . . . , p. As far as the discrete part is
concerned, we assume that, for r ∈ {0, 1} and w ∈ {0, 1},

logit
(
P

[
�r,w(t) = 0|X = (x1, . . . , xp)

]) = β
r,w
0 (t) +

p∑

j=1

β
r,w
j (x j , t), (8)

where, for each t ∈ {t1, . . . , tm}, β
r,w
0 (t) is an unknown coefficient and β

r,w
j (x j , t)

are unknown smooth functions of x j , j = 1, . . . , p. Note that as usual with additive
models (see Wood 2017 for example), identifiability constraints must be added to
get a unique representation in (7) and (8).

The terms β
r,w
j (x j , t) and α

r,w
j (x j , t) which should not depend on the values of r

and w when t ∈ {t1, . . . , tk−1} can be useful to perform pre-program tests (Heckman
and Hotz 1989).

Note that a simple extension of (7) and (8) consists in introducing interac-
tions between covariates instead of additive effects. For example, we could con-
sider a model with a bivariate function α

r,w
j, j ′(x j , x j ′ , t) to replace the additive terms
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α
r,w
j (x j , t) + α

r,w
j ′ (x j ′ , t). This permits to have a gain in flexibility at the expense of

more difficult interpretations and slower rates of convergence.

3.1.1 Estimation with the mgcv Library in R

For estimation of the unknown parameters and regression functions, we split the
initial sample into tm − t0 samples consisting in the n following observations,
(�

Di ,Wi
i (t), Xi , Di ,Wi )i=1,...,n , where t belongs to {t1, . . . , tm}. The fact that the

considered mixture is a mixture of a continuous variable and a discrete variable
makes the computation rather simple compared to mixtures of continuous variables
or mixtures of discrete variables (see McLachlan and Peel 2000). Indeed, as far as
the continuous part is concerned, the probability of no variation is equal to zero and
we can fit the two underlying distributions separately. The unknown smooth func-
tions α

r,w
j (x j , t) are expanded in spline basis and fitted on the subsamples satisfying

�
Di ,Wi
i (t) �= 0 with the bam function of the mgcv library. For the discrete part of the

distribution, we create the indicator variable T Di ,Wi
i (t) = 1 when �

Di ,Wi
i (t) = 0 and

T Di ,Wi
i (t) = 0 if �

Di ,Wi
i (t) �= 0. The unknown functions β

r,w
j (x j , t) are expanded in

spline basis and fitted on the subsamples (T Di ,Wi
i (t), Xi , Di ,Wi ), i = 1, . . . , n, with

the bam function with the binomial family and the usual logit link function.
In order to be able to deal with large datasets and to select effective values of the

smoothing parameters in a reasonable time (less than 20s on a personal computer),
each estimation is performed with the fast REML approach (see Wood 2017 for
details).

Adding a “hat” on the estimated unknown parameters and functions, the estimated
value of τ(t, x,w0,w1) is given by

τ̂ (t, (x1, . . . , xp),w0,w1) =
⎛

⎝α̂
1,w1
1 (t) +

p∑

j=1

α̂
1,w1
j (x j , t)

⎞

⎠
(
1 − π̂1(t, (x1, . . . , xp),w1)

)

−
⎛

⎝α̂
0,w0
0 (t) +

p∑

j=1

α̂
0,w0
j (x j , t)

⎞

⎠
(
1 − π̂0(t, (x1, . . . , xp),w0)

)
(9)

where logit(π̂ r (t, (x1, . . . , xp),w)) = β̂
r,w
0 (t) + ∑p

j=1 β̂
r,w
j (x j , t).

3.2 Estimation of the Conditional Treatment Effect with
Random Forests

Random Forests are now widely used in machine learning and data science when
large samples with many covariates are available. They are non parametric ensemble
techniques which consist in aggregating the prediction obtained by regression trees
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(when the target variable is quantitative) or classification trees (when it is qualitative)
built on subsamples of the initial sample. Each tree is grown sufficiently deep to have
relatively small bias and the aggregation (averaging) procedure of the trees allows for
variance reduction. A way to obtain a small variance consists in selecting randomly,
at each node of the tree, a subset of the p available covariates so that the correlation
between the different trees of the forest is as small as possible. The interested reader
can findmuchmore details on the intuition behind random forests and their statistical
properties in Breiman (2001); Hastie et al. (2009); Biau and Scornet (2016).

One major advantage of random forests compared to other non parametric com-
peting approaches is that they can naturally deal with qualitative and quantitative
explanatory variables and perform variable selection at each node of the trees.

Another advantage compared to other classical non parametric estimation proce-
dures such as regression splines or kernel smoothers is that random forests seem to
be much less sensitive to the choice of the hyperparameters, which are the number of
trees in the forest, the size of the terminal nodes and the number of selected variables
at each node.

Random Forests allow for a direct estimation of complex functions of the ini-
tial condition under the treatment of the considered municipality and its neighbor-
ing municipalities. As for additive models, we split the initial sample into tm − t0
samples consisting in the n following observations, (�

Di ,Wi
i (t), Xi , Di ,Wi )i=1,...,n ,

where t belongs to {t1, . . . , tm} and fit random forests on each subsample to get esti-
mates ofE

[
Y 1,w1(t) − Y 0(t0)|X = x

]
andE

[
Y 0,w0(t) − Y 0(t0)|X = x

]
, denoted by

μ̂1,w1(t, x) and μ̂0,w0(t, x). Estimation is performed with the ranger library in R
(see Wright and Ziegler 2017). Then, the expected treatment effect, given X = x is
estimated by

τ̂ (t, x,w0,w1) = μ̂1,w1(t, x) − μ̂0,w0(t, x). (10)

Pseudo confidence intervals are built by using a non parametric bootstrap approach.

4 An Illustration on the Estimation of the Effect of Local
Development Policies in France

4.1 Description of the Policy and Data

We illustrate the proposed methods by assessing possible spatial spillover effects of
the ZRR (Zones de Revitalisation Rurale) program in France. Specifically designed
to boost employment of rural areas, this geographically targeted program, which is
based on tax exemptions for new hires to firms located in deprived areas, started
the 1st September 1996 and covered the period 1996–2004. A noticeable feature of
the program is that the selection of ZRR was clearly not random. A rather complex
algorithm was used to determine the eligibility, according to some observable—
demographic, economic and institutional—criteria. To be eligible to ZRR, a munici-
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Table 1 Treatment and neighbors treatment contingency table

Treated neighbors

None Some

ZRR 0 12737 5120

1 282 7454

pality should be a part of a canton with population density lower than 31 inhabitants
per square km (1990 Population Census).1 The population or the labor force must
also have diminished or the share of the agricultural labor employment must be at
least twice the French average. Finally, to be included into the program, the munici-
pality should belong to a pre-existing zoning scheme set up by the European Union,
which is called TRDP (Territoire Rural de Développement Prioritaire). However,
due to political tempering, it is also likely that, beyond such observed criteria, other
sources of selection on unobservables could affect the process.

Ex ante, spillovers from ZRR may be either positive arising directly through a
higher labor demand and/or indirectly from agglomeration economies or negative if
some substitution effects occur, that is if geographical shifts in jobs from non-treated
to treated areas occur. This is why it is interesting to evaluate both the magnitude
and the sign of spatial spillover effects of ZRR.

We exploit the sample used in Cardot and Musolesi (2020). The municipalities,
which correspond to the finest available spatial level, are the statistical units of
the analysis and the dependent variable is the number of employees. The data were
obtained over a period of ten years, 1993–2002. As explanatory variables, we dispose
of ZRR zoning during the period. Other explanatory variables come from the 1990
CENSUS and from satellite images that were also taken in 1990 (a brief description
of the variables is given in the Appendix). The sample is composed of n = 25593
municipalities.

The identification of spillovers is an intricate empirical matter, requiring the def-
inition of the neighborhood and the choice of an adequate channel of transmission.
We focus here on purely geographic spillovers and adopt a notion of neighborhood
by considering the spillovers arising from the municipalities sharing a common bor-
der. Among the 25593 municipalities under study, 13019 municipalities have all of
their neighboring municipalities that do not receive the ZRR incentives while the
remaining 12574 municipalities have all or some of their neighboring municipalities
that are under ZRR (see Table1).

We can finally note that our identification strategy is affected by the fact that the
ZRR program was introduced in 1996 and covered the entire period under investiga-
tion and more precisely it covered the period 1996–2004. During this period, firms in
ZRR areas benefit from a tax exemption on the new hires during the first 12months of
their contracts. For these reasons our treatment variable does not vary between 1996

1A canton with a population density less than 5 inhabitants per square km is automatically labelled
as ZRR without any other requirement.
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to 2002. Assuming a time invariant treatment status within a programming period
is a common practice in the literature (Behaghel et al. 2015). We also use the years
1994 and 1995 to conduct ‘pre-program’ tests along the lines depicted by Heckman
and Hotz (1989).

4.2 Estimation Results and Counterfactual Analysis at the
Municipality Level

Weprovide a counterfactual analysis, both for the semi-parametricmodeling approach
(GAM) and random forests (RF), for few representative municipalities for which the
evolution of the potential outcomes are estimated and compared under the different
possible treatments.

4.2.1 Variable Selection

A backward selection procedure of the variables has been performed to fit more
effective additive and generalized additive models. Since the main interest lies in
assessing possible heterogeneous treatment effects and heterogeneous spillovers, we
examine how such effects may interact with some economic or demographic charac-
teristics of the municipalities. For that purpose, the model selection procedure leaded
us to retain only significant interactions with the initial level of employment (variable
SIZE) of the municipality and with its population density (variable DENSITY). A
more detailed description of the fitted additive and generalized additive models is
given in the Appendix

4.2.2 Selection of the Municipalities Under Study

We focus the estimation of policy and spillover effects on some municipalities that
have been chosen with a clustering partition around medoids procedure (see Kauf-
man and Rousseeuw 1990 for a description of that particular clustering procedure).
The distance between the municipalities has been computed according to the vari-
ables DENSITY, INCOME and SIZE (in reduced form) with the Euclidean distance.
We have retained four clusters whose centers are the representative, that is to say
most central, municipalities within each group. Descriptive statistics are given in
Table2 and mean estimated values of the counterfactuals as well as Pointwise 90%
confidence intervals (obtained by non parametric bootstrap) are drawn for the four
selected municipalities in Figs. 1, 2, 3 and 4.
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Table 2 Descriptive statistics for the municipalities selected for the counterfactual analysis

Municipality DENSITY SIZE INCOME OLD FACT BTS AGRIH URB

1 218.85 105 5772 0.11 0.19 0.016 0.08 0.23

2 61.26 48 4324 0.30 0.06 0.037 0.19 0.032

3 41.87 25 6300 0.20 0.13 0.038 0.03 0.028

4 22.74 10 3724 0.14 0.16 0.007 0.22 0.015

4.2.3 Assessing the Econometric Modeling with “Pre-program” Tests

Pre-program tests are based on the idea that a valid estimator would correctly
adjust for differences in pre-program outcomes between future participants and non-
participants, otherwise the estimator is rejected. The ‘pre-program’ test is generally
implemented by considering t < tk , where tk is here the time of introduction of the
policy, and by testing the significance of the treatment effect. If such an effect is
significantly different from 0 then the underlying model fails to pass the test. How-
ever, even if the logic is compelling, if a shock or an anticipation effect close to
the time of the treatment affects only one group but not the other, the results from
such a test are potentially misleading. This problem has also been summarized under
the heading “fallacy of alignment” (Heckman et al. 1999). In our case, treated firms
could (shortly) postpone hiring in order to obtain the fiscal incentives, so that using
quite longer lags can be useful in order to obtain an effective test and avoiding to
overestimate the treatment effect. Accordingly, use all the available information in
the data and use the most distant data before the introduction of the policy to set t0
and propose two tests by setting (t0 = 1993, t = 1994), (t0 = 1993, t = 1995). Note
that the year 1996 coincides with the introduction of the policy and some effects may
occur. The results indicate that when performing the counterfactual estimation with
the proposed nonparametric approaches, for t = 1994, 1995, a very good alignment
is obtained. Moreover, non reported results indicate that adopting a flexible nonpara-
metric approach instead of considering a linear specification greatly improves the
alignment. This is an important result supporting the use of flexible models instead
of a linear one not only to improve results’ interpretation but also in terms of credible
identification.

4.2.4 Policy and Spillover Effects: Estimation Results

We now present to the main estimation results. The first selected municipality is
an extremely dense and urbanized municipality, with values of DENSITY (population
density) and URB (urban surface/total surface) greater than the 95th percentile. It is
also very rich in terms of INCOME (per capita income) and big in terms of SIZE (initial
level of employment) with values of these variables around the 80th percentile. As
seen in Fig. 1, GAM and RF provide an almost identical positive estimation of the
evolution of employment in the absence of a treatment for that municipality and
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Fig. 1 Counterfactual analysis formunicipality 1. Left/top:Estimation of the employment evolution
μ̂0,0(t, x) (see Eq.10) under no treatment and no treated neighbors, with pointwise 90% bootstrap
confidence intervals. Right/top: estimation of the neighbors treatment effect, μ̂0,1(t) − μ̂0,0(t),
under no policy. Left/bottom: estimation of the treatment effect, μ̂1,0(t) − μ̂0,0(t), when no neigh-
bors receive the treatment. Right/bottom: estimation of the treatment effect, μ̂1,1(t) − μ̂0,0(t), when
some neighbors receive the treatment

in the neighboring municipalities. Moreover, according to both approaches, ZRR
would have no significant effect on the evolution of employment for the considered
period and, more specifically, policy spillover effects are never significant. This is
not surprising given the design of ZRR.

The secondmunicipality is rather dense, urbanized and big, with values of DENSITY,
URB and SIZE about the 75th percentile of our sample. The value of INCOME is close to
the median. For this municipality, see Fig. 2, ZRR alone produces a small positive
effect having an inverted U time pattern with the peak reached for t = 1999 for both
GAM and RF, the latter providing a more gradual decreasing pattern, compared to
the former. Very importantly, spatial spillovers matters. Spatial spillover are indeed
positive and provide an additional effect to ZRR. This result is obtained using both
GAM and RF, despite for the former the additional effect is higher in magnitude.
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Fig. 2 Counterfactual analysis formunicipality 2. Left/top:Estimation of the employment evolution
μ̂0,0(t, x) (see Eq.10) under no treatment and no treated neighbors, with pointwise 90% bootstrap
confidence intervals. Right/top: estimation of the neighbors treatment effect, μ̂0,1(t) − μ̂0,0(t),
under no policy. Left/bottom: estimation of the treatment effect, μ̂1,0(t) − μ̂0,0(t), when no neigh-
bors receive the treatment. Right/bottom: estimation of the treatment effect, μ̂1,1(t) − μ̂0,0(t), when
some neighbors receive the treatment

This is an important result and it will be of great interest in comparison with the
remaining selected municipalities.

The third municipality is quite close to the median values in terms of DENSITY

and SIZE. We note in Fig. 3 that the direct effect of ZRR (no treated neighboring
municipalities) is positive and significant for some time periods t for both GAM
and RF, despite the estimated time pattern of the effect is somehow different: GAM
predicts a rather abrupt but transitory effect, slowly decreasing after 1999, while
according to RF, ZRR appears to have a more persistent effect over time on employ-
ment. Very interestingly, both approaches suggest the existence of positive spillover
effects. According to both approaches, this positive effect increases smoothly over
time. Spatial spillover effects matter and are relatively high in magnitude.
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Fig. 3 Counterfactual analysis formunicipality 3. Left/top:Estimation of the employment evolution
μ̂0,0(t, x) (see Eq.10) under no treatment and no treated neighbors, with pointwise 90% bootstrap
confidence intervals. Right/top: estimation of the neighbors treatment effect, μ̂0,1(t) − μ̂0,0(t),
under no policy. Left/bottom: estimation of the treatment effect, μ̂1,0(t) − μ̂0,0(t), when no neigh-
bors receive the treatment. Right/bottom: estimation of the treatment effect, μ̂1,1(t) − μ̂0,0(t), when
some neighbors receive the treatment

Finally, we focus attention on the fourth municipality, which is small, poor and
low density municipality and for that reasons it is of particular interest here as being a
typical distressedmunicipality that needs public subsides to boost its socio-economic
development. As seen in Fig. 4, ZRR alone appears to have an abrupt but transitory
effect on employment according to bothGAMandRF, although it is low inmagnitude
and much lower than the estimated effect for the second and third municipalities,
which are bigger and more dense. Spatial spillovers produce a very small additional
positive effect in comparison with the direct ZRR effect.

In summary the proposed flexible non parametric approaches provide a robust
picture indicating the existence of positive spatial spillover effects for municipalities
with certain economic and demographic characteristics. Two main results emerge.
The first one is that for small, poor and low density municipalities, those being the
primary target of geographically targeted policies, both direct and spatially-mediated
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Fig. 4 Counterfactual analysis formunicipality 4. Left/top:Estimation of the employment evolution
μ̂0,0(t, x) (see Eq.10) under no treatment and no treated neighbors, with pointwise 90% bootstrap
confidence intervals. Right/top: estimation of the neighbors treatment effect, μ̂0,1(t) − μ̂0,0(t),
under no policy. Left/bottom: estimation of the treatment effect, μ̂1,0(t) − μ̂0,0(t), when no neigh-
bors receive the treatment. Right/bottom: estimation of the treatment effect, μ̂1,1(t) − μ̂0,0(t), when
some neighbors receive the treatment

spillover effects are very low in magnitude and are effective only over a very short
time period. For bigger and more dense/urbanized areas, both effects are higher in
magnitude and more persistent over time. This result is consistent with the idea that
agglomeration externalities and an adequate size of the local market are essential in
order to make such fiscal incentives and their spillover effects effective. The second
relevant result is that nonlinear interaction effects appear to be relevant: direct policy
effect and indirect effects arising from spatial spillovers vary non-linearly with some
demographic and economic characteristics, such as the size and the density of the
municipality. Finally note that when considering a standard parametric linear model,
we do not find any evidence of significant spillover effects, thus evidencing the
importance of adopting flexible models to highlight somehow complex nonlinear
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spillover effects, which otherwise will be missed when using a standard parametric
model. Detailed results are available upon request.

5 Conclusion

We have considered in this paper two non parametric approaches to assess spillover
effects of a spatially targeted policy that was introduced in France to boost rural
development. Both approaches are able to handle the zero inflated phenomenon that
may arise at a micro level and that cannot be dealt with properly with classical
continuous distribution models.

These two approaches provide a more credible identification and more focused
analysis in comparison with standard parametric models. They indeed provide a
very good alignment when conducting placebo tests and suggest the existence of
interesting patterns of temporal spatially-mediated spillover effects of the policywith
relevant nonlinear effects. Policy spillovers matter, although they are generally not
high in magnitude, for municipalities with some specific demographic and economic
characteristics.
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Appendix

We present here the variables that were considered to adjust the generalized additive
models and random forests as well as functions used in R to perform estimation. A
detailed description of the definition of these variables as well as some descriptive
statistics can be found in the Appendix of Cardot and Musolesi (2020).

Description of the Variables

The dependent variable Yit corresponds to the number of employees at time t for
municipality i . The socio-economic and demographic variables come from standard
INSEE sources while the variables measuring land use have been obtained from the
“Corine Land Cover” base. For each municipality, we have

• SIZE ≡ Yt0 is the initial outcome, i.e. the level of employment at t0,with t0 equals
to 1993.

• DENSITY ≡ (total population) /
(
total surface in terms of km2

) ;
• INCOME ≡ (net taxable income) / (total population) ;
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• OLD ≡ (population over 65) / (total population) ;
• FACT ≡ (number offactory workers) / (total population);
• EXE ≡ (number ofexecutive workers) / (total population);
• FARM ≡ (number of farmers) / (total population);
• UNIV ≡ (number of people with a master level degree called “Maîtrise universitaire” )

(total population) ;

• BTS ≡ (number of people with a technicaldegree called “Brevet de Technicien Supérieur” )

(total population) ;
• NOEDU ≡ (number of people without adegree) / (total population);
• AGRI ≡ (farmlandsurface) / (total surface);
• CULT ≡ (cultivated landsurface) / (total surface);
• URB ≡ (urban surface) / (total surface);
• IND ≡ (industrial surface) / (total surface);
• ARA ≡ (arable surface) / (total surface);
• GRA ≡ (grassland surface) / (total surface);

where the total surface and the total population should be understood within the
considered municipality.

Fitting the Statistical Models with R

For the random forests we have introduced 13 important demographic and economic
variables, plus the indicator of treatment of the neighbors (wzrr) to fit the variation
of employment, separately for the municipalities that were treated and those which
were not treated,

ranger(Delta_Employment ˜
wzrr+DENSITY+UNIV+SIZE+OLD+INCOME+FARM+EXE+FACT+BTS+CULT+AGRIH+URB+IND)

Putting the two subsamples together, we can also compute the importance of each
variable for different moment of time. It appears that wzrr and ZRR are the least impor-
tant variables. This agrees with our conclusions that both the policy and the spillover
effects are small or non significant, depending on the economic and demographic
characteristics of the municipality.

For the estimation approaches based onmixtures and additivemodels, we used the
bam function of the mgcv library to perform faster estimation. Since themain interest lies
in assessing possible heterogeneous treatment effects and heterogeneous spillovers,
we examine how such effects may interact with some economic or demographic
characteristics of the municipalities. We first selected the variables to introduce into
the two regression functions below by adopting a backward algorithm and then
follow again a general-to-specific procedure to select significant interactions. This
procedure leaded us to consider the following model for the continuous part of the
response,
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bam(Continuous_Delta_Employment ˜
ZRR+wzrr+s(SIZE,by=wzrr)+s(DENSITY,by=wzrr)+s(SIZE,by=ZRR)+s(DENSITY,by=ZRR)
+s(OLD)+s(INCOME)+s(FACT)+s(BTS)+s(CULT)+s(AGRIH)+s(URB)+s(IND), method="fREML")

The probability of no variation is fitted with a generalized additive model and the
logit link function,

bam(Zero_Delta_Employment ˜
ZRR+wzrr+s(SIZE,by=wzrr)+s(DENSITY,by=wzrr)+s(SIZE,by=ZRR)+s(DENSITY,by=ZRR)
+s(UNIV)+s(INCOME)+s(FACT)+s(EXE)+s(FARM)+s(BTS)+s(NOEDU)+s(URB)+s(IND)+s(ARA)
+s(GRA), method="fREML",family=binomial(link = "logit"))
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Spatial Autocorrelation in Econometric
Land Use Models: An Overview

Raja Chakir and Julie Le Gallo

Abstract This chapter provides an overview of the literature on econometric land
use models including spatial autocorrelation. These models are useful to analyze the
determinants of land use changes and to study their implications for the environment
(carbon stocks, water quality, biodiversity, ecosystem services). Recent methodolog-
ical advances in spatial econometrics have improved the quality of econometric mod-
els allowing them to identifymore precisely the determinants of land use changes and
make more accurate land use predictions.We review the current state of the literature
on studies which account explicitly for spatial autocorrelation in econometric land
use models or in the environmental impacts of land use.

1 Introduction

Land use plays a vital role in many major societal issues: food security (Verburg
et al. 2013), preservationof biodiversity and ecosystemservices (Foley 2005), climate
changemitigation (Lal 2004) and the achievement ofmany SustainableDevelopment
Goals (Gao and Bryan 2017). Land use choices are the result of complex decision-
making processes related to the local and global biophysical and socioeconomic
drivers. The researcher faces two central and related questions: “what drives land
use change?” and “what are the (environmental and socioeconomic) impacts of land
use change on stakeholders and the whole society?”. The answers to these questions
are crucial for the design of public policies related to how to feed the growing world
population and avoid unwanted land use effects on the environment.
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Various disciplines (economics, statistics, geography, land use science) have
developed a range of empirical land use modeling approaches, using either aggre-
gate or individual data. However, most of this work pays little attention to spatial
autocorrelation (SA) in modeling land use although spatial interdependence is preva-
lent in all economic decisions in general and in land use decisions in particular. As
a result, “standard” statistical and econometric methods, which assume indepen-
dent observations, are inappropriate. More generally, taking account of the spatial
dimension in econometric models involves two effects: spatial heterogeneity and
SA. Spatial heterogeneity is the spatial differentiation of variables and behaviors in
space and usually does not require specific econometric methods. Switching models,
semi-parametric modeling of coordinates or clustered robust inference can handle
this effect appropriately. Conversely, SA refers to the lack of independence among
geographic observations. It measures the degree of similarity between an attribute in
one location and the same attribute in neighboring locations (Anselin 1988). Unlike
temporal autocorrelation, SA is multidimensional requiring a specialized set of tech-
niques, which are not simple extensions of two-dimensional time series methods. In
this chapter, we focus on SA in econometric land use models.

There is a growing body of work on econometric modeling of land use. These
studies address the determinants of land use and land use change and their impacts
on water quality (Bockstael 1996), deforestation (Chomitz and Gray 1996), car-
bon sequestration costs (Lubowski et al. 2006), and habitat fragmentation (Lewis
and Plantinga 2007). Before the 1990s, econometric land use studies that explicitly
introduced SA of observations were relatively rare as the presence of SA makes
discrete choice models analytically intractable and requires use of computationally
expensive Bayesian techniques or simulation estimation methods (Fleming 2004).
Thus, most land use studies and especially those based on individual data avoid
thorough treatment of spatial effects or use ad hoc procedures aimed at reducing the
negative consequences of ignoring them.1

Although land use studies taking explicit account of SA have increased (Brady
and Irwin 2011), they remain relatively scarce (Ay et al. 2017; Chakir and Le Gallo
2013; Li et al. 2013; Sidharthan and Bhat 2012; Ferdous and Bhat 2012; Chakir and
Parent 2009). Most econometric land use models in papers published in high quality
journals still tend either to ignore SA, or use ad hocmethods to deal with it (e.g., Irwin
et al. 2003; Carrion-Flores and Irwin 2004; Lubowski et al. 2008; Fezzi and Bateman
2011). This is because SA raises several issues related to econometric estimation,
hypothesis testing, and prediction—especially in the case of discrete choice models
(Billé and Arbia 2019).

Then, the aim of this chapter is to present the state of the art in the literature
on econometric land use models and to show how methodological developments in
spatial econometrics have been introduced into these models. We point out that this
is not an exhaustive review; rather the objective is to highlight the main contributions
to econometric land use models and their methodological advances. Our literature
reviews depart from those provided by Brady and Irwin (2011), which summarize

1Ignoring spatial effects can result in biased and/or inefficient parameter estimates or assessment
of statistical significance (Anselin 1988).
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the econometric challenges of spatial models in land use and hedonic model context,
Plantinga (2015), who focuses on methods for integrating economic land use and
biophysical models and Chakir (2015), who reviews methodological developments
in spatial econometrics that have been introduced into land use models. The main
goal of this literature review is to summarize the studies which include SA explicitly
in land use models or in models of the environmental impacts of land use.2

The remainder of the chapter is organized as follows. First, we provide some
general considerations related to the econometric modeling of land use (Sect. 2).
Then we focus, respectively, on linear (Sect. 3) and discrete choice econometric land
use models (Sect. 4) models. Section5 shows how SA enhances models that focus
on the impact of land use on various environmental outcomes. Section6 concludes
and highlights some directions for further research.

2 Econometric Land Use Models

Most econometric land use studies are based on the classical theory which consid-
ers that land use activities are chosen to maximize land rents and that rents vary
with land characteristics, in particular soil fertility (Ricardo 1817) and location (von
Thunen 1875). Yet, other factors might influence land use decisions for a given land
parcel: socioeconomic factors (input and output prices) and policy variables (taxes
and subsidies). The extent and significance of these determinants are analyzed in
two broad categories of models: aggregate land use models which use aggregate
(county level, state level, etc.) data, and individual land use models which are based
on parcel-level or sample plot data. Table1 presents a summary of some papers that
provide econometric modeling of land use employing both aggregate and individual
data.

Aggregate and individual land use models are complementary and provide dif-
ferent insights into the determinants of land use and land use changes, and their
environmental effects. The choice between an aggregate and individual land use
model often depends on data availability and the objective of the study. If the objec-
tive is to make land use predictions at the scale of one or a group of countries (such as
European countries), an aggregate data model is required. If the objective is to study
the effects of land use on biodiversity or water quality, a model based on individual
data is more relevant. Both approaches have drawbacks.

On the one hand, aggregate data limits the capacity to explain the effects of het-
erogeneous physical characteristics such as soil quality on land use choices. Because
the data are aggregated to units such as the county, intra-county variations in soil
quality are ignored. Moreover, while aggregate data can be useful to study global
issues (changes in land use shares within a region), the results are of limited use for
policy making related to the spatial organization of land use in a region, or local
issues related to biodiversity, water quality, or urbanization.

2We did a literature search for articles adopting an explicit spatial econometric approach to land
use issues. Then, among these articles, we chose those that we considered the most important either
from a methodological point of view or from the point of view of the environmental impacts of land
uses.
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Table 1 Example of econometric individual and aggregate, spatial and aspatial land use studies.
(AER: American Economic Review, AJAE: American Journal of Agricultural Economics, ARER:
Agriculture and Resource Econ. Review, EE: Ecological economics, GA: Geographical Analysis,
FS: Forest Science, JARE: J. of Agri and Resource Econ. JEEM: Journal of Environmental Eco-
nomics andManagement, JGS: Journal of Geographical Systems, JRS: Journal of Regional Science,
LE: Land Economics, LUP: Land Use Policy, PIRS: Papers in regional Science, RSUE: Regional
Science and Urban Economics, SEA: Spatial Economic Analysis, WBER: World Bank Economic
Review)

Paper Land use
categories

Model Spatial Journal

Aggregate land use share studies

Alig (1986) Crops, 3 types de
forest,
pasture and urban

Land-use share No FS

Lichtenberg
(1989)

7 crops Land-use share No AJAE

Stavins and Jaffe
(1990)

Crops, forest Land-use share No AER

Wu and Segerson
(1995)

6 cultures Land-use share No AJAE

Plantinga (1996) Agriculture to
forest

Land-use share No AJAE

Plantinga et al.
(1999)

Agriculture,
forest and
urban/other land
use

Land-use share No AJAE

Hardie and Parks
(1997)

Agriculture,
forest,
urban/other use

Land-use share No AJAE

Plantinga and
Ahn (2002)

Crops, forest Land-use share No JARE

Chakir and
Le Gallo (2013)

Agriculture,
forest,
urban and other
use

Land-use share Yes EE

Marcos-Martinez
et al. (2017)

19 land use
categories

Land-use share Yes LUP

Chakir and
Lungarska (2017)

Agriculture,
forest,
urban and other
use

Land-use share Yes SEA

Marcos-Martinez
et al. (2017)

Extensive
grazing, pastures,
cereals, annuals,
perennials

Land-use share Yes LUP

Amin et al.
(2019)

Deforestation Deforestation
area

Yes JEEM

(continued)
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Table 1 (continued)

Paper Land use
categories

Model Spatial Journal

Individual discrete choice studies

McMillen (1989) Farm, residential Multinomial logit No LE

Bockstael (1996) Urbanization Probit No AJAE

Chomitz and
Gray (1996)

Deforestation Multinomial logit No WBER

Claassen and
Tegene (1999)

Culture, pasture Probit No ARER

Carrion-Flores
and Irwin (2004)

Urbanization Probit No AJAE

Lubowski et al.
(2006)

Crops, pasture,
forest,
urban, range and
CRP

Nested logit No JEEM

Chakir and Parent
(2009)

Agriculture,
forest, urban
and other uses

Multinomial
probit

Yes PIRS

Wang and
Kockelman
(2009)

4 levels of
urbanization

Ordered probit Yes PIRS

Ferdous and Bhat
(2012)

4 levels of
urbanization

Ordered probit Yes JGS

Sidharthan and
Bhat (2012)

Urban,
commercial,
industrial
and
non-developed

Multinomial
probit

Yes GA

Li et al. (2013) Farm, forest,
grass,
water, urban,
unused

Multinomial
probit

Yes LE

Bhat et al. (2015) Commercial,
industrial,
residential,
underdeveloped

Multiple discrete-
continuous
probit

Yes JRS

Carrión-Flores
et al. (2018)

Commercial,
industrial,
residential,
parks, agriculture

Multinomial logit Yes RSUE

On the other hand, one of the frequent difficulties related to modeling land use
at the individual level is the lack of “good” explanatory variables or their scale
incompatibilities. Although geophysical explanatory variables such as slope, altitude
and soil quality are increasingly available at very fine resolution, economic variables
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(rents, conversion costs, and prices) are either not available or observable only at
aggregate scales. To compensate for this lack of data, empirical models often use
proxies for rents at more or less aggregated scales. Another difficulty of individual-
level land use models is related to the complexity involved in estimating discrete
choicemodels in themultinomial case. This difficulty is accentuated if SA is included
in the specification.

In relation to this latter issue, SA in land use choices tends not to be included in
theoretical frameworks but added ex post in the empirical specification. In land use
modeling, SA can stem from two sources. First, it can arise from spillovers among
the error terms due to omitted spatial variables affecting land use decisions such
as weather or soil quality. A spatial error model or spatial robust inference allows
to control for these omitted variables provided that they are not correlated with the
observables. Second, it can arise from spillovers among land use decisions or spatial
interaction relationships in the land use choices. This might be due, for example, to
the neighboring plots being owned by the same landowner, or to shared information
which induces forest or agricultural clustering and landowners adopting the same
technology based on shared learning. In this case, a spatial autoregressive model
would account for these spatial interactions.

In the case of aggregate data, logarithmic transformationon landuse shares implies
linear equations that can easily be estimated. Therefore, SA in the case of land use
models can be estimated using spatial models in the linear case (Sect. 3). Conversely,
in most cases of individual data (Sect. 4), the presence of SA tends to make discrete
choice models analytically intractable and requires use of simulation estimation
methods or Bayesian techniques (Smith and LeSage 2004). Other estimation pro-
cedures have been proposed in the literature: the expectation-maximization method
(McMillen 1992), the generalized method of moments (GMM) (Pinkse and Slade
1998), and the composite maximum likelihood method (Sidharthan and Bhat 2012;
Ferdous and Bhat 2012). For a detailed review of the inclusion of SA in discrete
choice models see Fleming (2004), Smirnov (2010), Billé and Arbia (2019).

Considering SA also sheds new light on the issue of prediction. Comparing indi-
vidual and aggregate models with respect to their predictive accuracy is an ongo-
ing and still open issue with mixed evidence. The seminal paper by Grunfeld and
Griliches (1960) examined the relative power of individual (micro) and aggregate
(macro)models for explaining aggregate outcomes and found that an aggregatemodel
often performs better. In the context of land use models, Wu and Adams (2002) show
that even in the case of linearmodels, the choice between themicro- andmacro-scales
to make aggregate predictions cannot generally be resolved by a priori reasoning. Ay
et al. (2017) show that introducing SA in aggregate land use models provides better
predictions than using individual aspatial models with higher numbers of observa-
tions. This suggests that there might be little to be gained from using individual land
use data if the sole objective is to predict land use at the aggregate spatial resolution.

Some studies choose none of these modeling approaches and resort instead to ad
hocmethods to circumvent the problems related to estimating discrete choice models
in the presence of SA (De Pinto and Nelson 2007). These models are summarized
below:
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• Spatial sampling: Most early studies in the land use literature simply purge the
data of SA using a spatial sampling technique which allows construction of a
data sample without neighbors. This is a fairly widespread practice: Nelson and
Hellerstein (1997), Carrion-Flores and Irwin (2004), Irwin et al. (2003), Irwin and
Bockstael (2004), Lewis and Plantinga (2007), Lubowski et al. (2008), De Pinto
and Nelson (2009), Fezzi et al. (2015)

• Introduction of latitude and longitude as explanatory variables: Nelson et al.
(2001), Muller and Zeller (2002) claim to account for SA by using two additional
explanatory variables representing the latitude and longitude of each observation.
While this type of correction is likely to be useful if the spatial effect is caused by
an unobserved variable which varies linearly between regions, it captures spatial
heterogeneity rather than capturing the SA as claimed by the authors;

• The introduction of spatially shifted geophysical variables:Nelson et al. (2001),
Munroe et al. (2002) use spatial shifts (i.e., weighted averages of values in neigh-
boring locations) of geophysical variables such as soil type, slope, and vegetation
index as exogenous variables. A possible justification for using these types of vari-
ables is that they account for the direct influence of the environment on land use
decisions in a particular location.

While useful, these methods cannot control for substantive SA, an issue to which
we turn in the next two sections.

3 Linear Land Use Models

The objective of most studies using aggregate data is to identify the determinants of
land use shares. Most U.S. econometric studies use the county scale and land use
data derived generally from federal sources such as agricultural census. The most
commonmethod is to specify county land use shares as a logistic function. Examples
of studies that use this method include Lichtenberg (1989), Plantinga (1996), Hardie
and Parks (1997). While the authors attempt to explain the factors that influence the
share of land allocated to a particular land use, other aggregate data studies try to
explain changes in land use shares in an area (Stavins and Jaffe 1990; Plantinga and
Ahn 2002). All these studies ignore SA. More recent studies taking explicit account
of SA have been conducted at the French level by Chakir and Le Gallo (2013), Ay
et al. (2017), Chakir and Lungarska (2017) who estimate aggregate land use share
models at the department level, 12 × 12km and 8 × 8km grid cells, respectively.

3.1 Land Use Share Models

Although all econometric studies are based on the same economic theory, several
variants of theoretical land allocationmodels have been proposed (Lichtenberg 1989;
Stavins and Jaffe 1990; Plantinga 1996; Hardie and Parks 1997). We present here a
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fairly simple version of thesemodels based onWuandSegerson (1995)’s staticmodel
where the landowner ni (ni = 1, . . . N ) in the region i (i = 1, . . . , I ) is assumed to be
risk neutral andmaximizes his expected profit from the use k (k = 1, . . . K ) on quality
land j ( j = 1, . . . , J ), at time t (t = 1, . . . T ), denoted π jk(x(t, ni ), a jk(t, ni ), ni ),
where x(t, ni ) is a vector of the exogenous variables such as prices, costs and other
economic variables and a jk(t, ni ) is the area of land of quality j allocated to use k. For
each quality of land, the landowner chooses the area a jk(t, ni ) ≥ 0 that maximizes
his total profit:

K∑

k=0

π jk(x(t, ni ), a jk(t, ni ), ni ) subject to
K∑

k=0

a jk(t, ni ) = A j (t, ni ) (1)

where A j (t, ni ) is the total surface of available quality land j . The resolution of the
optimization program (1) gives the optimal area a∗

jk(x(t, ni ), A j (t, ni ), ni ) allocated
to eachuse k for eachquality of the land j at time t . The optimal share of land allocated
to the use k is

sk(x(t, ni ), t, ni ) = 1

A j (t, ni )

∑

j

a∗
jk(t, ni ) (2)

The optimal uses derived from the theoretical model for each owner should be
aggregated to match the scale of the observed data. In practice, the available data are
the shares of land uses at an aggregate resolution (county, region, municipality). The
land use share k (k = 1, . . . , K ) in the region i at time t is written as

sikt = pikt + εikt = eβ
′
k Xit

∑K
j=1 e

β
′
j Xit

+ εikt ∀i = 1, . . . , I,∀k = 1, . . . , K and ∀t = 1, . . . , T

(3)

where pikt is the expected share of land allocated for use k in the i region at time
t . The observed land use share at time t , sikt may differ from the optimal land use
share due to possible hazards such as climate or policy shocks. These elements, of
zero average, are captured by the error term εikt . Xit are the explanatory variables
and β

′
k are the associated coefficients.

As in Wu and Segerson (1995), Plantinga et al. (1999), most aggregate stud-
ies specify land use shares in the logistic functional form for three reasons: first,
this functional form allows predicted land use shares to stay between 0 and 1, sec-
ond, this specification is parsimonious in terms of parameters, and third, logarithmic
transformation allows use of linear equations which are easily estimated. This trans-
formation3 has been proposed by Zellner and Lee (1965) and, applied to land use
choices, it allows to write the logarithm of each use share normalized by a given
share as follows:

3This transformation corresponds to the additive log ratio (ALR) transformation in the literature on
composition data in statistics, see Aitchison (1986) for more details.
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ỹikt=ln(sikt/sikt)=β
′
k Xit + uikt ∀i = 1, . . . , I,∀k = 1, . . . , K et ∀t = 1, . . . , T

(4)
where uikt is the transformed error term. Model (4) has K − 1 equations that are
seemingly unrelated regressions (SUR) and can be estimated by methods accounting
for correlations between the error terms associated with each equation.

3.2 Spatial Autocorrelation in Linear Models

In linear specification models, SA is handled by the inclusion of spatially lagged
variables, that is, weighted averages of the observations of “neighbors” of a given
location. These spatially lagged variables can be used as the dependent variable (spa-
tial autoregressive SARmodels), explanatory variables (spatial cross regressive SLX
models), or the error terms (SEM) or any combination of these options which results
in a range of spatial models (Elhorst 2010). For instance, the spatial autoregressive
combined (SARAR) model accounts simultaneously for autocorrelation in the error
term and for spatial associations of the dependent variable. The spatial Durbin model
(SDM) is a combination of SAR and SLX and can be reduced to SEM (LeSage and
Pace 2009), while the spatial Durbin error model (SDEM) integrates all the elements
of the SLX and the SEM. Finally, the general nesting spatial (GNS) model combines
the SARAR and the SLXmodels (see Table2). Until the early 2000s, most empirical
spatial econometric studies were interested mainly in two specifications: SAR and
SEM. Specifications accounting for richer and combined forms of SA are now more
commonly estimated. For more details on the taxonomy of linear SA models for
cross-sectional data see Elhorst (2014).

The choice of the best spatial specification can be made based on theory or by
applying statistical tests to different models. The literature proposes several strate-
gies, the most common being either the so-called classical strategy starting from the
simplest “specific to general” model, the most general model going from “general
to specific”. Florax et al. (2003) compare these strategies and show that the classical
approach gives the best results in terms of identifying the best specification and most
precisely estimated parameters but LeSage and Pace (2009) argue that the choice of
the best specification should start with the SDM. Elhorst (2010) proposes a mix of
these two strategies.

3.3 Example of Spatial Land Studies with Linear Models

This section provides some examples of aggregate land use studies which take
account of SA.

Some works include SA in order to improve the specification and understanding
of what drives land use change. For instance, Meyfroidt and Lambin (2008) analyze
the causes of reforestation in Vietnam during the 1990s on a national scale, and
test emerging forest transition theories on the same scale. They build a reforestation
spatial lag regression model using census and geographic data at a fine level of
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Table 2 Summary table of the estimated linear land use (LU) spatial model specifications (Chakir
and Lungarska 2017). ρ is the spatial autoregressive coefficient, λ the SA coefficient, γ and β rep-
resent a vector of unknown parameters to be estimated.W is a nonnegative n × n matrix describing
the spatial configuration or arrangement of the units in the sample

Model Model Interpretation

SEM ỹ = Xβ + ε and ε = λWε + u Unobserved omitted variables
follow a spatial pattern, data
measurement errors

SAR ỹ = ρW ỹ + Xβ + ε LU for one location is
determined jointly with that of
neighbors

SLX ỹ = Xβ + WXγ + ε LU for one location is
determined by the explanatory
variables of neighbors

SDM ỹ = ρW ỹ + Xβ + WXγ + ε A combination of SLX and
SAR and can be reduced to
SEM

SARAR ỹ = ρW ỹ + Xβ + ε and
ε = λWε + u

A combination of SEM and
SAR

SDEM ỹ = Xβ + WXγ + ε and
ε = λWε + u

A combination of SEM and
SLX

GNS ỹ = ρW ỹ + Xβ + WXγ + ε

and ε = λWε + u
A combination of SLX and
SARAR

aggregation for the whole country. Their results show that forest land distribution
affects forests not just in the focal district but also in neighboring districts. This
observation can be interpreted in terms of a diffusion process: early and successful
implementation of the policy in some districts may have facilitated its rapid adoption
by neighboring districts.

Marcos-Martinez et al. (2017) estimate the determinants of land use in Australia’s
intensive agricultural region during the period 1992–2010. They estimate land use
shares with spatial error and random effects combined with variance decomposi-
tion analysis to identify the statistical significance, direction and magnitude of the
observed associations between land-uses and their drivers. Their results show that
improved transportation infrastructure, zoning regulations andmechanisms to reduce
exposure to farm debt and climate variability risks have significant impacts on the
configuration of the Australian agricultural landscape.

Amin et al. (2019) analyze whether protected areas are efficient instruments to
fight deforestation in Brazilian Amazonia. They estimate a dynamic SDM and assess
the impact of different types of protected areas (integral protected areas, sustainable
protected areas, indigenous lands) on deforestation. The results differ according to
the type of protected area: (i) integral protected areas and indigenous lands reduce
deforestation; (ii) sustainable use areas do not contribute to reducing deforestation;
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and (iii) the spillover effects generated by integral protected areas and indigenous
lands lead to a reduction in the deforestation in their vicinities.

Two studies focus on prediction in spatial land use share models. Chakir and
Le Gallo (2013) make a methodological contribution to the literature by control-
ling for both unobservable individual heterogeneity and SA in an aggregate land use
model. Their study was conducted on a panel of land use data at the French depart-
ments NUTS3 scale, observed between 1992 and 2003. The authors were interested
in the relationship between four land uses (agriculture, forest, urban, and other) and
their potential economic and demographic determinants. The econometric model
consists of a system of three equations with a panel dimension and SA in the errors
associated to each equation. Thus, their econometric model is a SUR model with
random individual effects and autoregressive spatial structure of the error term. The
model was estimated using the feasible generalized least square (FGLS) estimation
method proposed by Baltagi and Pirotte (2011) for SUR-SEM-RE (Seemingly Unre-
lated Regressions-Spatial Error Model-Random Effects) model estimations. Their
results are of three orders: first, controlling for both unobservable individual het-
erogeneity and SA yields the best predictions relative to any other specification in
which SA and/or individual heterogeneity are ignored. Second, taking into account
the correlations between the error terms in the different equations does not seem to
improve prediction performance. Third, ignoring individual heterogeneity introduces
substantial loss of prediction accuracy.

Chakir andLungarska (2017) estimate land use sharemodels for France at a homo-
geneous (8 × 8km) grid scale for five land use classes—agriculture, pasture, forest,
urban, and other. They investigate the determinants of land use shares using eco-
nomic, physical and demographic explanatory variables. They model SA between
grid cells and compare prediction accuracy and estimated elasticities for the dif-
ferent spatial model specifications (ordinary least square (OLS), SLX, SEM, SAR,
SDM, SDEM, SARAR, GNS). They compare these spatial specifications using three
rent proxies: farmers’ revenues, land prices, and shadow land prices derived from
a mathematical programming model. Their comparison is based on several criteria:
quality of economic explanation (significance of agricultural rents and their marginal
impacts), prediction quality (NRMSE), specification tests (LM tests), and goodness
of fit (log-likelihood, R2, AIC). The test results show that the SDM, SDEM, SARAR,
and GNSmodels should be considered. According to the goodness of fit (pseudo-R2,
log-likelihood and AIC) and prediction quality criteria, GNS is the specification that
best fits their data. In a context of aggregate land use, the existence of autocorrelation
is due mainly to spatially correlated errors—essentially a data measurement prob-
lem. This applies especially to their case since they use artificially constructed grids,
and different scales for the explanatory variables and land use data. Their results
show also that including SA in land use share models improves the quality of the
predictions which confirms the results in the previous aggregate land use literature.
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4 Discrete Choice Land Use Models

When using individual (parcel or plot) data, the land use variable is generally a
categorical variable so that estimating land use patterns on individual data usually
requires a discrete choice framework.Discrete choicemodels are based onMcFadden
(1974)’s random utility theorywhich states that the landowner decides to switch from
one use to another if the expected net revenues exceed the revenues from the original
use.

4.1 Individual Choice Land Use Model

This section presents the theoretical land use model based on individual data as in
Lubowski et al. (2008). We assume that the landowner chooses the land use of a plot
based on the costs and benefits associated with each possible use. For example, the
landowner chooses land use k at time t if:

Rkt − rC jkt > R jt ∀ j, k = 1, . . . , K and ∀t = 1, . . . , T (5)

where R jt and Rkt represent the discounted expected net benefits at time t of a unit
of land for uses j and k, respectively, C jkt is the marginal cost of converting a unit
of land from use j to use k at time t (C j jt = 0) and r is the discount rate.

In order to estimate the determinants of land use econometrically, the theoretical
model suggests comparing the benefits and costs of converting land from one use
to another at each date. To move to the econometric specification, land use conver-
sion revenues and costs are rewritten as functions of the observed and unobserved
variables. Thus, the utility Uikt of the owner of parcel i with land use k at time t is
written as follows:

Uikt = βxikt + εikt ∀i = 1, . . . N , ∀k = 1, . . . , K and ∀t = 1, . . . , T, (6)

where xikt are the observed explanatory variables, β the vector of parameters to be
estimated and εikt are the error terms which take account of the unobserved variables
that might affect the landowner’s utility.

We assume that the owner has a choice between K land use categories for each
parcel at each date. The landowner chooses the optimal land use for his or her plot
by comparing the utilities associated to each land use category. If yit = 1, 2, . . . K ;
is the landowner’s land use choice for the parcel i at time t , we obtain

yit = k, if Uikt ≥ maxUi jt ∀i = 1, . . . N , ∀ j, k = 1, . . . , K and ∀t = 1, . . . , T,

(7)

Thus, the probability that the parcel i is allocated to the use k at the time t is
written as
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P(yikt = 1) = Pr [Uikt ≥ maxUi jt ] (8)

for all j = 1, . . . , K with yikt = 1 if k is the observed use and 0 otherwise; Uikt is
the utility associated with land use k.

Since estimation of discrete choice models in the multinomial case is dimension-
ally constrained, some studies are limited to two use categories and use a probit
model in the binary case (Bockstael 1996; Kline and Alig 1999; Irwin and Bockstael
2002). Other studies estimate amultinomial logit model because of its computational
simplicity (Chomitz andGray 1996;Nelson andHellerstein 1997;Nelson et al. 2001)
which involves the questionable assumption of independence of irrelevant alterna-
tives (IIA). Finally, a nested logit model could be a good alternative if the alternatives
can be partitioned into several subsets.

4.2 Spatial Autocorrelation in Discrete Choice Models

SA can be accounted for in the discrete choice land use model (Eqs. (6)–(8)), by
including the spatially lagged variables or the error terms. Simplifying the notations
and removing the subscripts, the general nonlinear nesting model (GNNM) can be
written as follows:

U = ρWU + Xβ + WXγ + ε, and ε = λWε + u (9)

whereWU is the shifted utility function for the weight matrixW , ρ is the autoregres-
sive spatial parameter which indicates the magnitude of the interaction between the
latent variablesU , γ , like β, is a vector of the unknown parameters to be estimated, λ
is the parameter of the intensity of the SA between the residuals, and u is a classical
error term such as u ∼ i id(0, σ 2 I ). The GNNMmodel presented in Eq. (9) becomes
a SEM model if ρ = 0 and γ = 0, and becomes a SAR model if λ = 0 and γ = 0.
In contrast to the linear case, the spatially lagged variable in the SAR model is not
observable. For example, in the case of a land use model, it is the utility associated
to the profitability of neighboring plots and not the observed land use which should
define the utility function of the landowner (Anselin and Cho 2002).

In the case where the error terms ε follow a normal distribution, estimation of the
probit-SAR model raises two problems. On the one hand, heteroskedasticity makes
the classical estimators inconsistent. On the other hand, estimation of a probit-SAR
requires computation of a likelihood function with N − 1 (where N is the number
of observations) integrals which makes maximum likelihood estimation impossible.
This second difficulty applies also to the logit model case (Anselin and Cho 2002).
Several approaches have been proposed in the literature to deal with these estimation
problems, including simulation estimation (Geweke et al. 1994) or Bayesian (LeSage
2000) methods able to deal with the computation of multidimensional integrals of the
likelihood function.Other estimation procedures have been proposed to copewith the
problems associated to the introduction of SA in the case of discrete choice models.
These include the expectation-maximization method (McMillen 1992), the GMM
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Table 3 Summary table of the estimated spatial discrete choice models

Model Estimation method Example

Spatial autoregressive logit Bayesian Blackman et al. (2008)

Ordered probit Bayesian Wang and Kockelman (2009)

Multinomial probit Bayesian Chakir and Parent (2009)

Random parameter logit Max simulated likelihood Lewis et al. (2011)

Multinomial probit Max approximate CML Sidharthan and Bhat (2012)

Ordered probit Max CML Ferdous and Bhat (2012)

Multinomial logit GMM Li et al. (2013)

Multiple discrete-continuous
probit

Max CML Bhat et al. (2015)

Conditional parametric probit Max Locally Weighted
log-Likelihood estimator

McMillen and Soppelsa (2015)

Multinomial logit GMM Carrión-Flores et al. (2018)

(Pinkse and Slade 1998), the maximum pseudo-likelihood method (Smirnov 2010),
and finally the method of maximum approximate composite marginal likelihood
(CML) (Sidharthan and Bhat 2012). For detailed reviews of SA in discrete choice
models see Fleming (2004), Smirnov (2010). Simulation estimation and Bayesian
methods have been employed only recently to deal with the computational problems
associated to considering SA in discrete choice models. Because these methods are
still relatively expensive to implement, their use in the land use literature remains
limited. Table3 provides an overview of these studies.

4.3 Examples of Spatial Land Use Studies with Discrete
Choice Models

To tackle the complexities induced by SA in discrete choice models for land use,
some papers resort to Bayesian methods, for example, Wang and Kockelman (2009)
who estimate an ordered probit spatial dynamic model using satellite land cover
data. Chakir and Parent (2009) also use a Bayesian approach to estimate land use
determinants in a multinomial probit econometric model which accounts for both
unobservable individual heterogeneity and SA in errors. They analyze the determi-
nants of land based on a panel of 3,130 points in the Rhône department in France
between 1992 and 2003. It appears that land use changes are indeed influenced by
unobserved factors in neighboring plots. Finally, Blackman et al. (2008) estimate a
bayesian heteroskedastic SAR logit model of land cover for a shade-grown coffee
region in southern Mexico. Their results show that all other things being equal plots
close to large cities are less likely to be cleared which contrasts to the pattern usu-
ally observed in natural forests. They also find that belonging to a coffee-marketing
cooperative, farm size, and certain soil types are associated to tree cover while prox-
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imity to a small town center is associated to forest clearing. This study is extended
in Blackman et al. (2012) who estimate a SAR probit model.

Other papers use variants of maximum simulated likelihood. Lewis et al. (2011)4

estimate a random parameter logit model to take account of the non-observed space-
time components of the willingness to pay. This specification makes it possible to
take account of spatial heterogeneity rather than SA and also allows consideration
of heteroskedasticity via a block variance-covariance matrix with individual effects
which depend on space. It is a kind of SA but with no spatial structure and with a
matrix of weights as in spatial models. In the spatial econometrics literature, CML
has become a popular approach for estimating spatial probit models and has been
used to model land use. For instance, Ferdous and Bhat (2012) analyze changes in
the intensity of urban land use taking account of both the spatial dimension and
temporal dynamics. Their econometric model is an ordered probit estimated using
CML. The results show that ignoring the presence of spatial autocorrelation and spa-
tial heterogeneity introduces important bias and that ignoring spatial heterogeneity
is more serious than ignoring lagged spatial dynamics. Sidharthan and Bhat (2012)
use maximum approximate CML (MACML) to estimate a multinomial probit-type
land use model with SA between plots and spatial heterogeneity.

Finally, rather than tackling the spatial autoregressive coefficient directly as in
the previous papers, McMillen and Soppelsa (2015) estimate a conditional paramet-
ric spatial probit model imposing far less structure on the data than conventional
parametric models. They illustrate the approach using data on 474,170 individual
lots in the City of Chicago. Their results suggest that simple functional forms are
not appropriate for explaining the spatial variation in residential land use across the
entire city. Similarly, Carrión-Flores et al. (2018) propose a GMM spatial estimator
for a multinomial logit model with spatial lag dependence. The model is linearized
to avoid the repeated matrix inversion required for the full GMM estimation. The
linearization breaks up the estimation procedure into two simple steps: a standard
multinomial logit model with no SA followed by a two-stage least squares (TSLS)
estimation of the linearized model which accounts for SA. This model is applied to
estimate land use conversion in the rural-urban fringe for four different land uses
(agricultural, residential, industrial and commercial). The results show a positive
SA of about 0.36—a result consistent with the widely-accepted idea that land use
conversion is a spatial process.

5 Land Use and Its Impacts on the Environment

Land use is considered as one of the main drivers of global changes to nature, which
endanger numerous species or cause their extinction and compromise the supply
of ecosystem services (ES) which are important for humans (Millenium Ecosystem
Assessment 2005). The protection of ES is emerging as a major concern alongside

4Several attempts in the literature introduce spatial dependence in multinomial models but, except
for Lewis et al. (2011) to the best of our knowledge, they have not been used in the land use literature.
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climate change issues (IPCC 2019) and biodiversity conservation (IPBES 2019).
This has resulted in land use becoming a growing concern for policy-makers as
means of protecting ecosystems (Bateman et al. 2013). There is a large literature
estimating the effects of land use on various ES: water quality (Fezzi et al. 2015),
carbon sequestration (Lubowski et al. 2006), and biodiversity (Polasky et al. 2008).

In this context, accounting for SA when studying the impacts of land use on ES
is a major issue. Research shows that including SA in species distribution models
improves model fit and prediction accuracy (Record et al. 2013) and that ignoring
SA can produce inaccurate results (Kühn 2007). Below, we review a selection of
those studies that model SA explicitly to estimate the impacts of land use on the
environment.

5.1 Land Use and ES

The relationships between land use and ES is complex. For instance, some land uses
such as intensive agriculture could have negative impacts on ecosystems while others
could contribute to the provision of many ES. For example, tropical forests are an
example of a supplier of ES at various scales. At the local scale, these services include
wood, secondary forest products, pollination, etc. More generally, they sequester
large amounts of carbon which regulates the global climate (IPCC 2019). In addition,
the productivity of some land uses such as agriculture is dependent on ecosystems
such as biological pest control, soil fertility, and pollination. Thus, degradation of
these ecosystems constitutes a serious threat to the long-termagricultural productivity
growth. Below, we provide two examples of spatial studies dealing with this link.

Chen et al. (2020) employ an integrated spatial panel approach to examine the geo-
graphic variations and spatial determinants of the ES balance in the middle reaches
of the Yangtze River urban agglomerations (MRYRUA) in China. They analyze the
spatio-temporal evolution features of landscape patterns and the supply of demand for
and balance among ES and landscape pattern metrics for the period 1995–2015. The
results indicate that construction land in the MRYRUA has increased continuously,
while farmland has decreased. Counties with higher ES supply and balance indices
are concentrated primarily in mountainous areas, while the indices of ES demand
in the three smaller urban agglomerations, plains areas, counties surrounding major
cities, and along major traffic routes are higher. SA and spatial spillover effects of
the ES balance index are observed in the MRYRUA. Population density and road
density are negatively associated to an ES balance. Landscape pattern metrics are
also statistically significant, either positive or negative. The findings suggest that both
drivers and spillover effects should be accounted for when considering integrative
ecosystem management and land use sustainability measures in urban agglomer-
ations. Both have important implications for urban planning and decision-making
related to development and ES.

Klemick (2011) uses cross-sectional farm survey data to estimate the value of
fallow ES in shifting cultivation in one region in the Brazilian Amazon. The objec-
tive is to test whether it provides economically significant local externalities which
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might justify forest conservation from a local perspective. The author estimates a
production function to determine the contributions to agricultural income of on-farm
and off-farm forest fallow. Soil quality controls, instrumental variables and spatial
econometric approaches help address issues of endogeneity and variation in unob-
servable factors over space. The results suggest that Bragantina farmers generally
allocate land between cultivation and fallow efficiently taking account of beneficial
spillovers. This finding does not necessarily imply that farmers intentionally internal-
ize the value of these services but might suggest that private land tenure plays a role
in promoting sustainable land management given the different findings from other
studies of shifting cultivation in common property tenure regimes which identify
overexploitation of fallow biomass.

5.2 Land Use and Water Quality

There is a large literature on the effects of land use on water quality and freshwater
biodiversity. Most of these papers ignore SA. Here, we provide some examples of
studies that model SA explicitly in a study of land use and water quality.

Most studies show that forest areas have a positive impact on water quality com-
pared to intensive agriculture, livestock, and urban areas. For example, Abildtrup
et al. (2015) analyze the economic impacts of land use on the cost of drinking water
supply, taking account of both the organizational choice of water supply and spatial
factors in the same model. They estimate a model for the choice of management type
and for the price of water, accounting for the potential dependence of the error terms
between equations, as well as between neighboring water services. They estimate
a sample selection model adapted to a spatial context, that is, allowing for spatial
lags and spatial error processes. The model is applied to data from the French Vos-
ges department. The results show spatial interactions related to the characteristics of
neighboring water services but no SA of the error terms in the management choice
equation, or in prices. They show that forest land cover significantly reduces water
supply costs at the large but not the local scale.

Induced land use adaptation on freshwater biodiversity is analyzed byBayramoglu
et al. (2020). They study the links between land use (agriculture, pasture, forest, and
urban environment) and the fish-based index (FBI) an indicator of the ecological
state of surface water measured for various French rivers observed between 2001
and 2013. They estimate two models: a spatial econometric model of land use and a
spatial panel statistical model of the FBI. Their results indicate that adapting land use
to climate change is reducing the biodiversity of freshwater in France. Furthermore,
rivers located in regions with intensive agriculture and pastures are associated to
lower freshwater biodiversity than those in forest regions. Simulations show that
climate change will exacerbate these negative impacts through changes to land use.
They show how two policies for regulating the level of fertilizers in agriculture and
carrying capacity in grasslands could help improve freshwater biodiversity and cope
with the adverse effects of land use and climate change.
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5.3 Land Use and Climate Change

The interactions between land use and climate are complex (IPCC 2019). First, land
use and land practices affect the global concentration of greenhouse gases (Houghton
2003). Second, while land use change is an important driver of climate change, a
changing climate can lead to changes in land use. For example, farmersmight convert
pasture to crop land which has higher economic returns under changing climatic
conditions. Third, spatially heterogeneous land use activities have important impacts
on local weather (Feddema et al. 2005). Fourth, land use changes could play an
important role in mitigating climate change either by increasing carbon sequestration
or by reducing greenhouse gas emissions. This could be achieved by adopting land
uses such as afforestation or preservation of permanent pasture (Pielke 2005).

Land use adaptation to climate change could exacerbate the adverse impacts of
land use on the environment. For example, Lungarska and Chakir (2018) show that
in France, climate change will reduce forest areas which could increase greenhouse
gas emissions. They estimate a spatial econometric land use model and simulate the
impacts of two IPCC climate change scenarios (A2 and B1, horizon 2100) and a mit-
igation policy in the form of a tax on greenhouse gas emissions (0–200 euros/tCO2)
aimed at reducing agricultural greenhouse gas emissions. They show that both cli-
mate change scenarios lead to an increase in agricultural area at the expense of forests.
Greenhouse gas mitigation policies reduce expansion of agriculture, and therefore
could counteract the consequences of climate change on land use. Taking account of
land use adaptations to climate change makes it possible to reduce abatement costs
in the agricultural sector.

6 Conclusion

The objective of this review was to summarize the literature on econometric land
use modeling and show how SA can be accounted for in these models. Despite the
recent advances in econometric land use models, several research directions remain
to be explored and several issues need to be addressed concerning data, theories, and
empirical models.

First, there is a frequent lack of data to construct relevant explanatory variables
implied by theoretical models. In particular, land rents are described in the theoretical
model as among the main decision variables related to land use or land use change
but are unobservable in the case of agricultural or urban use. In the case of forestry
use, these rents are even more difficult to calculate. More research is needed along
these lines, and especially to investigate the question of the links between land price
and land rent, drawing on the work of Randall and Castle (1985), Goodwin et al.
(2003).

Second, more investigation is needed into scale issues in land use studies. For
example, most economic variables refer to administrative units rather than grids
which makes it easier to estimate econometric models at the same administrative
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scale (such as department, municipality, or small agricultural regions in the French
case). However, a land use model with aggregate spatial resolution is less relevant for
assessing the local ecological effects of land uses. Ecological issues such as habitat
quality or dispersion of species operate on fine scales. Ecological conditions vary
considerably within each administrative unit, introducing additional uncertainty for
ecological assessments.

Third, in addition to the spatial dimension, it would be interesting to incorporate
the dynamic dimension explicitly in econometric land use models (Epanchin-Niell
et al. 2017). Methodological advances in the specification and estimation of spatio-
temporal panel models are one of the difficulties related to spatial econometrics
as noted in Arbia (2011). The estimation methods developed by Ferdous and Bhat
(2012), Sidharthan and Bhat (2012) seem promising as alternatives to the computa-
tionally intensive Bayesian or simulation methods.

Fourth, all the models presented here assume implicitly that the spatial weight
matrix is exogenous. If spatial units refer to individual landowners making land use
choices, these choices might be influenced substantially by the choices of peers with
whom they choose to be linked in which case the weight matrix becomes endoge-
nous. Identification of endogenous peer effects and how to disentangle them from
exogenous effects and correlated effects in networks has been studied extensively.5

The way landowners form networks and how these affect land use decisions are of
considerable interest to understand the drivers of these decisions.

Finally and related to this issue, structural models should be further developed
to study the links between land use and land use changes, and their effects on the
environment for example on GHG emissions and biodiversity. The advantage of a
structural approach is that it makes more explicit assumptions about observable and
unobservable variables. The structural approach also makes it possible to unambigu-
ously account for the endogeneity of prices and the feedbacks that determine the
market equilibrium (Timmins and Schlenker 2009). The aim is to propose a theo-
retical economic model which includes the farmer’s decisions about crop rotations,
choice of inputs (fertilizers), land allocation between agricultural and grassland uses,
and herd size and composition. This would be quite challenging and would force a
limited focus on a subset of these decisions (Kaminski et al. 2013).

Addressing these issues would help to improve the quality of econometric land
use models. Developing accurate models is important for policy making to allow
for more accurate predictions about land use and future changes and more accurate
measurement of the effects of these changes on natural resources (biodiversity, water
quality, soil quality, and air quality).

5See Hsieh et al. (2019) for a recent paper on the specification and estimation of network formation
and network interaction and applications of this literature to land use issues can be found in Isaac
and Matous (2017), Baird et al. (2016).
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Modeling Dependence in
Spatio-Temporal Econometrics

Noel Cressie and Christopher K. Wikle

Abstract This chapter is concerned with lattice data that have a temporal label
as well as a spatial label, where these spatio-temporal data appear in the “space-
time cube” as a time series of spatial lattice (regular or irregular) processes. The
spatio-temporal autoregressive (STAR)models have traditionally been used tomodel
such data but, importantly, one should include a component of variation that models
instantaneous spatial dependence as well. That is, the STAR model should include
the spatial autoregressive (SAR) model as a subcomponent, for which we give a
generic form. Perhaps more importantly, we illustrate how noisy and missing data
can be accounted for by using the STAR-like models as process models, alongside
a data model and potentially a parameter model, in a hierarchical statistical model
(HM).

1 Introduction

Spatial Econometrics has its origins in the statistical modeling of data that are labeled
with a spatial (regular or irregular) lattice and, hence, they fall under Tobler’s first law
of geography (everything is related to everything else, but near things aremore related
than distant things; Tobler 1970). Spatial-econometric models were inspired by the
autoregressive (AR) statistical models found in time series analysis, where the data
are temporally labeled and things in the recent past are more related than things in the
distant past. The area of study known as Econometrics has these AR (combined with
moving average) models at its core. Spatial Econometrics has mimicked Economet-
rics with spatial autoregressive (SAR) models at its core (e.g., Anselin 1988; Arbia
2006). In this chapter, we consider the spatial and the temporal aspects together and
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give spatio-temporal-econometric models based on spatio-temporal autoregressive
moving average (STARMA) models that can be fitted to spatio-temporal data.

One might think that SAR models have very similar statistical properties to those
ofARmodels.However, the timedimension is ordered,whereas the spatial dimension
is not (unless one-dimensional space provides the spatial labels or a partial order
is imposed on a high-dimensional space; see, e.g., Tjostheim 1978; Cressie and
Davidson 1998). While the SAR models of Spatial Econometrics can be defined
analogously to the AR (temporal) models of Econometrics, some of their spatial-
statistical dependence properties are quite different from those of their temporal
counterparts. Furthermore, the notion of filtering out noise due tomeasurement error,
which is common in signal processing, has not been given the emphasis it deserves
in Spatial Econometrics. These and other issues will be discussed and extended to
spatio-temporal-econometric models.

Consider now data with both a spatial label and a temporal label, where these
spatio-temporal data appear in the “space-time cube,” as a time series of spatial lat-
tice processes. The spatio-temporal autoregressive (STAR)models have traditionally
been used but, importantly, one should include a component of variation that models
instantaneous spatial dependence as well. That is, the STAR model should include
the SAR model as a subcomponent. In this chapter, we give the generic form for
such a spatio-temporal model. We also consider the fundamental problem of how to
handle measurement error in the data as well as missing data, by introducing a data
model along with the STAR model, which defines a hierarchical statistical model
(HM).

This chapter is organized as follows. Section2 motivates why space and time
are important factors in any scientific investigation and why modeling statistical
dependence is key when making inferences from spatio-temporal data. Section3
develops the core statistical models of Spatio-Temporal Econometrics. Section4
looks back at the evolution of Spatial Econometrics and notes how somekey advances
in spatial statistical modeling have been slow to take hold. Section5 returns to the
core spatio-temporal econometric models presented in Sect. 3 and gives a modern,
HMapproach tomodeling spatio-temporal data on regular or irregular spatial lattices.
Some general remarks are given in Sect. 6, and a brief technical appendix concludes
the chapter.

2 Spatio-Temporal Statistics

Spatio-temporal data were essential to the nomadic tribes of early civilizations, who
used them to return to seasonal hunting grounds. On a bigger scale, data sets on
weather, geology, plants, animals, and indigenous people were collected by early
explorers seeking to map and exploit new lands. In a sense, we are all analyzers of
spatial and temporal data. As we plan our futures (economically, socially, education-
ally, etc.), we must take into account the present and seek guidance from the past.
As we look at a map to plan a trip, we are letting its spatial abstraction guide us.
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There is an important statistical characteristic of spatio-temporal data that is
almost ubiquitous, namely that nearby (in space and time) observations tend to
be more alike than those that are far apart. A simple, often-effective forecast of
tomorrow’s weather is to use today’s observed weather. This “persistence” forecast
is based on observing large autocorrelations between successive days. Such depen-
dence behavior in “nearby” temporal data is also seen in “nearby” spatial data, such
as in studies of the environment. Statistics for spatio-temporal data is challenging
due to this dependence in time and space. One fundamental scientific problem that
arises is understanding the evolution of spatial processes over time (e.g., the evo-
lution of sea-ice coverage in the Arctic; sea surface temperature and the El Niño
phenomenon; and time trends of precipitation in agricultural regions). Proper infer-
ence to determine if evolutionary components (natural or anthropogenic) are real
requires a spatio-temporal statistical methodology.

The scientific method involves observation, inspiration, hypothesis-generation,
experimentation (to support or refute the current scientific hypothesis), inference,
more inspiration, more hypothesis-generation, and so forth. In a sense, everything
begins with observation, but it is quickly apparent to a scientist that unless data
are obtained in a more-or-less controlled manner (i.e., according to an experimental
design), scientifically defensible inference can be challenging. Understanding the
role of dependencies when the data are spatial or temporal or both, provides an
important perspective when working with experimental data versus observational
data.

It is our belief that statistical models used for describing temporal variability in
space should represent the variability dynamically. Models used in Physics, Chem-
istry, Biology, Economics, etc., do this all the time with difference equations and dif-
ferential equations to express the dynamical evolutionary mechanisms. Why should
this change when the models become statistical? Perhaps it is because there is often
an alternative framework, for example, a model based on correlations, that describes
the spatio-temporal dependence.However, this descriptive approach does not directly
involve evolutionary mechanisms and, as a consequence, it can push scientific under-
standing of the Physics/Chemistry/Biology/Economics/etc., into the background.
There is in fact a way to have both, in the form of a scientific-statistical model
that recognizes the dynamical scientific aspects of the phenomenon, with its uncer-
tainties expressed through statistical models. Obviously, descriptive (correlational)
statistical models have a role to play when little is known about the etiology of the
phenomenon; however, when possible, we believe that one should use a dynami-
cal statistical approach to model spatio-temporal data, such as the models given in
Sect. 3.2.

2.1 Uncertainty and Data

Central to the observation, summarization, and inference (including prediction) of
spatio-temporal processes are data. All data come bundled with error. In particular,
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along with the obvious errors associated with measuring, manipulating, and archiv-
ing, there are other errors, such as discrete spatial and temporal sampling of an
inherently continuous system. Consequently, there are always scales of variability
that are unresolvable and that will further “contaminate” the data. For example, in
Atmospheric Science, this is considered as a form of “turbulence,” and it corresponds
to the well known aliasing problem in time series analysis (e.g., Chatfield 1989, p.
126) and the micro-scale component of the “nugget effect” in geostatistics (e.g.,
Cressie 1993, p. 59).

Furthermore, spatio-temporal data are rarely sampled at spatial or temporal loca-
tions that are optimal for the analysis of a specific scientific problem. For instance,
in environmental studies there is often a bias in data-coverage toward areas where
population density is large and, within a given area, the coverage is often limited
by cost. Thus, the location of a measuring site and its temporal sampling frequency
may have very little to do with the underlying scientific mechanisms. A scientific
study should include the design of data locations and sampling frequencies when
framing questions, when choosing statistical-analysis techniques, and when inter-
preting results. This task is complicated since the data are nearly always statistically
dependent in space and time, and hence most of the traditional statistical methods
taught in introductory statistics courses (which assume independent and identically
distributed, or iid, errors) do not apply or have to be modified.

2.2 Uncertainty and Models

Science attempts to explain the world in which we live, but that world is very com-
plex. A model is a simplification of some well chosen aspects of the world, where
the level of complexity often depends on the question being asked. Pragmatically,
the goal of a model is to predict and, at the same time, scientists want to incorporate
their understanding of how the world works, into their models. For example, the
motion of a pendulum can be modeled using Newton’s second law and the simple
gravity pendulum that ignores the effect of friction and air resistance. The model
predicts future locations of the pendulum quite well, with smaller-order modifica-
tions needed when the pendulum is used for precise time-keeping. Models that are
scientifically meaningful, that predict well, and that are conceptually simple are gen-
erally preferred. However, an injudicious application of Occam’s razor (or “the law
of parsimony”) might elevate simplicity over the other two criteria. For example, a
statistical model based on correlational associations might be simpler than a model
based on scientific theory.

The way to bridge this divide is to focus on what is more-or-less-certain in the
scientific theory, and use scientific-statistical relationships to characterize it. In other
words, we suggest that the uncertainties in the models be expressed probabilistically.
As the data become more expansive, it is natural that they might suggest a more
complex model. Clearly, there is a balance to be struck between too much simplicity,
so failing to recognize an important signal in the data, and too much complexity,
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which results in a non-existent signal being “discovered.” The research area known
as model choice uses various criteria (e.g., AIC, DIC) to achieve this balance (e.g.,
Wikle et al. 2019, pp. 284–287).

2.3 Conditional Probabilities in a Hierarchical Statistical
Model (HM)

There is a very general way to express uncertainties coming from different sources,
through an approach known as hierarchical statistical modeling. There are data Z
that measure Y (with measurement uncertainty), there is the scientific process Y
(with less or more uncertainty), and there are parameters θ (unknown, not certain)
that control the conditional probability distribution of Z given Y , and the probability
distribution of Y . In this chapter, the quantities in which we are interested are random
vectors and random variables.

The following conditional probabilities are the basic building blocks of a hierar-
chical statistical model (HM):

Data model : [Z |Y, θ ]
Process model : [Y |θ ]

where, using generic random quantities A and B, [A] denotes the marginal distribu-
tion of A, [A, B] denotes the joint distribution of A and B, and [A|B] denotes the
conditional distribution of A given B. Now the joint distribution of Z and Y can be
decomposed as follows. From the equation [A, B] = [A|B][B], we have

[Z ,Y |θ ] = [Z |Y, θ ][Y |θ ], (1)

which is simply a product of the data model and the process model.
In the HM above, it is assumed that θ is fixed (not random), and that all probability

distributions are conditional on the fixed values of the parameters. Inference on Y
depends on the following distribution (sometimes called the predictive distribution),
obtained from Bayes’ Theorem:

[Y |Z , θ ] = [Z |Y, θ ][Y |θ ]
[Z |θ ] , (2)

where the normalizing “constant,” [Z |θ ] = ∫ [Z |Y, θ ][Y |θ ]dY , ensures that the total
probability of the predictive distribution is 1.

What can be done about θ? A Bayesian approach would augment the HM with
a parameter model, [θ ], which is usually called the prior. In this chapter, we want
to make an important point, that Spatial (and Spatio-Temporal) Econometrics does
not need to adopt a Bayesian approach to use Bayes’ Theorem, given by (2), and to
exploit the power of an HM. Henceforth in this chapter, we adopt a non-Bayesian
approach and assume that θ is fixed but unknown, with some closing remarks about
this given in Sect. 6.
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In practice, θ is often specified using an estimate, in which case (2) is replaced
with [Y |Z , θ̂ ], where θ̂ is an estimate of θ (i.e., depends on the data Z ). It is also
possible that θ is estimated from an independent study or is simply an educated guess.
It is this “empirical” step of “plugging in θ̂” that we shall adopt in this chapter. A
fully Bayesian HM can be found in, for example, Wikle et al. (2019, pp. 168–170).

2.4 “Classical” Statistical Modeling

Here we use “classical” as an adjective for both frequentist and Bayesian model-
ing. The HM introduces data Z , process Y , and parameters θ ; however, the “clas-
sical” model found in the work of Fisher (e.g., Fisher 1935) has only data Z and
parameters θ , as does the “classical” model of Bayes and many who followed him
(e.g., Press 1989). Classical frequentists base their inferences on the likelihood,
[Z |θ ]. Classical Bayesians base their inferences on the posterior distribution, [θ |Z ],
which requires both a likelihood [Z |θ ] and a prior [θ ] to be specified. Both classi-
cal approaches miss the fundamental importance of modeling the latent process Y,
where the Physics/Chemistry/Biology/Economics/etc., typically resides.

To be sure, Statistics has played and continues to play an important role in Sci-
ence, but often using simple, introductory-textbook approaches based on correlation
and regression. Without Y being made explicit in statistical models, Science has
often chosen its own path to statistical inference. Scientists know that parameters θ

are important; these might be starting values, or boundary conditions, or diffusion
constants, and so forth. In what follows, we give a deliberately simplistic description
of how a traditional scientist might use Statistics in her/his research, although we
note that in some disciplines this is changing fast. It is our hope that a more modern
way of building statistical-dependence models will happen in Spatial Econometrics
and in Spatio-Temporal Econometrics (presented in Sects. 4 and 5 of this chapter).

Scientific experiments produce data Z , and variability in the data is generally
recognized by scientists. One approach to support, refine, or refute a scientific theory
has been to “smooth” the data first. Consider the smoother f , and write

Ỹ = f (Z).

The scientist might then assume that any (random) variability has been removed and
that Ỹ can now be treated as the true process with no uncertainty. A less extreme
viewpoint would be to consider that Ỹ is “close to” the true process Y . In that case,
the scientist might fit a model for Y using the “data” Ỹ . If the model for Y is [Y |θP ],
namely a process model with parameters θP that are a subset of θ , the scientist might
use classical Statistics to fit [Y |θP ] to Ỹ . While the approach just described can be
effective when the “signal” is strong, it also has the potential to declare the presence
of a signal when it may simply be the result of chance fluctuations.
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Given the data are to be smoothed, it should be recognized that they are often
a combination of raw observations and algorithmic manipulations. The statistical
scientist might write instead,

Z̃ = f (Z) , (3)

where the notation Z̃ in (3) is deliberate and suggests an important difference between
the two ways to think about f (Z).

An HM can be fitted using the data Z̃ , where the data model, [Z̃ |Y, θ ], recognizes
any remaining uncertainty in Z̃ after smoothing. Inference on the process Y is based
on the predictive distribution obtained from (2):

[Y |Z̃ , θ ] ∝ [Z̃ |Y, θ ][Y |θ ] , (4)

where “∝” means “is proportional to.” By writing the data manipulation and pre-
processing according to (3), we have a coherent way to decompose the variability in
Z̃ through (4). (Bayesian statisticians would then specify a prior distribution [θ ], but
the ultimate goal of inference on Y and θ remains unchanged.)

While the picture painted above is simplistic, it does illustrate that scientific inter-
est is in Y . If a classical frequentist statistician were to include the scientific model
[Y |θ ] in the analysis, it should be done in the calculation of the marginal model,

[Z̃ |θ ] =
∫

[Z̃ |Y, θ ][Y |θ ]dY .

That is, the classical frequentist who bases inference on the likelihood should recog-
nize Y and then integrate it out. However, if there is no such recognition in the first
place, the model chosen to be fitted, [Z̃ |θ ], may be difficult to interpret scientifically
or, worse yet, may be inappropriately interpreted.

The classical Bayesian is also compromised; inclusion of the scientific model
[Y |θ ] yields the posterior distribution of θ ,

[θ |Z̃ ] ∝
∫

[Z̃ |Y, θ ][Y |θ ]dY × [θ ] .

This has the same potential for misinterpretation, if the Bayesian modeler tries to
model directly [Z̃ |θ ] and uses it in [Z̃ |θ ] × [θ ] to obtain the posterior distribution.

Spatial Econometrics has a tradition of fitting data directly to process models,
and hence from the HM perspective it leaves the data model out of its formalism.
As a result, variability due to measurement error is confounded with process-model
error. That is, Spatial Econometrics has traditionally taken the classical frequentist
approach to inference. In the next section, we concentrate on process models for
processes indexed by both space and time and, in Sects. 4 and 5, we return to the
HM where the data model is formulated along with the process model (and θ is
estimated).
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3 Spatio-Temporal-Econometric Modeling

There are a number of ways to express statistically that “things” nearby (in space
and time) are more related than distant “things.” In this section, we illustrate the
fundamental difference between space and time with a simple example, and then we
show how dynamical spatio-temporal-econometric models can be built that capture
the best features of Spatial Econometrics and multivariate time series analysis. In
what follows, we let Yt (s) denote a random variable at spatial location s and time t ,
and then we allow s and t to vary over a spatio-temporal domain of interest.

3.1 Spatial Description and Temporal Dynamics: A Simple
Example

The best way to compare space and time in our statistical context is to consider
a simple example, where the spatial domain Ds ≡ {s0, s0 + �, . . . , s0 + 99�} is
defined in one dimension, and the temporal domain Dt ≡ {0, 1, 2, . . .} is defined
on the nonnegative integers. Then let {Yt (s) : s ∈ Ds, t ∈ Dt } be a spatio-temporal
process of interest; recall that in the space-time cube, fixing t = t0 yields a spatial
process and fixing s = s0 yields a time series.

Define the spatial process at the fixed time point t0 to be the 100-dimensional
vector,

Yt0 ≡ (Yt0(s0), . . . ,Yt0(s0 + 99�))′,

and define the time series at fixed spatial location s0 to be the (different) 100-
dimensional vector,

Y(s0) ≡ (Yt0(s0), . . . ,Yt0+99(s0))
′.

For illustrative purposes, the dimension of these vectors were arbitrarily chosen to
be 100. By comparing spatial statistical models for Yt0 and time series models for
Y(s0), we can see to what extent space is modeled differently from time. Note that
we deliberately chose the dimensions of the vectors to be the same to make the
comparison easier, but they need not be.

Let us consider the vectorYt0 . A simple departure from independence for a spatial
process is nearest-neighbor dependence expressed through conditional distributions.
LetGau(μ, σ 2)denote aGaussiandistributionwithmeanμ andvarianceσ 2.Assume,
for i = 1, . . . , 98, the Gaussian (conditional) distribution,

Yt0(si )|{Yt0(s j ) : j = 0, . . . , 99 and j �= i}
∼ Gau((φt0/(1 + φ2

t0)){Yt0(si−1) + Yt0(si+1)}, σ 2
t0/(1 + φ2

t0)), (5)

where si ≡ s0 + i�; i = 0, . . . , 99. On the edges of the transect, assume
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Yt0(s0)|{Yt0(s j ) : j = 1, . . . , 99} ∼ Gau(φt0Yt0(s1), σ
2
t0),

Yt0(s99)|{Yt0(s j ) : j = 0, . . . , 98} ∼ Gau(φt0Yt0(s98), σ
2
t0).

In (5), assume that the spatial-dependence parameter, φt0 , satisfies |φt0 | ≤ 1. Based
on these assumptions, it can be shown that E(Yt0) = 0, and the correlation between
nearest neighbors is

corr(Yt0(si ),Yt0(si−1)) = φt0; i = 1, . . . , 99. (6)

The process given by (6) is descriptive in that it is given simply in terms of correlation.
Let us now consider the vector Y(s0). A simple departure from independence for

a time series is a first-order autoregressive process. Assume that

Yt (s0) = φ(s0)Yt−1(s0) + δt ; t = t0 + 1, . . . , t0 + 99, (7)

where δt is independent ofYt−1(s0), and the elements of {δt } are iid asGau(0, σ 2
δ (s0)),

for t = t0, t0 + 1, . . . , t0 + 99. To initialize the process, assume

Yt0(s0) ∼ Gau(0, σ 2
δ (s0)/(1 − φ(s0)

2)),

which is a deliberate choice, as is assuming that the temporal-dependence param-
eter φ(s0) satisfies |φ(s0)| < 1. Based on these assumptions, it can be shown that
E(Y(s0)) = 0, var(Yt (s0)) does not depend on t , and the correlation between two
adjacent time points is:

corr(Yt−1(s0),Yt (s0)) = φ(s0); t = t0 + 1, . . . , t0 + 99. (8)

The dependence in the process given by (7) is dynamical in that it shows how
current values are related mechanistically to past values. More generally, the depen-
dence of current values on past values can be expressed probabilistically, and (7)
has an equivalent probabilistic expression in terms of the conditional probability of
Yt (s0) given past values:

Yt (s0)|Yt−1(s0), . . . ,Yt0(s0) ∼ Gau(φ(s0)Yt−1(s0), σ
2
δ (s0)).

Such time series models are sometimes referred to as causal.
Let us compare and contrast the spatial process (5) and the time series (7). Both

are Gaussian with mean zero. From (6) and (8), we see that if φt0 = φ(s0), they
imply the same correlation between adjacent random variables. In fact, because of
the Gaussian assumption, if the temporal-dependence and the spatial-dependence
variance–covariance parameters are equal, the processes are probabilistically identi-
cal! However, the spatial process (5) looks east and west for dependence, in contrast
to the time series (7), which is causal and looks to the past. This example has a cau-
tionary aspect. Clearly, a description of the properties of spatial or temporal statistical
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dependence of the model through just moments or even through joint probability dis-
tributions can completely miss the genesis of the statistical dependence, such as the
dynamical structure given by (7).

Now, when it comes to considering space and time together in {Yt (s)}, we believe
that (whenever possible) the temporal dependence should be expressed dynamically,
based on Physical/Chemical/Biological/Economic/etc., considerations, since here
the etiology of the phenomenon is clearest. In a contribution to the Statistics literature
that was well ahead of its time, Hotelling (1927) gave various statistical analyses
based on dynamical models from stochastic differential equations (albeit only for
the temporal dimension).

This dynamical approach to spatio-temporal statistical modeling contrasts to that
of some others, where time is treated as an extra (although different) dimension. In
that case, descriptive expressions of spatial dependencies through covariance func-
tions are modified to account for the additional temporal dimension. We call this
expression descriptive because usually it is not accompanied by an explanation of
why the temporal dependence is present.

3.2 Time Series of Spatial Processes

In Spatio-Temporal Econometrics, a generic spatio-temporal process Y is

{Yt (si ) : i = 1, . . . , n; t = 0, 1, . . .}

and, for the moment, we can imagine that Yt (·) is observed at every one of the n
spatial locations for all t . We write the spatial process at time t as the vector,

Yt ≡ (Yt (s1), . . . ,Yt (sn))′ ; t = 0, 1, . . . .

Hence, the original spatio-temporal process can be written as the multivariate time
series,

Y0,Y1, . . . .

In Spatial Econometrics, the spatial statistical modeling of an individual Yt has
been largely based on SAR models (see below), although CAR models are equally
appropriate (e.g., Allcroft and Glasbey 2003).

The vector notation enables us to express the Markov property for {Yt } succinctly
as,

[Yt |Y0, . . . ,Yt−1] = [Yt |Yt−1] ; t = 1, 2, . . . .

An example of a process satisfying the Markov property is the VAR(1) model of
dimension n:

Yt = MYt−1 + ηt (9)
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where, in its full generality,Mhasn2 parameters, and�η ≡ var(ηt )hasO(n2)param-
eters. However, the spatial context can be used to reduce the number of parameters
drastically.

For example, suppose we assume that the (i, j)th entry of M equals 0, unless
‖si − s j‖ ≤ h, for a given h > 0. Then the current value at si is related to those
immediate-past values at si and nearby values at s j (within a radius of h). Thus,
rather than M being made up of n2 parameters, the parameter space can be made
O(n) by making M sparse through spatial proximities of the n locations. A similar
modeling strategy that allows further reduction in the size of the parameter space
would choose �η to be sparse (a geostatistical-type spatial model) or �−1

η to be
sparse (a lattice-type spatial model).

The VAR(1) model is a special case of the spatio-temporal autoregressive moving
average (STARMA) models. It is generally true that for these and other multivariate
time series, the number of parameters can be enormous, and an important skill of
the modeler is to reduce drastically the size of the parameter space. We believe that
this is best achieved through recognizing and preserving any known spatio-temporal
interactions in the underlying process {Yt (s)}.

3.3 Space-Time Autoregressive Moving Average (STARMA)
Models

Wecould look for evenmore generality than aVAR(1)model in the temporal domain,
by assuming higher orders of autoregression as well as a moving average type of
dependence. Define the spatio-temporal autoregressive moving average (STARMA)
models (Ali 1979; Pfeifer and Deutrch 1980; Cressie 1993, p. 450) as

Yt =
p∑

k=0

⎛

⎝
λk∑

j=1

fk jUk j

⎞

⎠Yt−k +
q∑

l=0

⎛

⎝
μl∑

j=1

gl jVl j

⎞

⎠ ωt−l ; t = 0, 1, . . . ,

where {Uk j } and {Vl j } are known weight matrices; p and q are the orders of the
autoregressive part and the moving average part, respectively; { fk j } and {gl j } are
parameters of the model; {ωt } are iid random vectors with mean 0 and covariance
matrix �ω; and the index j is used to denote substructures. These are core models
in Spatio-Temporal Econometrics.

Under reparameterization, we obtain

Yt =
p∑

k=0

BkYt−k +
q∑

l=0

Elωt−l (10)

where, without loss of generality, we henceforth put�ω = σ 2
ωI and, for identifiability

reasons, B0 has zero entries down the diagonal. It is important to note that the index
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k in (10) starts at k = 0; the matrix B0 models instantaneous spatial dependence in
the same way that spatial dependence is modeled in a SAR model. As for the SAR
model, we assume that (I − B0) is invertible.

The number of parameters in (10) is still very large. Consider several simple cases.
First, p = 0 and q = 0 results in a time series of purely spatial processes without
any temporal dependence linking them:

Yt = B0Yt + E0ωt ; t = 0, 1, . . . .

To see this clearly, rewrite the expression above as

Yt = (I − B0)
−1E0ωt ; t = 0, 1, . . .

and, since {ω0,ω1, . . .} are mutually independent, we see that the time series {Yt }
defined just above has no temporal dependence. When E0 = I, the multivariate time
series consists of iid mean-zero SARs.

The second case is p = 1 and q = 0, and recall that B0 has all-zero diagonal
entries. Then,

Yt = B0Yt + B1Yt−1 + E0ωt ; t = 0, 1, . . . .

Given Yt−1, the vector Yt has spatial statistical dependence that is expressed in the
form of a SAR model. From Cressie (1993, p. 409), a SAR can be written as a CAR,
which is a Markov random field with simple conditional probability dependencies.
The equation just above can be written equivalently as

Yt = (I − B0)
−1B1Yt−1 + (I − B0)

−1E0ωt ≡ MYt−1 + ηt ,

where M ≡ (I − B0)
−1B1 and {ηt } are iid with mean zero and var(ηt ) = �η =

σ 2
ω(I − B0)

−1E0E′
0(I − B′

0)
−1. This is a VAR(1) model, and recall that the matrix

B0 represents “instantaneous” spatial dependence. Notice that if we multiply out
(I − B0)

−1B1, where (I − B0) is sparse, we obtain a propagator matrix M = (I −
B0)

−1B1 that is generally not sparse.
Another way to achieve a VAR(1) model is the third case, p = 1, q = 0, and

B0 ≡ 0. Then,
Yt = B1Yt−1 + E0ωt ; t = 0, 1, . . . ,

which is equivalent to
Yt = MYt−1 + ηt ,

where now M ≡ B1, and {ηt } are iid with mean zero and var(ηt ) = �η = σ 2
ωE0E′

0.
There are clearly a number of different ways to arrive at the same type of model.

The difference between them lies in their parameterizations. One way to think of
B0 is that it captures the variability at time steps much smaller than the unit of
time specified for the autoregression. Small-temporal-scale dynamics, which may be
important and unwise to ignore, are collected together into the matrix B0 that models
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instantaneous spatial dependence (Cressie 1993, p. 450; LeSage and Pace 2009,
Sect. 2.1). Thus, this instantaneous spatial dependence is in fact an approximation of
dynamical structure running at time scales much shorter than the unit of time in the
autoregression.

4 Spatial-Econometric Modeling

We saw in Sect. 3.1 that a spatial Gaussian process in one-dimensional space that
is described through its covariance function can be probabilistically equivalent to
a corresponding temporal process (i.e., a time series) that is modeled dynamically
through an autoregressive mechanism. Then in Sect. 3.3, we generalized the autore-
gressive model by collecting all the spatial-process values into a vector, resulting in
a very flexible class of multivariate dynamical models for spatio-temporal processes.

Spatial Econometrics grew out of seeing how dependence was modeled in time
in Econometrics. This was achieved through Box–Jenkins ARIMA modeling (Box
and Jenkins 1970) and the use of “backshift” operators, and then by applying the
same idea with “spatial-shift” matrices to generate dependence in space (Paelinck
and Klaasen 1979). For example, the mean-zero AR(1) model for the time series
{Yt } is defined as Yt = φYt−1 + δt , where Yt−1 is independent of δt , and {δ1, δ2, . . .}
are iid with E(δt ) = 0 and var(δt ) = σ 2

δ (see Eq. (7)). This equation can be written
equivalently in terms of the backshift operator B as

Yt = φBYt + δt . (11)

At the core of Spatial Econometrics are models for Y ≡ (Y (s1), . . . ,Y (sn))′ that
mechanistically connectY (si ) to its “neighbors”: ReplaceφB in (11)with the square-
matrix operator B0 whose diagonal elements are defined to be zero, and any off-
diagonal element that is zero indicates a lack of spatial “connection” between the
two corresponding locations. The resulting SAR model is,

Y = B0Y + ω , (12)

where E(ω) = 0 and var(ω) = σ 2
ωI, which was introduced in Sect. 3.3 as a way to

capture instantaneous spatial dependence in a mean-zero spatio-temporal process.
If we write B0 = φB, where B is the square matrix (bi j ), then the generalization

from “time” in (11) to “space” in (12) looks beguilingly straightforward. However,
these are mathematical relationships, and nothing has been said yet about the statisti-
cal dependence betweenB0Y andω in (12). Recall that in the AR(1) process given by
(11), Yt−1(= BYt ) and δt are independent. In the SAR process given by (12), B0Y =
B0(I − B0)

−1ω, and hence cov(B0Y,ω) = B0(I − B0)
−1var(ω) = σ 2

ωB0(I − B0)
−1,

which shows that B0Y and ω are statistically dependent.
This latter property means one has to be very careful when interpreting the SAR

model. It has been misinterpreted as being causal in Spatial Econometrics; Gibbons



376 N. Cressie and C. K. Wikle

and Overman (2012) address this mistake directly, and the presence of non-zero
covariances between the autoregressive part,B0Y, and the error,ω, is a manifestation
of the fundamentally different structure of the SAR model and the AR model, which
is causal.

For B0 = φB, (12) can be written as

Y (si ) = φ

n∑

j=1

bi jY (s j ) + ω(si ) ; i = 1, . . . , n ,

where recall bii = 0. In a naive cross-validation exercise, Y (si ) would be deleted
and then predicted with Ŷ (si ) ≡ φ

∑n
j=1 bi jY (s j ); then Ŷ (si ) would be compared to

Y (si ) via, say, (Ŷ (si ) − Y (si ))2. However, this Ŷ (si ) is an inferior predictor of Y (si ),
since the optimal cross-validation predictor of Y (si ) is,

Y ∗(si ) ≡ E(Y (si )|Y−i ) ,

forY−i the (n − 1)-dimensional vectorwithY (si ) removed fromY. From theLemma
given in the Appendix, Y ∗(si ) can be derived analytically from the full n × n covari-
ance matrix, var(Y) = σ 2

ω{(I − φB)(I − φB′)}−1, and it is different from Ŷ (si ).
Note that while a derivation of Y ∗(si ), albeit straightforward and resulting in

a closed-form expression, is necessary for the SAR model, Y ∗(si ) is immediately
available from the conditional autoregressive (CAR) model, although this model is
used much less frequently in Spatial Econometrics. (For readers interested in the
relationships between SAR and CAR models, see Cressie 1993, p. 408–410, Ver
Hoef et al. 2018.)

Another caution with the use of SARmodels in Spatial Econometrics comes with
how they are specified when the spatial process Y does not have mean zero. One
should take guidance from how the time series model (11) would be modified to
handle, say, the regression, E(Yt ) = x′

tβ. The time series model,

Yt − x′
tβ = φ · (Yt−1 − x′

t−1β) + δt , (13)

is an AR(1) process that preserves the mean structure, E(Yt ) = x′
tβ. For reasons

that are not clear, the Spatial-Econometrics literature (e.g., Anselin 1988) shows a
preference to include the regression term, Xβ, and the spatial-dependence operator
B0 in its core model as follows:

Y = Xβ + B0Y + ω , (14)

where ω ≡ (ω(s1), . . . , ω(sn))′ represents model error with E(ω) = 0.
As a consequence of (14), E(Y) = (I − B0)

−1Xβ, which results in the confound-
ing of large-scale regression effects β with small-scale spatial-dependence effects
B0. This can be avoided by taking a cue from the time series model (13). That is, to
generalize the SAR model to include regression, we write
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(Y − Xβ) = B0(Y − Xβ) + ω .

Now E(Y) = Xβ and var(Y) = σ 2
ω{(I − B0)(I − B′

0)}−1, and hence β appears only
in E(Y), and B0 appears only in var(Y). There is an equivalent way to write this
model, namely

Y = Xβ + U , and U = B0U + ω , (15)

which does appear in the more recent Spatial-Econometrics literature and is called a
spatial error model (e.g., LeSage and Pace 2009, Sect. 2.3). Our point is that software
based on the model (14) should not be used when fitting spatial statistical models to
spatial data with covariates X, due to the confounding of large-scale and small-scale
effects and the consequent misinterpretation of a fitted model (14).

More generally, confounding between fixed effects and spatial random effects
has become an important topic in the spatial-statistics literature (e.g., Reich et al.
2006; Paciorek 2010; Hodges and Reich 2010; Hughes and Haran 2013; Hanks et al.
2015). There is still some uncertainty as to what extent these models are able to
account for confounding; appropriate mitigation approaches depend on the underly-
ing dependence structure of the random effects, the extent to which covariates are
known, and the spatial support (Hanks et al. 2015). Geographers and spatial econo-
metricians have been aware of spatial confounding for some time in the context of
areal data, and they have provided “Moran’s I” eigenvector approaches that make
the spatial random effects orthogonal to the fixed effects (e.g., Griffith 2000, 2003).
Spatial statisticians have also considered Moran’s I basis functions and extensions
in this context (Hughes and Haran 2013; Bradley et al. 2015). However, it is unclear
how to force random effects to be in the space orthogonal to the fixed effects if
the fixed effects have continuous support as they do in geostatistical models (Hanks
et al. 2015). More recently, Bradley et al. (2020) considered confounding between
the spatial process and the error process and showed that accounting for dependence
between these two processes can improve prediction accuracy.

In Sect. 2.3, we made the point that observations (Z) on a process are different
from the values of the process itself (Y ). This is typically due to measurement error
(“noisiness”), and it can also be due to gaps in the observations (“missingness”). This
can be captured in a spatial statistical model by writing,

Z(si ) = Y (si ) + ε(si ) ; si ∈ D∗ ⊂ {s1, . . . , sn} . (16)

In (16), Z(si ) is an observation at spatial location si in D∗; data at locations not in
D∗ are considered as missing; and ε(·) is an independent measurement-error process
with var(ε(si )) = σ 2

ε > 0.Goulard et al. (2017) consider spatial-econometricmodels
for missing data, but they do not recognize that the measurement-error component
of variation ε(·) is different from the model-error component of variation ω(·).

In the general case of non-zero mean due to regression effects, (15) is the process
model that represents all components ofY ≡ (Y (s1), . . . ,Y (sn))′, even though some
might not be observed, and (16) is the data model for data {Z(si ) : si ∈ D∗} that are
observed. That is, in terms of the HM presented in Sect. 2.3, (16) defines [Z |Y ]
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and (15) defines [Y ], where dependence of these two models on parameters θ ≡
{β, σ 2

ω, σ 2
ε } has been dropped from the notation for ease of exposition. Specifically,

the HM is:

Data model: Z(si )|Y (si ) ∼ Gau(Y (si ), σ 2
ε ), and define Z ≡ (Z(s) : s ∈ D∗)′.

Process model: (Y − Xβ) = B0(Y − Xβ) + ω, where ω ∼ Gau(0, σ 2
ωI).

The data model and the process model together allow calculation of the predic-
tive distribution: Since [Z|Y] is Gaussian and [Y] is Gaussian, so too is the joint
distribution [Y,Z] the marginal distribution [Z], and most importantly the predictive
distribution [Y|Z]. Hence, the key calculations for inference on Y from the “imper-
fect” data Z are the conditional moments,

E(Y (si )|Z) , var(Y (si )|Z) , and cov(Y (si ),Y (s j )|Z) , for i, j = 1, . . . , n ,

and recall that there are locations {s1, . . . , sn}\D∗ at which there are no observations.
These conditional moments are known in closed form from Bayes’ Theorem given
by (2), where the distributions in the numerator of (2) are obtained from (15) and
(16), and likelihood-based estimates of θ are used in place of θ . No time-consuming
iterative algorithms are needed to calculate them; see the Lemma in the Appendix.
The one bottleneck may be fast computation of var(Z)−1 when the data set Z is
very large; see Burden et al. (2015) for a reduced-rank approach to this problem
and a comparison to the Spatial-Econometrics literature where fast computation of
var(Y)−1 is the focus.

The lessons learned from this section are first to de-trend the spatio-temporal
data using covariates and then to use HMs to capture the imperfections of noisy and
missing data. The next section will apply these lessons to the spatio-temporal setting
given in Sect. 3.

5 Modern Spatio-Temporal-Econometric Hierarchical
Models

All the ideas and methodology that are needed have been presented in the preceding
sections. It is simply a matter of tying them together now in a series of steps that
bears a resemblance to pseudocode for algorithmic development.

Recall that the generic spatio-temporal data are Z , the generic underlying process
being measured is Y , which represents the whole process {Yt (s)}, and the generic
parameters are θ . Due to incomplete data (“missingness”), Z will be of smaller
dimension than Y , and the presence of measurement error (“noise”) results in the
conditional distribution,

Zt (s)|Y, σ 2
ε ∼ Gau(Yt (s), σ 2

ε ) ,
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provided an observation occurs at location s and time t in the spatio-temporal domain
of interest {s1, . . . , sn} × {0, 1, . . . , T }.

The building blocks of dynamical models in Spatio-Temporal Econometrics are
given below in a sequence of eight steps:

1. [Z |Y, θ ] = ∏
D∗ [Zt (s)|Y, σ 2

ε ], for D∗ the set of all spatio-temporal data loca-
tions, is Gaussian.

2. [Y |θ ] is a (high-dimensional) Gaussian distribution; see, for example, (10) or its
modification that includes regression:

(Yt − Xtβ) =
p∑

k=0

Bk(Yt−k − Xt−kβ) +
q∑

l=0

Elωt−l ,

for t = p, p + 1, . . . , T .
3. [Z ,Y |θ ] = [Z |Y, θ ][Y |θ ] is Gaussian (since 1. and 2. are Gaussian).
4. L(θ) ≡ [Z |θ ] = ∫ [Z ,Y |θ ] dY ; θ includes σ 2

ε , β, the spatio-temporal-variation
parameters in {Bk} and {El}, and {var(ωt−l)}. Recall that [Z |θ ] is Gaussian.

5. Estimate θ with θ̂ = arg sup
θ

L(θ), the maximum likelihood estimator.

6. [Y |Z , θ̂ ] = [Z |Y, θ̂ ][Y |θ̂]/[Z |θ̂] is a Gaussian distribution called the (empirical)
predictive distribution.

7. E(Y |Z , θ̂ ) and var(Y |Z , θ̂ ) characterize the predictive distribution; both can be
calculated straightforwardly in closed form, using the Lemma in the Appendix.

8. Estimation and prediction: Report and interpret θ̂ and its uncertainties (estima-
tion). Make a choropleth map of E(Y |Z , θ̂ ), which is the HM’s spatio-temporal
predictor of Y (prediction). Make a second choropleth map of the diagonal ele-
ments (diag(var(Y |Z , θ̂ )))1/2, which uses the HM to quantify the uncertainty in
the first map.

These are the basic steps taken to fit the dynamical spatio-temporal models given in
Chap.5 of Wikle et al. (2019): There, Sects. 5.2 and 5.3 are the most relevant to the
development given in this chapter.

6 Concluding Remarks

We would like to expression our best wishes to Christine (Thomas-Agnan) on the
occasion of her 65th birthday. She has been a gracious host and an engaging co-
author during several long-terms visits by the first author to Université Toulouse 1
Capitole.

Our approach to the problem of “scientific understanding in the presence of
uncertainty” takes a probabilistic viewpoint, which allows us to build useful spatio-
temporal statistical models and make scientific inferences for various spatial and
temporal scales. Accounting for the uncertainty enables us to look for possible asso-
ciations within and between variables in the underlying scientific process, with the
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potential for finding mechanisms that extend, modify, or even disprove a scientific
theory. The dynamical spatio-temporal-econometric models described in this chapter
are an important subset of a much larger class of dynamical HMs for the twenty-first
century (Wikle et al. 2019). We have concentrated on HMs where the parameters θ

are estimated from the data, which are called empirical HMs. Bayesian HMs arise
when a prior, [θ ], is assigned to the unknown parameters θ . In many cases, the pre-
dictive moments, E(Y |Z) and var(Y |Z), from the Bayesian HM are not available in
closed form. Then sampling from the predictive distribution, [Y |Z ], is a way to solve
this problem (e.g., using MCMC).

There are many challenges associated with building HMs and then carrying out
valid inferences. A broad perspective is that there is subjectivity involved with the
specification of all model components, specifically here the data model and the
process model. However, it is not always clear what “subjective” means in this
context. For example, it might be “subjective” to use deterministic relationships to
motivate a stochastic model, such as for tropical winds (e.g., Wikle et al. 2001), yet
the science upon which such a model is based comes from Newton’s laws of motion.
Thus, we believe that it is not helpful to try to classify probability distributions that
determine the statistical model, as subjective or objective. It would be better to ask
about the sensitivity of inferences to model choices and whether such choices make
sense scientifically.

Given that a modeler brings so much information to the table when developing
models, the conditional probability framework presented earlier can be used to rec-
ognize that this information, say I , is part of what is involved in the conditioning.
For the HM, we have

[Y |Z , θ, I ] ∝ [Z |Y, θ, I ][Y |θ, I ] .

A major challenge in this paradigm is, to the extent possible, acknowledgement of
the importance of this information, I . It is often the case that a team of researchers
at the table has a collective “I” that is better quantified and more appropriate than
any individual’s “I.”

In the HM approach, there are certainly cases where models have to be simplified
due to practical concerns. Perhaps the computational issues in a given formulation are
limiting, which usually leads to a modification of the model. Such practical concerns
apply to all statistical inferences in complicated modeling scenarios. This tension
between the model you want and the model with which you can compute is healthy,
and in modern statistical computing it has led to algorithms that only approximate
valid inferences. However, user beware! Approximations to approximations can lead
to a serious propagation of errors.

Data hold so much potential, but unless they can be organized into a database
they are an entropic collection of digits or bits. With the ability in a database to
structure, search, filter, query, visualize, and summarize, the data begin to contain
information. Some of this information comes from judicious use of statistics (i.e.,
summaries). Then, in going from information to knowledge, Science (and, with it,
Statistical Science) takes over. Statistical Science makes contributions at all levels



Modeling Dependence in Spatio-Temporal Econometrics 381

of the data-information-knowledge pyramid, but it has often stopped short of the
summit where knowledge is used to determine policy. At the interface between
Science, Statistics, and Policy, there is an enormous need for decision-making in the
presence of uncertainty.

Finally, it is the responsibility of the research team to temper the tendency to
fit ever-more-complicated models, and to use model-selection criteria (e.g., AIC,
BIC, DIC, etc.) that concentrate on the twin pillars of predictability and parsimony
(e.g., Spiegelhalter et al. 2002; Wikle et al. 2019). But these criteria do not address
the third pillar, namely scientific interpretability (i.e., knowledge). Our approach to
spatio-temporal-econometric modeling is to use the hierarchical-modeling paradigm
and, where possible, choose statistical models based on this third pillar, while not
ignoring the other two.

Acknowledgements Material from Chaps. 1, 2, and 6 of Cressie and Wikle (2011) is used in
Sect. 2 almost entirely, Sect. 3 almost entirely, and the last half of Sect. 6, with permission from the
publisher: Copyright ©2011 by JohnWiley & Sons, Inc. All rights reserved. Cressie’s research was
supported by Australian Research Council Discovery Project DP190100180. Wikle’s research was
supported by U.S. National Science Foundation grants SES-1853096 and DMS-1811745.

Appendix

Throughout the chapter, we have referred to the predictive distribution [Y|Z] that
arises from a joint Gaussian distribution, [Y,Z]. Specifically, we have claimed that
[Y|Z] is Gaussian and the first two moments can be obtained analytically without
resort to iteration, simulation, or approximation. This claim is due to the following
lemma from multivariate analysis (e.g., Rencher and Christensen 2012, p. 97).

Lemma Consider the Gaussian random vector, U ≡ (U′
1,U

′
2)

′, and its first two
moments:

E(U) ≡ μ ≡ (μ′
1,μ

′
2)

′ , and var(U) ≡ � ≡
[
�11 �12

�21 �22

]

.

Then the conditional distribution, [U1|U2] is also Gaussian with mean vector,

E(U1|U2) = μ1 + �12�
−1
22 (U2 − μ2)

and variance-covariance matrix,

var(U1|U2) = �11 − �12�
−1
22 �21 .
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Guidelines on Areal Interpolation
Methods

Van Huyen Do, Thibault Laurent, and Anne Vanhems

Abstract The objective of this article is to delve deeper into the understanding and
practical implementation of classical areal interpolation methods using R software.
Based on a survey paper from Do et al. (Spat Stat 14:412–438, 2015), we focus
on four classical methods used in the area-to-area interpolation problem: point-in-
polygon, areal weighting interpolation, dasymetric method with auxiliary variable
and dasymetric method with control zones. Using the departmental election database
for Toulouse in 2015, we find that the point-in-polygon method can be applied if the
sources are much smaller than the targets; the areal interpolation method provides
good results if the variable of interest is related to the area, but otherwise, a good
alternative is to use the dasymetric method with another auxiliary variable; and
finally, the dasymetric method with control zones allows us to benefit from both
areal interpolation and dasymetric method and, from that perspective, seems to be
the best method.
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1 Introduction

1.1 Motivation

When working with spatial data, one often faces a situation where several datasets
are independently collected by various organizations with different objectives.

To simultaneously use those spatially incompatible datasets, one needs to merge
them on one spatial support. This type of problem is called the areal interpolation
problem. Areal interpolation methods are variously applicable in socioeconomics
(Goodchild et al. 1993), satellite imagery (Fisher and Langford 1996), GIS (Flow-
erdew et al. 1991; Flowerdew and Green 1993), political science (Grasland et al.
2000), population dynamics (Gregory 2002), epidemiology (Kelsall and Wakefield
2002) and many other fields. Readers are referred to Van Huyen et al. (2015) for an
overview of areal interpolation methods and Van Huyen et al. (2015) for a theoretical
comparison of the accuracy of these methods.

In this chapter, we consider four classic methods widely used in the areal interpo-
lation problem: point-in-polygon, areal weighting interpolation, dasymetric method
with auxiliary variable and dasymetric method with control zones, and we provide
suggestions and advice concerning practical questions such as spatial scales, types
of target variable and border incompatibility. The implementation is performed with
R software (R Core Team 2020). Most of the functions used are included in the sf
package (Pebesma 2018). All R codes, graphs and tables are gathered in a supple-
mentarymaterial resource which is available online (see http://www.thibault.laurent.
free.fr/code/areal).

1.2 Context

The database we consider is the 2015 departmental elections in France, and our
objective is to use socio-demographic covariates to explain the extreme right party
score after the first round of the election.

The election takes place based upon geographic division.We consider 2054 zones,
and voters vote at polling places. The election results are released by the Ministry
of Interior in open access at the polling scales. However, the socio-demographic
covariates we use are provided by the French statistical institute INSEE at various
scales: cells with different sizes (since 2019), iris (a subdivision of communes),
communes, etc. These scales are different from the polling places.

Therefore, INSEE data needs to be transferred into the form of polling places. To
do this, one needs to use statistical methods to estimate the variables of interest at the
polling places given information for the cells (or iris) or given auxiliary information
for some additional zones, called control zones. In addition to the socio-demographic
covariates provided by INSEE,we also use the network structure of roads as auxiliary
information to improve our estimation. This auxiliary information is available at very

http://www.thibault.laurent.free.fr/code/areal
http://www.thibault.laurent.free.fr/code/areal
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(a) (b) (c) (d) (e)

Fig. 1 From the left to the right: the polling places (a), the cells of small size (b), the cells of big
size (c), the iris (d) and the network structure of the roads (e)

fine scale, which is very beneficial in our case. Figure1 provides an overview of
different spatial scales (from the left to the right): the polling places, the small cells,
the large cells, the iris and the network structure of the roads (auxiliary information).

NguyenandLaurent (2019) explain the2015departmental election’s extreme right
votes through some socio-economic covariates with Compositional Data Regression
Analysis. They use data from different open sources like the French Statistical Insti-
tute (INSEE) or Open Street Map (OSM) on various spatial scales. To merge those
spatially incompatible data on the polling scale, the authors primarily utilize the areal
weighting interpolation method.

In this article, however, we aim to present a broader set of area-to-area interpola-
tion methods and apply them to the same dataset. Our article will be presented in the
following order: Sect. 2 sets the classical notations of area-to-area change of the sup-
port problem; Sect. 3 presents the data; each of the four methods is then presented in
Sects. 4, 5, 6 and 7 with a focus on practical issues. Finally, in Sect. 8, we present the
results of a regression analysis in order to explain extreme right votes with respect to
some socio-demographic characteristics (all variables being interpolated at the same
geographical scale).

2 Notations

In this section, we briefly recall some classical definitions and notations used in the
area-to-area interpolation literature.

The variable of interest that needs to be interpolated is called the target variable
Y . In our setting, we consider only quantitative target variables. The value of the
target variable Y for a given subzone A is denoted by YA. The objective is then to
transfer the data available for a set of source zones to an independent set of target
zones. In what follows, we denote by Ss, s = 1, . . . , S the set of source zones and
Tt , t = 1, . . . , T the set of target zones. To simplify the notations, Ys will denote the
value of Y for the source Ss and Yt denotes the value of Y for the target Tt .

The source zones and target zones are sometimes nested (see for instance, Do
et al. 2014), but in general they are not and we will encounter boundary issues. We
will offer some practical recommendations to address the issues through our case
study.
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We denote by As,t the intersection zone between Ss and Tt , and Ys,t denotes the
value of Y on As,t . We also denote by |A| the area of a subregion A.

Let us now recall the difference between extensive and intensive variables. Con-
sider a region � and �k, k = 1, . . . , p, a partition of �. An extensive variable Y
is such that its value for a region � is the sum of its values for each subzone �k :
Y� = ∑

k Y�k . Any count variable is an extensive variable, such as population count
or number of households. A variable is called intensive if Y� = ∑

k wkY�k with a set
of weightswk that are not all equal to 1. Proportions and rates are intensive variables.
Note that it is possible to associate an intensive variable to a given extensive variable
and the reverse (see, Do et al. 2015, for a detailed analysis of the transformation).

3 Data

Asmentioned above,we study the extreme right vote of the 2015French departmental
election in Toulouse, which is available for polling places.

However, some covariates are not available at the polling scale. In rural cities
where population density is large enough, a polling place might coincide with a
commune, and the covariates provided by INSEE are available at the polling scale.
However, in urban cities, polling places are often larger in order to contain enough
voters. These polling place boundaries are defined by street layout. This geographical
scale is never used by any other public administration. In this case, we need to
interpolate data from INSEE scale to polling scale.

3.1 Target Zones

Our targets are polling places of the 2015 French departmental elections. Those
boundaries are obtained frommaps from theCartelec project (Beauguitte et al. 2012).
We only focus on Toulouse, but our codes could be used for any other regions.

There are T = 256 targets (polling places), and they vary greatly in size (see
Table1 in the supplementary material). Targets in the centre with denser popula-
tion are smaller than those in the suburbs (see Fig. 1a). The smallest target area is
23 846m2, whereas the largest is 8 164 842m2. The latter is included in a low-density
population industrial zone. We will see that one method may be more appropriate
than another depending on the target area.

We then associate the election results to targets (the codes and data are available
in our supplementary material). Two variables are available with respect to targets
(polling places): percentage of extreme right vote (dependent variable in regression
model at the end of the article) and percentage of turnout (covariate in our regression
model). Summary statistics (Table2), maps and scatter are in the supplementary
material.
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In the following subsections, we present the different geographical scales used as
source zones.

3.2 First Source Scale: The Cells

The cell scale was introduced by INSEE in 2016. This technique consists in par-
titioning the territory into tiles to disseminate statistical information at a weakly
aggregated scale. The INSEE data are obtained thanks to the income tax files (see
the supplementary material to obtain the data).

There are two different cell scales:

1. The finest scale is the cell of dimension 200m × 200m (Fig. 1b). There are S =
2 027 small cells. All cells are approximately equal to 40 000m2 (see Table1
in the supplementary material). Noise is added to data because of confidential
issues.

2. The second scale is more aggregated (Fig. 1c) so that those cells have enough
inhabitants to solve the confidential issues. There are S = 591 cells of 3 differ-
ent sizes (473 of 200m × 200m, 109 of 1000m × 1000m and 9 of 2000m ×
2000m).

Note that the two datasets are not nested. Indeed, the total area covered by the
small cells is 81 132 570m2, approximately half of that covered by the large cells:
164 026 135m2. The total number of inhabitants in the small cells is 404 497,whereas
it is 457 031 for the large cells.

•? Which scale of sources should we choose?

Theoretically, the finer the sources are, the better areal interpolation is. However,
data for small cells can be noisy. Moreover, finding data at a very detailed scale is
sometimes difficult. In our case, we will compare the usage of both kinds of sources
(small cells and large cells) through four considered methods.

•? What if sources and targets are not nested?

Sources and targets should cover the same region, i.e. the total area defined by the
sources should coincidewith that defined by the targets. In our case, the zones defined
by the targets (polling places) are included in the city of Toulouse (voters have to
register in a commune), whereas the INSEE data at cell scales are independent of the
administrative boundary. A cell can cover one or several communes (cities), i.e. the
sources and the targets are not nested. This situation requires some modifications to
achieve a better interpolation.
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Variables of interest (19 target variables) provided by INSEE are presented in
Table3 in the supplementary material. Note that all of those variables are extensive.
Nguyen and Laurent (2019) also study the extreme right vote, but primarily use
intensive variables (such as the unemployment rate and the proportion of people
who own assets). Most of those intensive variables can be considered as a ratio of
two extensive variables. In this work, we will first interpolate the extensive variables
into targets (polling places), then calculate the intensive variables based on those
extensive estimates.

However, many intensive variables are sometimes introduced without any infor-
mation on their underlying extensive variables. To compare two scenarios, we con-
sider two intensive variables (the proportion of inhabitants under 18 years old and the
population density) and work directly with them without intermediate calculation.
We are then able to compare both scenarios: one using directly intensive variables,
and the other calculating the intensive variables through their underlying extensive
variables. Summary statistics on these two intensive variables are presented in Table4
in the supplementary material.

3.3 Second Source Scale: The Iris

This dataset contains only a few variables, and we would like to use additional
covariates to better explain the extreme right vote: for example, the unemployment
rate, or the proportion of foreign or immigrated people.

The finest scale that we can find in Open Access is the iris scale (the source of
the data can be found in the supplementary material), which is a subdivision of a
commune. The variables of interest are presented in Table5 in the supplementary
material. As for the previous dataset, these variables are also all extensive.

In this case, the number of sources is S = 153. Those sources are in general
larger than the targets. This case is called the disaggregation problem. The variables
of interest should be disaggregated first on the intersection zones and finally aggre-
gated on the targets. In the case where sources are smaller than targets, the areal
interpolation problem is called the aggregation problem.

3.4 Variables to Estimate

For modelling the extreme right vote, in line with the work of Nguyen and Laurent
(2019) and with the INSEE dataset, we use the covariates presented in Table6 in
the supplementary material. All of these intensive covariates are ratios of extensive
variables. Our approach consists of two steps: first interpolate the corresponding
extensive variables and then calculate the (intensive) variables of interest.



Guidelines on Areal Interpolation Methods 391

4 Point-in-Polygon Method

In the Point-In-Polygon (P I P) method, the sources are points, such as postal
addresses. If one source is a polygon, it is represented by a point. One could choose,
for example, the centroid of the polygon. If the source is a cell, as is the case in
our application, we could replace the centroid by one of the vertices of the cell.
All sources points located in a target will be aggregated to the target (a graphical
illustration is presented in the supplementary material).

This method is not costly from a computational point of view. Indeed, computing
the intersection between a point and a polygon is much less demanding than building
new geometries (the intersection zones) between two polygons.

4.1 Extensive Variables

In the case of extensive variables, the aggregation simply consists in summing up
the values of all points located in the same target.

4.1.1 Border Effects

It may be the case that a point is not located in any target due to border effects (see the
supplementary material for an illustration), especially when targets are not nested in
sources. In our large cell case, this situation occurs frequently. There are two options:

1. exclude: The user decides that these points should not be included in any target.
In that case, the sum of the extensive variables for the targets should be lower
than the sum for the sources.

2. include: The user decides that all points should be associated with some target.
It is possible to use the nearest neighbour algorithm to associate a point with its
closest target. In this second case, we use the following two steps:

a. Identify the points which are not located in any target.
b. Use an appropriate R function to detect the closest neighbour and add the

values to the corresponding targets.

In the supplementary material, we calculate the total number of inhabitants (vari-
able Ind) at source scale and at target scale using the two methods proposed above.
When sources are small cells, the total number of individuals for the sources is
404 497. In the include case, all inhabitants from the sources have been affected
to the targets. In the exclude case, the estimated number of inhabitants for targets
is 403 729. The difference between the two methods is not significant. The results
are different in the large cell setting. Those numbers are 457 031 and 409 717,
respectively. When a large cell is excluded, the magnitude is more important.
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•> Recommendation

The include method allows us to maintain the total value observed for the sources.
It could be desirable when sources and targets cover the same population of interest.
In our case, the sources are independent of the communes. For example, a source
shared between Toulouse and another city contains the information of people in this
area, no matter the city in which they live. Hence, we choose the exclude method to
estimate the covariates used in our regression model.

4.1.2 Comparison Between Small and Big Cells Sources

For PIP, the smaller the sources, the better the estimation. Indeed, if a source is much
smaller than a target, the probability that a source is completely included in a target
is high. The variable of interest’s value will be fully assigned to the targets.

In our application, the estimateswith the small cells do seem to be better than those
with the large cells: 28% of the small cells are fully included in the targets versus only
6% for the large cells. The scatter plot in Fig. 2 shows that the difference between
using small and large cells can be huge. For example, there are three targets with
estimated number of inhabitants larger than 7 500 when using large cells, whereas
those values are smaller than 4 000 when using the small cells.

Moreover, the larger the sources, the larger the number of non-estimated targets.
There are 57 unestimated targets in the case of large cells (grey in Fig. 2) versus only
2 for the small cells. This is caused by the fact that when a source overlaps several
targets, its value is assigned to only one target, and some targets are left without any
value assigned.
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•> Important

Unfortunately, we are in an unsupervised situation, and we are not able to compare
our estimations with the true values.

4.2 Intensive Variables

If an intensive variable is defined by two known extensive variables, we strongly
recommend following two steps: estimating the extensive variables first, then com-
puting the intensive variables afterward. If those extensive variables are unknown,
one possible solution is averaging all values of points located in the target. This solu-
tion is based on the assumption that all points have the same weight, which is rarely
the case. For example, we consider a target containing a 1 000-inhabitant point with
10% of inhabitants under 18 and a 10-inhabitant point with 50% of inhabitants under
18: the estimate of the under 18 proportion with the same weights is 30% instead of
the real value 10.4%.

Figure3 shows a comparison of the under 18 proportion’s estimation in two sce-
narios: known and unknown underlying extensive variables. Even though those esti-
mates are highly correlated in both scenarios, the small cell case exhibits some more
substantial differences between two estimates. Indeed, there are often more points
located in a target in the case of small cells, which makes the weight issue more
serious. If only one source point is located in a target, both methods are equivalent.

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4

extensive variables are known

ex
te

ns
iv

e 
va

ria
bl

es
 a

re
 u

nk
no

w
n

Estimates of people < 18 (sources = small cells)

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4

extensive variables are known

ex
te

ns
iv

e 
va

ria
bl

es
 a

re
 u

nk
no

w
n

Estimates of people < 18 (sources = Big cells)

Fig. 3 Comparison of the P I P estimates depending on whether the intensive variable is defined
as the ratio of two extensive variables or not; on the left, the sources are small cells and on the right,
the sources are big cells
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Household: 486

Fig. 4 On the left, the source (in red) allocates nothing to the target (in green) although it is mainly
included inside it. On the right, the target (in green) does not receive anything from the sources as
no centroid is located into it

4.3 Limitation of the Point-in Polygon Method

PIP is computationally inexpensive but has some limitations in our area-to-area case,
i.e. the sources are polygons and not points. An example is illustrated in Fig. 4. The
figure on the left shows a source (in red) which mostly overlaps with the target (in
green), but its centroid is not located in the target: its 486 households are assigned
to another target. In the case of comparable size between targets and sources, other
methods, for example, areal weighting or dasymetric methods (see Sects. 5 and 6),
should be more appropriate. In the figure on the right, no red point is located in the
target (in green). Indeed, with those large cells, sources are sometimes larger than
the target. This leads to an unestimated target here. In our application, the number
of unestimated targets is 57 (resp. 2) when using large (resp. small) cells as sources.

•> Recommendation

The P I P method seems to be efficient if and only if sources are much smaller than
targets, like in the small cell case. Besides, the border issue should be taken into
account when sources and targets do not coincide. At last, the method can be applied
to both extensive and intensive variables. If the intensive variables are defined using
observable extensive ones, it is better to estimate the extensive variables first and
then calculate the intensive variables.

5 Areal Weighting Interpolation Method

When sources are polygons, PIP, where a source’s value is presented by only one
representative point, often exhibits many disadvantages. We should look for more
suitable methods for our case of area-to-area interpolation. If we can reasonably



Guidelines on Areal Interpolation Methods 395

assume that our variable of interest is homogeneous for sources, then we can use
the areal weighting interpolation (D AW ) method (Goodchild and Lam 1980). This
method can be applied to both extensive and intensive variables.

5.1 Extensive Variable

For an extensive variable, the D AW method’s homogeneity assumption is that |YA|
is proportional to the area |A|. The interpolation formula is defined by

Ŷt =
∑

s

Ŷs,t =
∑

s

|As,t |
|Ss | Ys (1)

From a computational point of view, one needs to compute the area of the inter-
section zones {Ast } between the sources {Ss} and the targets {Tt }.

Considering again the case in which one source overlaps at least two targets,
D AW will disaggregate the variable’s value between the two targets proportionally
to the area of the intersected zones. For example, if the source has 486 households,
75% of the source overlaps with Target 1 and the remaining part 25% overlaps with
Target 2, and then 486 × 0.75 householdswill be assigned to Target 1 and 486 × 0.25
to Target 2.

5.1.1 Border Effect

As in PIP, the issue of border effect still occurs. There are two scenarios: the first
case is when a source covers a not-target zone, and the second case is when a target
is not completely covered by sources.

For the first case, we consider an example: if 30%of a source intersectswith Target
1, 40% with Target 2, and 30% with an empty zone, how should we disaggregate the
variable value x = 100 inhabitants? There are two possibilities:

• exclude: 30 inhabitants are allocated to Target 1, 40 inhabitants are allocated to
Target 2 and 30 inhabitants are not allocated. In that case, the sum of values x for
the targets will be lower than for the sources.

• include: 30
30+40 × 100 = 42.86 inhabitants are allocated to Target 1 and 40

30+40 ×
100 = 57.14 inhabitants are allocated to Target 2.

In our application, we still use the exclude option because this is more coherent
with our data. Indeed, our targets correspond only to the city of Toulouse, whereas
the sources can overlap with several cities.
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For the second case, we again consider an example: assume that a target is partially
distant from all sources, i.e.

∑
s |As,t | < |Tt |. The target’s estimate is therefore likely

smaller than its true value. In this case, we also have two options:

• First option: If one believes that the off-zone (i.e. the part of the target area
uncovered by sources) is unpopulated, the estimate might remain unchanged.

• Second option: If one believes that the off-zone is populated, the estimate should
be modified. One possible modification is

Ŷt = |Tt |
∑

s |As,t |
∑

s

|As,t |
|Ss | Ys (2)

In our setting, if sources are small cells, then more targets are likely not to be fully
covered by sources, and the second case might occur more frequently. The second
option is then a possible solution. If sources are large cells, we might likely meet the
first case, and as we discussed above, we can choose the ‘exclude’ method. However,
because the large cells contain only 10% more population than the small cells, it is
possible that the off-zones are sparsely inhabited.

•> Recommendation

The performances of D AW using large cells and small cells are quite different (see the
supplementarymaterial formore details). Because D AW is based on a homogeneous
assumption, the chance that this assumption is satisfied is higher for small zones than
large zones. We therefore recommend the use of source zones with the most detailed
geographical scale.

5.1.2 Comparison Between PIP and DAW

To compare P I P and D AW , we choose the variable number of households. Their
estimates are presented in Fig. 5.

When using large cells as sources, the twomethods perform very differently. Since
PIP represents a source’s scattered households into only one point, then locates the
point to a single target, it makes estimation biased. In this case, D AW effectively
corrects P I P’s weakness.

With small cells, the difference fades. Those small cells are likely to be nested
into targets, so all households finally belong to only one target. Therefore, P I P and
D AW perform similarly. In other words, the smaller sources are, the more similarly
those two methods perform.
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Fig. 5 Comparison between D AW and P I P estimates with the extensive variable number of
households. On the left, the sources are big cells, on the right, the sources are small cells

5.2 Intensive Variable

5.2.1 Known Versus Unknown Underlying Extensive Variables

As we discussed above, if the underlying extensive variables defining an intensive
variable are known, we recommend a two-step process: D AW is applied first on the
extensive variables, then the intensive variable is computed based on those extensive
estimates for target zones.

If those underlying extensive variables are unknown, we can still use D AW .
D AW ’s homogeneous assumption in this case is that Y is uniform for sources. In
other words, we assume that Ŷs,t = Ys . Then,

Ŷt =
∑ |As,t |

|Tt | Ŷs,t . (3)

5.2.2 Comparison of Both Cases

We compare hereafter the estimates in two scenarios: ‘extensive variables are known’
and ‘extensive variables are unknown’. The comparison is performed for two inten-
sive variables, where one is directly related to area and the other is not. We choose
population density (population/area) and proportion of inhabitants less than 18 years
old, respectively. Figure6a, b presents the results for the two variables under consid-
eration.

We notice that the population density is clearly underestimated when applying
the method without using underlying extensive variables. In fact, the estimate in this
case is
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Fig. 6 From the left to the right: comparison of the D AW estimates for the intensive variables pop-
ulation density (a) and percentage of people with less than 18 y.o. (b). Example of underestimation
(c): the non-intersected area between the sources in blue and the target in red is large

Ŷt = 1

|Tt |
∑

s

|As,t |
|Ss | Xs, (4)

where Xs is the underlying extensive number of population variable. If we use two-
step estimation, the result will be

Ŷt = 1
∑

s |As,t |
∑

s

|As,t |
|Ss | Xs . (5)

We encounter here again the second case of the border effectmentioned in Sect. 5.1.1.
If a target is completely covered by sources, the two estimates are the same (points
in the diagonal line); otherwise, points are under the line, which indicates underes-
timation.
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The effect is a bit different for the variable percentage of inhabitants under 18.
On one hand, there are points above the diagonal line, but some are far under it. We
take a look into one of the most underestimated points, where the estimate is 34.9%
in the ‘extensive variables are known’ scenario and 6.7% in the ‘extensive variables
are unknown’ one. We represent in red this target in Fig. 6c.

It appears that the non-intersected zone area between sources and the target is
large. In that case, Ŷt will be underestimated due to the total weights

∑
s

|As,t |
|Tt | < 1.

We therefore recommend replacing the term |Tt | by ∑
s |As,t |, i.e.

Ŷt =
∑ |As,t |

∑
s |As,t | Ŷs,t (6)

for intensive estimation.
To better understand why some points are above the diagonal line, we consider a

simplified case: assume that one target T is built by two equal sources S1, S2, i.e. T =
S1 ∪ S2. X, Z denote the number of inhabitants under 18 andpopulation, respectively;
X1, X2 are the numbers of inhabitants under 18 for zones S1, S2. We use similar
notation for population Z. The intensive variable in this case is Y = X

Z . It is easy to
calculate that the difference of estimates by the two scenarios is 1

2
(Z1−Z2)

Z1+Z2
( X1

Z1
− X2

Z2
).

We can see that, unlike the population density variable, the proportion of inhabitants
under 18 can be underestimated or overestimated depending on the sign of (Z1 −
Z2)(

X1
Z1

− X2
Z2

).

•> Recommendation

D AW seems to correct many weaknesses of P I P . When the sizes of the sources are
much smaller than the sizes of targets, P I P is still valid. However, when the sizes
of sources and targets are comparable, D AW is much more precise. Note that this
conclusion corresponds to the setting where the sources and targets are not nested.
If the variable is extensive, we have decided not to take into account the part of the
source which does not intersect with the target. This choice could be different if the
user requires the sum of observed values for the sources to be equal to the sum of
the estimates obtained for the targets. If one part of a target is not covered by any
source, we recommend modifying the initial estimate by multiplying a correction
ratio |Tt |∑

s |As,t | . When the variable is intensive, the user should rather first estimate the
extensive variables defining the intensive variable. If this is not possible, we again
advise users to use the correction ratio above. Obviously, the main drawback of the
D AW method is that the target variable values should be related to the area. The
purpose of the method presented in the next section is to relax this requirement and
instead use auxiliary information.
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6 Dasymetric Method with Auxiliary Variable X

The class of dasymetric methods (D AX ) comprises generalizations of areal weight-
ing methods. In order to improve upon areal weighting, the idea is to remove the
assumption of the count density being uniform throughout the source zones because
this assumption is almost never accurate.

It is instead assumed that the target variable is proportional to some auxiliary
information for any subregion. In order to apply this method, the user needs to
have information regarding some auxiliary variable X at the source scale and at the
intersection scale.

However, it might be difficult to find such an auxiliary variable. For example,
in our application, it seems very difficult to obtain socio-economic variables at the
intersection scale. The national institute INSEE has individual data concerning hous-
ing (see the supplementary material) that could be used to obtain information at the
intersection scale, but it is not open access.

One potential source of data which is easily accessible at the intersection scale
is road data or Open Street Map data. These data are not areal: the information is
given for points or lines, but it is easily interpolated into any zone scale. If the data
are points, the user can obtain the information at the intersection scale by using the
P I P method. For the road data, we simply compute the length of roads belonging
to the intersection zones.

Note that by using this source of data, we make the assumption that the INSEE
variables are correlated with the density of the roads. In other words, the higher the
concentration of roads is, the greater population the zone has.

6.1 Extensive Variables

Because of the correlation assumption between our target variable and the auxiliary
information, the estimator is

Ŷt =
∑

s

Ŷs,t =
∑

s

Xs,t

Xs
Ys (7)

From a programming point of view, the D AX method is very close to the D AW
method. The areas in D AW formulae are replaced by the auxiliary variable infor-
mation. The computational time required to obtain the intersections between the
roads and the intersected zones Ast is demanding, but it can be performed within a
reasonable time (few seconds).

Here, we do not take into account the portion of the sources which does not
intersect with any target (in other words, we consider the case exclude presented
above).
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Fig. 7 Comparison of the D AX estimates for the extensive variable number of household in the
case of small cells sources (a) and big cells sources (b). Example of target underestimated with the
D AX method compared to D AW (c)

We compare the results obtained with D AX and D AW methods for number of
households. In the case where small cells have been taken as sources (Fig. 7a), D AW
and D AX seem to provide similar results.

In the case where large cells are taken as sources (Fig. 7b), it appears that the
variability between the two methods is larger. We attempt to better understand the
difference between the twomethods.Weconsider the targetwith the largest difference
between D AX and D AW estimates (Fig. 7c). The value estimated for this target
(represented in red) is 1 460 with D AX and 2 376 with D AW . We observe that the
density of the roads is very low in the target, whereas the area covered by the target is
significant. This explains why the value is underestimated with D AX as compared
to the D AW method.
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6.2 Intensive Variables

If the extensive variables which define the intensive variables are known, the D AX
method first interpolates those extensive variables into targets, and then intensive
variables are computed from the extensive estimates.

If those extensive variables are otherwise unknown, itworks similarly as the D AW
method, except that we replace the area by the auxiliary information. The formula is

Ŷt =
∑ Xs,t

∑
s Xst

Ys . (8)

Note that we choose
∑

s Xst instead of Xt for a similar reason as in the D AW
section. In the supplementary material, we compare the estimates using both cases:
‘extensive variables are known’ and ‘extensive variables are unknown’. When the
sources are the small cells, we note that the two cases are quite similar. When the
sources are the large cells, both cases also fit quite well.

•> Recommendation

In our application, the D AX and D AW methods seem to produce very similar results.
The choice of one method depends on the information available. If the variables are
related to the area, the D AW method should be precise enough. If this is not the case,
and if the user has additional auxiliary information related to the target variables,
then the D AX method should be more efficient. Moreover, in the case of extensive
variables, the smaller the sources are, the more similarly D AW and D AX exhibit.
One reason for this is that the auxiliary information is more homogeneous for small
zones than large zones, which makes replacing area by the auxiliary information less
significant.

7 Dasymetric Method with Control Zones

7.1 Presentation of the Method

D AX needs the auxiliary information available on intersection scale, which is some-
times challenging. The dasymetric method with control zones (D AC hereafter) is
used to relieve this constraint. It allows us to work on any auxiliary information for
some new set of zones called control zones.

In this section, we consider the iris as the sources, whereas the targets are still
the polling places and the control zones are the cell data at the smallest scale. The
auxiliary information in this case is the ‘number of inhabitants’ which is available
for small cells. We use the two-step D AC algorithm which consists of
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1. Step 1 aims to prepare for D AX in step 2. To use D AX , one needs auxiliary
information available on the intersection scale. One solution is using D AW . The
variable of interest in the step is the ‘number of inhabitants’. Practically, we first
define the geometries of the intersections between iris and polling places, then
apply D AW by considering the small cells as sources and the intersections as
targets.

2. Thanks to the first step, we now have the auxiliary information ‘the number of
inhabitants’ at intersection scale. An aggregation step calculates the number of
inhabitants on iris scale (sources).Wehence can apply D AX for our target variable
from sources (iris) to targets (the polling places).

7.2 Comparison Between DAC and DAX

In Fig. 8a, we present results of D AC and D AX for the variable ‘number of unem-
ployed people’. We observe some targets with very different estimates. We examine
what is happening for one of those targets. This target is represented in red in Fig. 8b.
The estimated value with D AX is 674, and 197 with D AC . In D AX , the main con-
tribution to this value comes from the source represented in purple, which shares
82% of the roads (in grey) with the target.

What happens with the D AC 2-step method? We remark in Fig. 8c that the inter-
sected zone between the target in red and the source in purple has a sparse population,
since it contains few control zones (in light blue). In this case, the sourcewill attribute
a large portion of its value to the non-intersected zone with the target, which is a
denser zone.

•> Recommendation

When some control zones can be used, allowing us to obtain auxiliary information
(supposed to be related to the target variables) at a more detailed geographical scale
than the sources, the 2-step DAC likely improves the estimation with regard to the
D AX or D AW methods. This is why we have selected this method to estimate the
covariates used in our regression model.

8 Regression Modelling

8.1 Covariates and Exploratory Analysis

To obtain the covariates presented in Table6 in the supplementary material, we first
estimate the extensive variables and then compute the ratios to obtain the intensive
estimates.
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Fig. 8 Comparisons between the D AX and D AC 2 steps methods for the variable ‘number of
unemployed people’ when the sources are the small cells

We use the D AX on the variables provided by INSEE at the cell scale and the
D AC 2-step method on the variables provided by INSEE at the iris scale.

We have represented scatter plots and the correlation plot in the supplementary
material. The percentage of workers seems to be highly positively correlated with the
extreme right score. On the contrary, the percentage of highly qualified people and
population density seem to be highly negatively correlated with the extreme right
score.

Two additional remarks can be made: first, the covariates are strongly correlated,
which might induce a collinearity issue. Second, the links between the extreme right
vote and the covariatesmight not be linear (for example, whenwe examine the scatter
plot of the extreme right voting with respect to the unemployment rate). Linear
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modelling is based on the hypothesis that the covariates are not strongly linearly
correlated with each other, which is not the case in our dataset. For that reason,
we propose two regression modelling approaches: Linear modelling and Regression
tree.

8.2 Linear Modelling

We apply several methods (P I P , D AW , D AX , D AC) with different sources (small
cells, large cells, iris). The best model has an adjusted R2 value of 56.58%, and the
Mean Square Error (MSE) equals 11.475.We apply D AX with small cells as sources
to estimate the covariates which are available on small cells. For the ones which are
only available for iris zones, they are estimated by 2-step D AC with iris as sources
and small cells as controls. The results are presented in Table6 in the supplementary
material.

The comparison of the adjusted R2 andMSE allows us to confirm the main results
obtained in our study:

1. The smaller the sources, the better
2. The D AX method performs better than the D AW method, which also performs

better than the P I P method.

We notice one unexpected result: that the unemployment rate regression coeffi-
cient is negative. This is probably due to the collinearity among covariates, and also
the non-linear link between the dependent variable and some covariates.

8.3 Regression Tree

Because of the collinearity issue between the covariates and possible non-linear link
between the dependent variable and the covariates, it could be interesting to also use
a regression tree (Breiman et al. 1984) in order to explain the extreme right vote. The
regression tree is presented in the supplementary material. The MSE equals 8.456,
which confirms that a regression tree is probably preferable to the linear modelling.

In each node, the first value is the average mean of the extreme right voting in
that node, and the second and third values correspond to the number and percentage
of observations included in the node, respectively.

It is shown that the first variable which splits the root node into two groups is
proportional to workers. The left side (71% of polling places) corresponds to polling
places with less than 28% workers. The average mean of extreme right votes for this
group is 14%, while the right side (polling places with more than 28% workers) vote
averages 21% for the extreme right party. The splitting continues until nodes contain
a minimum number of polling places.
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Let us now focus on the leaves of the tree, beginning with the last leaf at the
right side. It corresponds to the group of polling places with the largest predicted
value (equal here to 26%). This node contains 9 polling places represented in the
last Figure on the left in the supplementary material. We note that they are located
in the suburbs of the city in every direction. If we follow the tree from the top to this
terminal node, we can see that it corresponds to observations with a proportion of
workers larger than 28%, with a proportion of immigrants lower than 35% and with
a proportion of highly qualified jobs lower than 14%.

On the other hand, let us now focus on the first leaf on the left side. It corresponds to
the polling places with the lowest predicted value (equal here to 11%). The 52 polling
places are represented in red in the last Figure on the right in the supplementary
material. We note that they are mainly located in the city centre. If we follow the
tree from the top to the bottom, we can see that it corresponds to polling places with
a proportion of workers lower than 20% (at the first node, it is 28%, then it appears
again at 20% at the third node), population density larger than 2 887 inhabitants per
square kilometre, and a large proportion of people aged between 18 and 40 years
old.
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Predictions in Spatial Econometric
Models: Application to Unemployment
Data

Thibault Laurent and Paula Margaretic

Abstract In the context of localized unemployment rates in France, we study the
issue of prediction of spatial econometric models for areal data, by applying the
prediction formulas gathered and derived in Goulard et al. (Spatial Economic Anal-
ysis, 12(2–3), 304–325, 2017), (2017). To model regional unemployment taking into
account local interactions, we estimate several spatial econometric model specifica-
tions, namely, the spatial autoregressive SAR and SDM models, as well as the SLX
model. We consider both types of predictions, namely, in-sample and out-of-sample
prediction. We show that the prediction can be a complementary method to testing
procedures for model comparison.

1 Introduction

Prediction is at the heart of spatial econometrics literature. Not only as a prediction
problem by itself, but also in the context of new or missing information.

In conventional econometrics, a sample of n individuals is observed. If values
are missing on some individuals, they are generally excluded from the analysis.1

1If there are no selection issues due to non-response, this reduces the size of the sample but does
not prevent the econometric methods from being implemented.
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In contrast, in spatial econometrics, if the observation of the spatial distribution is
incomplete (there are missing values), it might be impossible to estimate the model.

In this chapter, we apply the prediction formulas gathered and derived in Goulard
et al. (2017) to model localized unemployment rates, by French employment zones,
taking into account local interactions.2 Regional economists have long been inter-
ested in understanding local unemployment differentials, and in predicting the likely
impact of local shocks due, for example, to regional policy measures (Molho 1995).

A specific feature of regional labor markets is their correlation over space
(Lottmann 2012, summarizes the evidence documenting this correlation). The pres-
ence of spatial correlation implies that the level of regional unemployment in one
particular area is correlated with that of neighboring regions. As somemanifestations
of this phenomenon, firms do not restrict their recruiting activities to their resident
location and job searchers might accept a job in a different area.

To model regional unemployment accounting for local interactions, we estimate
several spatial econometric model specifications, namely, the spatial autoregressive
model or SAR, the spatial autoregressive Durbin model or SDM, and the spatial lag
of X model or SLX. As structural determinants, we follow the literature and include
the characteristics of the labor market, captured by the proportion of low-educated
working-age adults, by the proportion of working-age adults between 15 and 30,
and by the labor force participation rate; the socio-economic structure, as measured
by the proportion of industrial employment and public employment, as well as the
logged population density; the housing market, as captured by the annual growth of
unoccupied houses between 2006–2011 or 2011–2016, which is a proxy for the costs
of migration related to housing.

We consider two types of predictions. First, we use in-sample prediction as a
measure of model fit. Second, we make out-of-sample prediction. Specifically, to
implement out-of-sample prediction, we use a k-fold cross-validation approach. We
randomly split the full sample of employment zones into 10 subsamples. For each
subsample i , we declare it as out-of-sample and predict the unemployment rate
on these out-of-sample locations based on the model estimates obtained using the
information of the remaining sites, the “in-sample zones”, assuming that we observe
the structural characteristics of both the in-sample and the out-of-sample sites.

Note that while in this application we do not have a missing information problem
(but instead, sequentially choose at random some zones and declare them as out-of-
sample), the out-of-sample prediction formulas we apply here could be implemented
in other contexts, where information is missing or new information is needed. As
illustrations of the latter possibility, consider a geomarketing application, where
analysts are evaluating the possible impact in sales of opening a new store in a
certain region.Alternatively, consider the problemof an airline,which needs to assess

2Goulard et al. (2017) address the problem of prediction in the spatial autoregressive (SAR) model
for areal data, they study what a best linear prediction or BLUP is in this context and they introduce
new variants of out-of-sample prediction formulas.



Predictions in Spatial Econometric Models … 411

whether it opens a new route.3 Being able to predict local sales or air passenger counts,
based on the information of neighboring sites, appears to be particularly attractive.

The chapter is organized as follows. Section 2 summarizes the notation, the spa-
tial autoregressive model specification, and the prediction formulas we apply fol-
lowing Goulard et al. (2017). In turn, Sect. 3 first discusses the theoretical explana-
tions for local unemployment differentials; it then presents the data and the way we
construct the neighborhood matrix describing local relations between employment
zones. Section 4 presents the estimation results for the various spatial econometric
model specifications, whereas Sect. 5 relies on the model estimates of the previous
section to make in-sample and out-of-sample predictions. Finally, Sect. 6 concludes.
An online appendix (http://www.thibault.laurent.free.fr/code/CT_honor/) provides
the R codes to reproduce the results included in this chapter.

1.1 Related Literature

From amethodological point of view, the empirical literature can be divided into two
strands of literature.

On the onehand,models for regional unemployment using (non-spatial) panel data
techniques. Examples are Partridge and Rickman (1997); Taylor and Bradley (1997).
On the other hand, studies applying spatial econometric models in cross-sectional
settings. The first article in this direction is Molho (1995), which provides evidence
of significant spillovers in the adjustment to local shocks using data on local labor
market areas in Great Britain. Further examples for this second strand of literature
are Aragon et al. (2003), relying on district-level data for the Midi-Pyréenées region
of France, and Cracolici et al. (2007), for Italy. Finally, Elhorst (2003) provides a
survey on theoretical models and explanatory variables for regional unemployment
differences.

We contribute to this second strand of literature by focusing on the prediction of
unemployment rates. To the best of our knowledge, we are the first to investigate
prediction at the local unemployment level.

2 Notation, Models, and Prediction Formula

Section 2 presents the notation and summarizes the prediction formulas detailed in
Goulard et al. (2017).

Note that in contrast to Goulard et al. (2017) who focus on the SAR model,
the formulas in this chapter are written relative to the spatial autoregressive Durbin
model.

3Margaretic et al. (2017) show evidence of spatial dependence in air passenger traffic.

http://www.thibault.laurent.free.fr/code/CT_honor/
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2.1 Notation and the Spatial Autoregressive Durbin Model

Consider the classical homoscedastic spatial autoregressive Durbin model. Given
a row-normalized spatial weight matrix W and exogenous variables X, the model
writes as

y = ρWy + αιn + Xβ + WXγ + ε, (1)

where ιn represents an n × 1 vector of ones, with n being the sample units, and
ε ∼ N (0, σ 2I).

The conditional mean of Y is given by

μ = (I − ρW)−1(αιn + Xβ + WXγ ) (2)

and its covariance structure by

� = Var(Y | X) = [(I − ρW′)(I − ρW)]−1σ 2. (3)

The SDM can be written as a spatial autoregressive SAR model by defining
Z = [ιn X WX] and δ = [α β γ ]′, which leads to

y = ρWy + Zδ + ε. (4)

When ρ is known, the best linear unbiased estimator (BLUE) of μ = (I −
ρW)−1Zδ is μ̂ = (I − ρW)−1Zδ̂, where δ̂ is the best linear unbiased estimator of δ,
as well as its maximum likelihood estimator in the gaussian case.

We distinguish between two types of prediction situations, that is, the in-sample
and out-of-sample cases. In the in-sample prediction problem, we have n spatial units
for which we observe the dependent variable Y, as well as the independent variables
X; we then want to predict the value ofY at the observed sites after fitting the model.

In the out-of-sample case, there are two types of spatial units: The in-sample units,
for which we observe the dependent variableYS, as well as the independent variables
XS, and the out-of-sample units, for whichwe only observe the independent variables
XO. In the latter situation, we want to predict the variable YO from the knowledge
of YS,XS and XO. Also, in the out-of-sample case, we distinguish according to the
number of spatial units to be predicted simultaneously. If there is only one such
unit, we refer to the single out-of-sample prediction case; otherwise, to the multiple
out-of-sample prediction case.
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2.2 In-Sample and Out-of-Sample Units

Let nO and nS denote the number of out-of sample and in-sample units, respectively,
with n = nO + nS .

We can partition Z and Y in Z = (ZS
′ | ZO

′)′ and Y = (YS
′ | YO

′)′, where ZS

(respectively, YS) of dimension nS × p (nS × 1) denotes the matrix of components
of Z (the vector of components of Y) corresponding to the in-sample spatial units;
ZO (YO) of dimension nO × p (nO × 1) denotes the matrix of components of Z
(the vector of components of Y) corresponding to the out-of-sample spatial units.
Similarly μ = (μS

′ | μO
′)′.

Let J be a set of indices. The vectorVJ will correspond to the vector of components
of V relative to the indices in J. For the case of the spatial weight matrix, variance,
and precision matrices, we need a double index for initialization. Precisely, for two
sets of indices I and J, and a matrixA, the matrixAIJ will denote the block extracted
from A by selecting the rows corresponding to row indices in I and column indices
in J.

Denote WSS the nS × nS submatrix corresponding to the neighborhood struc-
ture of the nS in-sample sites; WOO, the nO × nO submatrix corresponding to the
neighborhood structure of the nO out-of-sample sites;WOS, the nO × nS submatrix
indicating the neighbors of the out-of-sample units among the in-sample units; and
finally, WSO the nS × nO submatrix indicating the neighbors of the in-sample units
among the out-of-sample units. The partition of the spatial weight matrixW follows:

W =
(
WSS WSO

WOS WOO

)
. (5)

For out-of-sample prediction, Goulard et al. (2017) assume that there is an overall
model driving the in-sample and out-of-sample units. Given that partition, together
with Eq. (1), the overall model M for the n observations of (Z,Y) becomes

(
YS

YO

)
= ρ

(
WSS WSO

WOS WOO

) (
YS

YO

)
+ α

(
ιnS
ιnO

)
+

(
XS

XO

)
β

+
(
WSS WSO

WOS WOO

)(
XS

XO

)
γ +

(
εS
εO

)
.

The sub-model MS driving the data (ZS,YS) is

YS = [(I − ρW)−1Zδ]S + [(I − ρW)−1ε]S, (6)

where the error term has a variance equal to (Var(Y))SS.

Since only in-sample YS observations are available, a feasible approximation to
(6) (only based on in-sample units) after row-normalization of WSS is

YS = [(I − ρWSS)
−1ZSδ] + [(I − ρWSS)

−1εS], (7)
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Table 1 In-sample prediction formulas

Predictor Formula

TC Y̌TC
S = (I − ρ̂W)−1

SSZSδ̂

T S Y̌T S
S = ZSδ̂ + ρ̂WSSYS

BP Y̌BP
S = (I − ρWSS)

−1ZSδ̂ − Diag( Q̂SS)
−1 ˜̂QSS(Y − (I − ρWSS)

−1ZSδ̂)

where ZSδ = αιnS + XSβ + WSSXSγ .
Exact compatibility of the twomodels thus requires the following two constraints:

((I − ρW)−1Z)S = (I − ρWSS)
−1ZS for the mean and (Var(Y))SS = Var(YS) for

the variance.

2.3 In-Sample Prediction Formulas

For in-sample prediction, we assume that the sample units are driven by Eq. (7). Let
Y̌S denote the in-sample predictions. As in Goulard et al. (2017), we consider three
in-sample predictors, namely, the “trend-corrected predictor”, indicated with upper
index TC in Y̌S; the “trend-signal-noise” predictor, with upper index TS in Y̌S , and
finally, the Goulard et al. (2017) alternative in-sample predictor, with upper index
BP.4 Table 1 summarizes the alternative in-sample prediction formulas we consider.

In Table 1, Diag( Q̂SS) denotes the diagonal matrix containing the diagonal of
the precision matrix Q̂SS of the SDM model given by Q̂SS = 1

σ̂ 2 (I − ρ̂WSS
′)(I −

ρ̂WSS), σ̂ 2 is the gaussian maximum likelihood estimate of the variance, and ˜̂QSS =
Q̂SS − Diag( Q̂SS).

2.4 Out-of-Sample Prediction Formulas

Let Ŷ S refer to the out-of-sample predictions.
We consider five out-of-sample predictors: The classical Goldberger formula,

indicated with upper index BP in Ŷ S; the trend-corrected predictor; the trend-signal-
noise predictor, in the case of a single prediction; Goulard et al. (2017) extension
of the Kelejian and Prucha (2007) predictor, indicated with upper index BPW ; and
finally, Goulard et al. (2017) predictor, with upper index BPN . Table 2 summarizes
the alternative out-of-sample predictors. For details on the formulas, refer to Goulard
et al. (2017).

4Goulard et al. (2017) use the upper index BP to emphasize that the predictor is based on some kind
of best prediction practice.
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Table 2 Out-of-sample prediction formulas

Predictor Formula

BP ˆY BP
O = ˆY TC

O − Q̂
−1
OO Q̂OS × (YS − ˆY TC

S )

TC ˆY TC
O = [(I − ρ̂W)−1Zδ̂]O

T S1 Ŷ T S1
o = Zoδ̂ + ρ̂WoSYS

BPW
ˆY BPW
O = ˆY TC

O + �̂OSW′
OS(WOS�̂SSW′

OS)
−1(WOSYS − WOS

ˆY TC
S )

BPN
ˆY BPN
O = ˆY TC

O − Q̂
−1
OO Q̂OJ (YJ −OYTC

J )J

TC1 Ŷ TC1

o = row o of {InS+1 − ρ̂W1}−1

(
ZS

Zo

)
δ̂

BP1 Ŷ BP1

o = Ŷ TC1

o − Q̂−1
oo Q̂oS(YS − ˆY TC1

S )

BP1
W Ŷ

BP1
W

o = Ŷ TC1

o + �̂oSW′
oS(WoS�̂SSW′

oS)
−1(WoSYS − WoS

ˆY TC1

S )

BP1
N Ŷ

BP1
N

o = Ŷ TC
o − Q̂−1

oo Q̂oJ (YJ − ˆY TC1

J )

There are four elements to mention regarding the out-of-sample predictors in
Table 2. To begin with, the Goldberger best prediction formula in Table 2 is written
in terms of the precision matrix Q, with

Q = 1

σ 2
(I − ρ(W′ + W) + ρ2W′W) =

(
QSS QSO

QOS QOO

)

Second, the trend-corrected predictor can be extended for out-of-sample prediction
because it only involves the values of Z (and not Y) for the out-of-sample units.

Third, Goulard et al. (2017) predictor consists of using the precision version of
the Goldberg formula and replaces the set S by N, with N being the set of all sites
in S which are neighbors in the sense ofW of at least one site in O. The intuition is
to only use among the sample locations, the neighbors of the out-of-sample sites in
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order to predict. Let J be the set of indices of such neighbors and nJ its size.5 Also,ˆY TC
J is obtained by extracting the rows corresponding to units in J from ˆY TC .
Finally, because the single prediction formulas are simpler, when p out-of-sample

units have to be predicted, Goulard et al. (2017) propose to apply the “single out-of-
sample” formula to each of the out-of-sample units separately, ignoring at each stage
the remaining p − 1 units. Hence, Table 2 also exhibits the predictors for location o,
which are denoted by Ŷ TC1

o , Ŷ T S1
o , Ŷ BP1

o , Ŷ BPW 1

o and Ŷ BPN
1

o .

3 Application

Section 3 starts with a summary of the theoretical explanations for regional unem-
ployment differentials, which helps us identify the explanatory variables to use in
the regression analysis for local unemployment rates.

It then presents the data and the way we define the spatial neighbors.

3.1 Theoretical Explanations for Regional Unemployment
Differentials

In the literature, there are two different views explaining the regional unemployment
differentials.

The equilibrium view assumes the existence of a stable labor market equilibrium
inwhich regions have different unemployment rates.According toMolho (1995), this
equilibrium is characterized by uniform utility across areas for homogeneous labor
groups. Under this view, households (and firms) need to be compensated for high
(low) unemployment by other positive factors, so-called amenities. These amenities
are, for example, better climate, reasonable housing prices or higher quality of life.

5For clarification on the expression for ˆY BPN
O , denote WJ∪O as the neighborhood matrix for sites

which are in J or O and W ∗ its row-normalized version. The partition of W ∗ is

W∗ =

nJ nO
←→ ←→⎛

⎝ W∗
JJ W∗

JO

W∗
OJ W∗

OO

⎞
⎠ .


⏐�nJ


⏐�nO
The partition of the precision matrix corresponding to sites in J ∪ O becomes

Q̂ J∪O = 1

σ̂ 2 (IJ∪O − ρ̂(W∗ + W∗′
) + ρ̂2(W∗′W∗)) =

(
Q̂ J J Q̂ J O

Q̂OJ Q̂OO

)
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Hence, the equilibrium rate of unemployment in region i is a function of the amenity
endowment in this region (Marston 1985).

Contrary to the equilibrium view, the disequilibrium view assumes that regional
unemployment will equalize in the long run. However, the adjustment process might
be slow. The speed of adjustment depends on different factors that are connected to
both labor supply and labor demand side.

Among these factors, younger people and better-educated workers are more likely
to migrate in response to local economic opportunities (Aragon et al. 2003). Younger
people are more likely to migrate as they have a lower opportunity cost of migrating,
they can look forward to a longer period of payoff from migrating, and they may
have less risk aversion (Gabriel et al. 1993). In the case of better-educated workers,
it may be because the labor market for skilled workers tends to be geographically
larger; hence, the payoff from moving is likely to be larger also for these workers
(McCormick and Sheppard 1992).

In addition, other things being equal, the unemployment rate should be lower in
urban areas (because it is easier for a person after a shock, to find another job locally
that makes use of the same skills or for a firm to hire a new employee with similar
skills to the one that previously left the company) and it may converge more slowly
if the system of unemployment compensation is generous (Aragon et al. 2003).
Finally, labor mobility should decrease with the costs of migration, such as transport
or housing costs (Marston 1985).

Wrapping up, these two different views help us identify the main variables that
we expect to influence unemployment rates. In what follows, we present the data we
use to proxy some of these structural factors.

3.2 Data and Definition of Neighborhood Structure

Tomodel local unemployment rates in France, we run the analysis at the employment
zone level, excluding Corsica.

An employment zone is a geographic area within which most workers live and
work, and in which establishments can find the bulk of the labor force required to
fill the jobs offered. It corresponds to the aggregation of several communes (Floch
and Le Saout 2018).

As structural determinants of local employment rates, we follow the literature
and consider, the characteristics of the labor market, captured by the proportion of
low-educated working-age adults, by the proportion of working-age adults between
15 and 30, and by the labor force participation rate; the socio-economic structure,
as measured by the proportion of industrial employment and public employment, as
well as the logged population density; the housingmarket, as captured by the average
annual growth of unoccupied houses between 2006–2011 or 2011–2016, which is a
proxy for the costs of migration related to housing.

We consider two estimation periods. The first sample period uses the unemploy-
ment rate in 2013 and the explanatory variables as of 2011. The objective is to repro-
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Table 3 Descriptive statistics of the 2018 unemployment rate and 2016 structural factors

Obs Mean SD Min P25 P50 P75 Max

Unemployment 297 8.77 2.23 4.50 7.20 8.40 9.80 16.50

Participation rate 297 73.88 2.50 67.00 72.40 73.80 75.20 83.50

Prop low-educated
workers

297 31.93 4.44 20.40 29.30 32.20 35.10 43.70

Prop workers 15 − 30 297 15.51 2.29 10.50 14.00 15.10 16.70 23.90

Prop industrial employ-
ment

297 17.22 7.80 3.02 11.33 15.98 21.91 42.56

Prop public employment 297 34.32 6.63 15.65 30.18 34.30 38.41 54.23

Growth vacant houses 297 3.13 1.52 –1.21 2.20 3.06 4.16 7.48

Pop density 297 184.41 612.56 12.50 49.70 79.70 147.20 9179.00

Notes Obs and SD stand for number of observations and standard deviation, respectively. P25, P50,
and P75 correspond to the 25, 50, and 75 percentiles, respectively, of the empirical distribution of
each variable
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Fig. 1 2018 Unemployment rate, by employment zones

duce some of the results in Floch and Le Saout (2018). The second data set consists
of more recent observations, with the unemployment rate, as of 2018, and the struc-
tural determinants, for 2016. The reason for lagging the explanatory variables is to
limit the possibility of reverse causality. A causal interpretation nonetheless remains
impossible.

Table 3 presents the descriptive statistics of the 2018 unemployment rates and the
structural factors observed in 2016. In turn, Fig. 1 plots unemployment, by employ-
ment zones.
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Fig. 2 Neighborhood
structure, by employment
zones

To begin with, Table 3 shows that population density, followed by the annual
growth of unoccupied houses and the proportion of industrial employment are the
factors with the strongest variation across employment zones. On top of that, Fig. 1
provides evidence of spatial heterogeneity for the unemployment rates: The North of
France (formerNord Pas-de-Calais) andLanguedoc-Roussillon exhibit higher unem-
ployment rates, whereas the regions neighboring Germany, Alsace, and Auvergne
have lower rates. Also, the employment zones close to these sites show similar unem-
ployment patterns, thus indicating spatial correlation. The online appendix displays
the Moran unemployment rate graph and associated map.

Finally, to define the neighborhood matrix describing local relations between
employment zones, we combine two methods, namely, contiguity and two nearest
neighbors. The reason for that is to allow that each employment zone has at least
two neighbors. We then row-normalize the resulting spatial weight matrix. Figure 2
displays the neighborhood structure.

4 Estimation Results

Section 4 presents the full sample estimation results.
To begin with, Table 4 exhibits OLS, SAR, SLX, and SDM model estimates for

the 2013 unemployment rate, relying on the same structural factors than in Floch
and Le Saout (2018), that is, the labor force participation rate, the proportion of low-
educated working-age adults, the proportion of working-age adults aged between
15 and 30, and the share of industrial and public employment. Second, Table 5
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Table 4 Model estimates for 2013 unemployment rates, following specifications in Floch and
Le Saout (2018)

OLS SAR SLX SDM

(1) (2) (3) (4)

Participation rate −0.617∗∗∗ −0.450∗∗∗ −0.514∗∗∗ −0.507∗∗∗

(0.040) (0.038) (0.052) (0.043)

Prop low-educated workers 0.212∗∗∗ 0.150∗∗∗ 0.169∗∗∗ 0.167∗∗∗

(0.030) (0.025) (0.039) (0.032)

Prop workers 15 − 30 0.115∗∗∗ 0.051 0.101∗∗ 0.073∗∗

(0.038) (0.032) (0.044) (0.037)

Prop industrial employment −0.062∗∗∗ −0.040∗∗∗ −0.028 −0.021

(0.014) (0.012) (0.017) (0.014)

Prop public employment −0.064∗∗∗ −0.064∗∗∗ −0.047∗∗ −0.047∗∗∗

(0.018) (0.015) (0.019) (0.015)

W× Participation rate −0.208∗∗∗ 0.190∗∗

(0.077) (0.074)

W× Prop low-educated
workers

0.032 −0.098∗∗

(0.055) (0.047)

W× Prop workers 15 − 30 0.121∗ 0.034

(0.068) (0.057)

W× Prop industrial employ-
ment

−0.094∗∗∗ −0.036

(0.028) (0.023)

W× Prop public employ-
ment

−0.038 0.003

(0.036) (0.030)

Constant 52.043∗∗∗ 36.791∗∗∗ 59.784∗∗∗ 26.380∗∗∗

ρ 0.497∗∗∗ 0.601∗∗∗

R2 0.623 0.664

Adjusted R2 0.617 0.652

σ 2 1.467 1.479 1.398 1.340

AIC 1078.24 991.157 1054.744 980.847

F Statistic 96.329∗∗∗ 56.403∗∗∗

df = 5; 291 df = 10; 286

Wald Test (df = 1) 110.300∗∗∗ 108.815∗∗∗

LR Test (df = 1) 89.083∗∗∗ 75.898∗∗∗

Notes ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Data for 2013 unemployment rates and 2011 structural factors

introduces two variations to model estimates in Table 4, that is, it considers more
recent observations, with the unemployment rate, as of 2018, and the covariates for
2016; and it augments the model specifications in Table 4 with the logarithm of
population density and the annual growth of unoccupied houses.
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There are several findings to highlight from Table 4. To begin with, the model
estimates in Table 4 are strongly consistent with the findings in Floch and Le Saout
(2018), in spite of the differences in the way they and we compute the neighborhood
structure (to build the neighborhoodmatrix, Floch and Le Saout 2018, use the inverse
distance). It thus indicates that in this unemployment application, results are not
sensitive to the choice of the spatial weight matrix.

Second, Table 4 shows that the characteristics of the labour force are statistically
significant. However, while the sign of the estimated coefficients for the proportion
of low-educated workers and for the labor force participation rate is in line with
the theory, the sign for the proportion of working-age adults between 15 and 30
contrasts with its expected sign, according to the disequilibrium view explaining
local unemployment: Zones with a high proportion of young people appear to be
associated with higher unemployment rates. The latter thus suggests that young
people might not be that flexible to migrate to take advantage of job opportunities in
other regions. This result is also in line with Aragon et al. (2003) findings.

Third, Table 4 exhibits a negative relationship between unemployment and indus-
trial and public employment. In the case of industrial employment, its coefficient
is not statistically significant when we add spatially lagged structural factors, thus
suggesting that the industry’s capacity to absorb labor and thus reduce local unem-
ployment rates, is influencedby the importanceof industry in the neighboring regions.
Regarding public employment, the significantly negative associationwith unemploy-
ment, which is stable across estimations, may be the indication of public jobs being
more stable and less dependent on the business cycle.

The first conclusion to extract from Table 5 is that, regardless of the spatial econo-
metric model considered, unemployment appears to be higher in areas more densely
populated, which contrasts the intuition that job searching and matching should be
easier in urban areas. Paraphrasing Aragon et al. (2003), the positive coefficient is
consistent with the amenities view of equilibriumunemployment, according towhich
if urban areas are considered to be more interesting places in which to live, people
may remain there longer as they search for work, instead of migrating to areas with
more job opportunities.

On top of that, the inclusion of population density results in the proportion of
working-age adults between 15 and 30 and public employment being no longer
statistically significant, showing that the former factor dominates. Finally, in linewith
Aragon et al. (2003) findings, the annual growth of unoccupied houses capturing the
housing market does not appear to have a significant effect on local unemployment
rates.

The estimated parameter ρ reflects the spatial dependence inherent in our sample
data, measuring the average influence on observations of their neighboring data
points. It has a positive effect and it is highly significant in both the SAR and SDM
models. As a result, we conclude that the general model fit has improved (relative to
the OLS estimates), as indicated by the lower values of AIC.6

6In the supplementary material, we display a moran plot of residuals from the SAR and SDMmodel
which show that the spatial models have indeed taken the correlation into account.
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Table 5 Model estimates for 2018 unemployment rates
OLS SAR SLX SDM

(1) (2) (3) (4)

Participation rate −0.546∗∗∗ −0.366∗∗∗ −0.424∗∗∗ −0.396∗∗∗
(0.048) (0.041) (0.060) (0.046)

Prop low-educated workers 0.101∗∗∗ 0.075∗∗∗ 0.109∗∗∗ 0.113∗∗∗
(0.028) (0.022) (0.036) (0.028)

Prop workers 15 − 30 −0.062 −0.066 0.008 −0.038

(0.055) (0.043) (0.068) (0.053)

Prop industrial employment −0.045∗∗∗ −0.024∗ −0.023 −0.016

(0.016) (0.013) (0.017) (0.013)

Prop public employment −0.020 −0.026 −0.016 −0.014

(0.020) (0.016) (0.020) (0.016)

Growth vacant houses −0.090 −0.060 −0.039 0.003

(0.060) (0.047) (0.060) (0.047)

log(Pop density) 0.599∗∗∗ 0.426∗∗∗ 0.569∗∗∗ 0.689∗∗∗
(0.149) (0.118) (0.213) (0.163)

W× Participation rate −0.310∗∗∗ 0.144∗
(0.094) (0.079)

W× Prop low-educated workers −0.043 −0.095∗∗
(0.054) (0.042)

W× Prop workers 15 − 30 0.177 0.131

(0.117) (0.090)

W× Prop industrial employment −0.079∗∗ −0.026

(0.034) (0.026)

W× Prop public employment −0.032 −0.007

(0.042) (0.032)

W× Growth vacant houses −0.287∗∗ −0.096

(0.114) (0.088)

W× log(Pop density) −0.398 −0.744∗∗∗
(0.364) (0.280)

Constant 45.845∗∗∗ 28.950∗∗∗ 61.602∗∗∗ 21.420∗∗∗

(4.692) (3.889) (8.010) (6.736)

ρ 0.580∗∗∗ 0.680∗∗∗

R2 0.555 0.610

Adjusted R2 0.544 0.591

σ2 1.504 1.362 1.425 1.198

AIC 1095.055 977.777 1069.903 964.472

F Statistic 51.498∗∗∗ 31.504∗∗∗

df = 7; 289 df = 14; 282

Wald Test (df = 1) 163.313∗∗∗ 181.516∗∗∗

LR Test (df = 1) 119.279∗∗∗ 107.431∗∗∗

Notes ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Data for 2018 unemployment rates and 2016 structural factors
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One question that remains is which spatial econometric model is themost likely to
describe the data. As the first piece of evidence, both the LR and Wald test statistics
reported in Table 5 reject the null of absence of spatial dependence. In addition, we
followMargaretic et al. (2017)’s testing procedure to examinewhether we can reduce
the SDM to the SARor the SEM(which includes a spatially lagged error term, instead
of spatially lagged independent variables or a spatially lagged dependent variable).
When testing whether we can simplify the SDM to the SAR, the null hypothesis of
the likelihood ratio (LR) test is γ = 0. Instead, if we test whether we can reduce
the SDM to SEM (known as the common factor restriction), the null hypothesis is
γ + ρβ = 0. Both tests follow a χ2 distribution.

Both LR tests reject the spatial LAG (Log-likelihood= −437.03) or the SEM
(Log-likelihood= −471.815), in favor of the SDM (Log-likelihood= −424.347).
We thus conclude that the SDM seems to be the one that best describes the data. In
what follows, we compare the spatial econometric model estimates, in terms of their
predictive efficiency.

5 Predictions

To compare the model estimates of Table 5 in terms of their predictive efficiency,
we compute the average, across employment zones, of the total mean square error
(MSE) of in-sample or out-of-sample predictions, as

MSEk = 1

n
(Y − Ŷ k)′(Y − Ŷ k), (8)

for each in-sample prediction formula k = BP, T S, TC , or out-of-sample predic-
tion formula k = BP, BPN , BP1

N , BPW , BP1
W , TC, TC1, T S, T S1.Note that in the

case of the SLXmodel, there is no correction for spatial autocorrelation in the depen-
dent variable in the prediction formulas.

Regarding out-of-sample prediction, the procedure we implement follows: First,
we split the full sample into 10 subsamples and randomly assign the employment
zones to each of the 10 subsamples. For each subsample i , we declare it as out-of-
sample and estimate the model specifications in Table 5 using the information of
the remaining sites, the “in-sample zones”. Assuming that we observe the structural
characteristics of both the in-sample and the out-of-sample sites, we finally predict
the unemployment rate of the out-of-sample locations based on the model estimates
obtained with the in-sample sites.

Table 6 reports the averageMSE for each of the model specifications, distinguish-
ing between in-sample prediction formulas. Table 7, in turn, reports the averageMSE
of the out-of-sample predictions, exhibited in decreasing order of efficiency.

There are three conclusions to highlight from Tables 6 and 7. To begin with, they
confirm the preference of the SDM over the SARmodel or the SLXmodel, a conclu-
sion we obtained when applying the testing procedure described in Sect. 4. Second,
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Table 6 shows that in-sample predictors including a correction for spatial correlation
(BP and TS) tend to perform better. Third, regarding out-of-sample prediction, Table
7 indicates that in the case of the SDM estimates, the performances of BPN , BPW ,
BP1W , BP1, BP1N are close to that of the best prediction BP and much better than that
of TC, TC1, and TS1.

6 Conclusion

In this chapter, we study the issue of prediction of spatial econometric models for
areal data, in the context of localized unemployment rates. Specifically, we apply the
prediction formulas gathered and derived in Goulard et al. (2017) to model localized
unemployment rates, by French employment zones. To the best of our knowledge,
we are the first to investigate prediction at local unemployment level.

Researchers have long been interested in understanding differences in local unem-
ployment rates and in predicting the likely impact of local shocks and/or regional
policy measures on unemployment. This is important, because unemployment is,
among others, a widely used indicator for the economic well-being of a country. A
specific feature of regional labor markets is their correlation over space (Lottmann
2012), which implies that the level of unemployment in one particular region is
correlated with that of neighboring regions.

To model regional unemployment accounting for local interactions, we estimate
several spatial econometric model specifications, namely, the spatial autoregressive
model or SAR, the spatial autoregressive Durbin model or SDM, and the spatial lag
of X model or SLX. As structural determinants, we consider the characteristics of

Table 6 MSE of in-sample predictions

OLS SAR TS SAR TC SAR BP SLX SDM TS SDM TC SDM BP

MSE 2.200 1.362 2.141 1.230 1.929 1.198 1.792 1.139

Table 7 MSE of out-of-sample predictions

SDM BP SDM BPN SDM BPW SDM BP1W SDM BP1 SDM BP1N SAR BP

1.245

1.258 1.260 1.276 1.282 1.288 1.296

SAR BPN SAR BP1N SAR BP1 SAR BPW SAR BP1W SDM TC SDM TC1

1.299

1.301 1.309 1.309 1.313 1.948 2.015

SLX SAR TC SAR TC1 OLS SAR TS1 SDM TS1

2.095 2.204 2.235 2.355 2.370 2.472
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the labor market and the socio-economic structure, among other factors. Note that
while we lag the previously described structural characteristics two years (relative to
the unemployment data), a causal interpretation of our results remains impossible.
We then use our model estimates to produce both single and multiple in-sample and
out-of-sample predictions.

We can extract two main conclusions from our results. First, our results indicate
that the SDM is the most likely to describe the data; hence, we should take this
into account when predicting the reaction of regional unemployment to shocks. The
second main conclusion we can derive from our findings is that prediction can be
a complementary method to testing procedures for model comparison and model
choice.

From a policy and applied standpoint, while in this application we do not have a
missing information problem in itself (as we have full information for all the zones),
the out-of-sample prediction formulas we use here could be implemented in other
applications, where information was indeed missing or new information was needed.
Having a methodology that is able to predict local sales, counts or whatever variable
of interest, based on the information of neighboring sites, appears to be particularly
useful and attractive.

One venue of future work could be to assess whether the performance of the vari-
ous predictors changes (if any) with the spatial neighborhood structure, for instance,
the sparseness of the spatial weight matrix. Another venue could be to apply the
same methodology to other contexts, for example, a geomarketing application, with
clients in one district going to shop in other zones.
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Lagrangian Spatio-Temporal
Nonstationary Covariance Functions

Mary Lai O. Salvaña and Marc G. Genton

Abstract The Lagrangian reference frame has been used to model spatio-temporal
dependence of purely spatial second-order stationary random fields that are being
transported. This modeling paradigm involves transforming a purely spatial pro-
cess to spatio-temporal by introducing a transformation in the spatial coordinates.
Recently, it has been used to capture dependence in space and time of transported
purely spatial random fields with second-order nonstationarity. However, under this
modeling framework, the presence of mechanisms enforcing second-order nonsta-
tionary behavior introduces considerable challenges in parameter estimation. To
address these, we propose a new estimation methodology which includes modeling
the second-order nonstationarity parameters by means of thin plate splines and esti-
mating all the parameters via two-step maximum likelihood estimation. In addition,
through numerical experiments, we tackle the consequences of model misspecifica-
tion. That is, we discuss the implications, both in the stationary and nonstationary
cases, of fitting Lagrangian spatio-temporal covariance functions to data generated
from non-Lagrangian models, and vice versa. Lastly, we apply the Lagrangian mod-
els and the new estimation technique to analyze particulate matter concentrations
over Saudi Arabia.

1 Introduction

The need for models that explain spatio-temporal dependencies of environmental
processes has been answered with a growing number of studies on spatio-temporal
covariance functions. A number of the established spatio-temporal covariance func-
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tions can only model spatio-temporal random fields that are second-order station-
ary in space and time. The list includes the spatio-temporal separable stationary
covariance functions, spatio-temporal stationarymixturemodels (Ma 2003a), and the
Gneiting class of spatio-temporal stationary covariance functions (Gneiting 2002).
However, environmental processes are notorious for exhibiting second-order non-
stationarity in space and/or time. The number of available spatio-temporal nonsta-
tionary covariance functions catering to this challenging second-order nonstationary
behavior is slowly increasing but still lags behind its stationary counterpart. The
construction approaches that define the current state-of-the-art for spatio-temporal
nonstationary covariance functions modeling include the spatio-temporal dimension
expansion (Shand and Li 2017), the spatio-temporal convolution (Garg et al. 2012),
and the nonstationary Archimedean spectral densities (Porcu et al. 2009). Some
spatio-temporal nonstationary models built from spatio-temporal stationary covari-
ances and intrinsically stationary variograms were also proposed in Ma (2003b).
Several other works on incorporating spatial nonstationarity focused on allowing the
parameters in the covariance function to vary in space (Higdon et al. 1999; Neto
et al. 2014; Paciorek and Schervish 2006; Stein 2005). These types of nonstationary
covariance functions belong to a wider class of kernel convolution methods. Risser
(2016), Sampson et al. (2001) feature comprehensive overviews of this wider class.
Another flexible class of spatio-temporal nonstationary models termed the spatio-
temporal random effects (STRE) models was put forward in Cressie et al. (2010).
STRE combines the utilities of basis function approximations and Kalman filtering
to achieve dimension reduction in space and fast and dynamic predictions in time.
This class is highly useful in modeling large space-time nonstationary data.

A distinct class of spatio-temporal covariance functions has been championed
for capturing a special behavior of a subset of spatio-temporal random fields. The
class of Lagrangian spatio-temporal covariance functions was developed to model
spatio-temporal dependence of transported purely spatial random fields through the
use of the Lagrangian reference frame. Models springing from this technique obtain
higher covariances along the direction of transport than the covariances lying in the
other directions. However, much of the progress in this area was done in stationary
variants such as Cox and Isham (1988), where this modeling technique was first
proposed, and Salvaña et al. (2020), where the multivariate extension was explored.
A recent treatment of this modeling scheme in the multivariate nonstationary setup
was provided in Salvaña and Genton (2020). In this work, we formally establish
the univariate nonstationary variant of the Lagrangian approach to spatio-temporal
covariance construction. Moreover, we propose an efficient estimation methodol-
ogy such that the novelty of the Lagrangian spatio-temporal nonstationary models
translates to usability.

The rest of this paper is organized as follows. Section 2 reviews the developments
in theLagrangian spatio-temporalmodeling and formulates the univariate nonstation-
ary extension. Section 3 proposes a practical estimation procedure for nonstationary
covariance models of the Lagrangian type. Section 4 presents some simulation stud-
ies designed to illustrate the advantages of Lagrangian spatio-temporal models over
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other established spatio-temporal models. Section 5 details the application of the new
models to a spatio-temporal particulate matter dataset. Section 6 draws a conclusion.

2 Lagrangian Spatio-Temporal Covariances

Under second-order stationarity of the purely spatial random field, Cox and Isham
(1988) established that a new class of spatio-temporal stationary covariance functions
can be constructed frompurely spatial stationary covariance functions by utilizing the
principles of Lagrangian reference frame. That is, define a spatio-temporal second-
order stationary random field

Z(s, t) = Z̃(s − Vt), (s, t) ∈ R
d × R,V ∈ R

d , d ≥ 1,

such that Z̃(s) is a purely spatial second-order stationary random field. Here V is a
random vector, independent from the purely spatial random field, that describes the
velocity of the transport of Z̃(s) and is often called the advection velocity vector.
The resulting spatio-temporal stationary covariance function of Z(s, t) is

cov
{
Z(s1, t1), Z(s2, t2)

} = cov
{
Z̃(s1 − Vt1), Z̃(s2 − Vt2)

} = EV{CS(h − Vu)},
(1)

where h = s1 − s2, u = t1 − t2, and CS(·) is the purely spatial stationary covariance
function of Z̃(s) on R

d . By introducing a transformation on the spatial arguments
of CS(·), the number of available spatio-temporal stationary covariance functions
would greatly expand by as much as the number of valid purely spatial stationary
covariance functions.

The model in (1) can be extended to accommodate multiple variables of interest
as shown in Salvaña et al. (2020). That is, suppose at each spatio-temporal location
(s, t) there are p > 1 observations corresponding to p different features. This means
that the purely spatial second-order stationary random field is now vector valued,
i.e., Z̃(s) = {

Z̃1(s), . . . , Z̃ p(s)
}�

. A multivariate spatio-temporal random field can
be similarly defined as above, i.e.,Z(s, t) = Z̃(s − Vt) = {

Z̃1(s − Vt), . . . , Z̃ p(s −
Vt)

}�
, with matrix-valued spatio-temporal stationary cross-covariance function

cov
{
Z(s1, t1),Z(s2, t2)

} = cov
{
Z̃(s1 − Vt1), Z̃(s2 − Vt2)

} = EV{CS(h − Vu)},
(2)

where CS(·) is the p × p matrix-valued purely spatial stationary cross-covariance
function of Z̃(s) on R

d . This newly defined multivariate spatio-temporal random
field is second-order stationary in space and time.

Using these two previous developments of spatio-temporal covariance functions,
a recent review paper further developed the Lagrangian approach in the multivariate
nonstationary arena. Salvaña and Genton (2020) established that the model in (2)
can be tailored to accommodate an underlying cross-covariance function CS that is
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nonstationary. This is particularly useful when the multivariate purely spatial ran-
dom field being transported has nonnegligible second-order nonstationarity. Models
arising from their proposal have the form

cov
{
Z(s1, t1),Z(s2, t2)

} = cov
{
Z̃(s1 − Vt1), Z̃(s2 − Vt2)

} = EV

{
CS(s1 − Vt1, s2 − Vt2)

}
,

(3)
whereCS(·, ·) is a matrix-valued purely spatial nonstationary cross-covariance func-
tion of Z̃(s) on R

d .
The models in Eqs. (1)–(3) suggest how the Lagrangian framework can be used

to create spatio-temporal covariance functions when one has at one’s disposal purely
spatial covariance functions that are either univariate stationary, multivariate sta-
tionary, or multivariate nonstationary. The univariate nonstationary formulation of
the Lagrangian construction can be readily established from (3) when p = 1. For
completeness, we state this as a theorem below.

Theorem 1 Let V be a random vector on R
d . If CS(s1, s2) is a valid purely spatial

nonstationary covariance function on R
d , then,

C(s1, s2; t1, t2) = EV
{
CS(s1 − Vt1, s2 − Vt2)

}
, s1, s2 ∈ R

d , t1, t2 ∈ R, (4)

is a valid spatio-temporal nonstationary covariance function on R
d × R provided

that the expectation exists.

The validity of this theorem follows because it is a special case (p = 1) of a theorem
proved for general p in Salvaña and Genton (2020). The construction approach in
Theorem 1 requires a purely spatial nonstationary covariance function, CS(·, ·), and
returns a spatio-temporal covariance function that is nonstationary in both space and
time. Theorem 1 implies a purely spatial random field with second-order nonsta-
tionarity that is transported to new locations at a velocity V. The transport behavior,
dictated by the velocity V, influences the covariance through shifting the original
spatial arguments of CS(·, ·) by Vt . The derived Lagrangian spatio-temporal non-
stationary covariance function C(s1, s2; t1, t2) is nonstationary in space, as its fun-
damental building block is a purely spatial nonstationary covariance function, and
is also nonstationary in time, as the transformation from purely spatial to spatio-
temporal depends on time t .

There is a rich literature on valid purely spatial nonstationary covariance functions
from which we can choose CS(·, ·) including the dimension expansion (Bornn et al.
2012), deformation approach (Sampson and Guttorp 1992), kernel-based methods
(Higdon et al. 1999), convolution-based methods (Heaton et al. 2014; Higdon 1998,
2002), spectral methods (Fuentes 2002), orthogonal expansions (Nychka and Saltz-
man 1998), spatially varying parameters (Neto et al. 2014; Paciorek and Schervish
2006; Gelfand et al. 2004), piece-wise Gaussian process (Kim et al. 2005), covariate-
driven approaches (Schmidt et al. 2011), and basis function models (Nychka et al.
2002; Wikle 2010; Chang et al. 2010). Other purely spatial nonstationary models
to which Theorem 1 can be applied are discussed in Sampson et al. (2001), Risser
(2015), and Stephenson et al. (2004).
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Lagrangian spatio-temporal random fields can be classified into two general cat-
egories, namely, frozen and non-frozen random fields. The former characterizes
Lagrangian spatio-temporal random fields with a constant advection velocity, that is,
V = v. Meanwhile, Lagrangian spatio-temporal random fields that are termed non-
frozen are those transportedwith a random advection velocityV. Salvaña andGenton
(2020) showed realizations of frozen Lagrangian spatio-temporal random fields sim-
ulated from (3) when p = 2 using prominent classes of purely spatial nonstationary
cross-covariance functions, such as the multivariate spatially varying parameters
and the multivariate deformation models. Realizations of frozen Lagrangian spatio-
temporal nonstationary random fields from themodel in (4) can be obtained similarly
by assuming that Z1 and Z2 in Fig. 2 of Salvaña and Genton (2020) are independent.
In the following figures, we show non-frozen Lagrangian spatio-temporal random
fields for two models when V ∼ N2(μ,Σ). Figure 1a plots the simulated Z(s, t)
from the model

C(s1, s2; t1, t2) = EV

(
σ(s1 − Vt1, s2 − Vt2)Mν

[
{s1 − s2 − V(t1 − t2)}�

× D(s1 − Vt1, s2 − Vt2)−1 {s1 − s2 − V(t1 − t2)}
]1/2)

, (5)

where σ(s1 − Vt1, s2 − Vt2) is the spatially varying variance parameter and
the matrix D(s1 − Vt1, s2 − Vt2) serves as the spatially varying scale parame-
ter (Kleiber and Nychka 2012). Here Mν(·) is the univariate Matérn correlation
with smoothness parameter ν > 0, D(s1, s2) = 1

2 {D(s1) + D(s2)}, and σ(s1, s2) =
|D(s1)|1/4|D(s2)|1/4

∣∣D(s1, s2)
∣∣−1/2

. The matrix D(s) is parameterized through its
spectral decomposition, i.e.

D(s) =
[
cos {φ(s)} − sin {φ(s)}
sin {φ(s)} cos {φ(s)}

] [
λ1(s) 0
0 λ2(s)

] [
cos {φ(s)} sin {φ(s)}

− sin {φ(s)} cos {φ(s)}
]

.

Figure 1b illustrates the random field generated from the non-frozen Lagrangian
deformation

C(s1, s2; t1, t2) = EV
[
σ 2Mν {a‖f(s1 − Vt1) − f(s2 − Vt2)‖}

]
, (6)

where f : Rd → R
d is a deterministic nonlinear smooth bijective deformation func-

tion and σ 2 and a are the variance and scale parameters, respectively. In the example
in Fig. 1b, σ 2 = a = ν = 1.

To illustrate the effect of the advection velocity V ∼ N2
{
(0.1, 0.1)�, 0.01 × I2

}

on the space-time dependence of the random fields in Fig. 1, we examine two loca-
tions, marked with ‘×’, which we call “reference locations”. We plot as heatmaps
the covariance between the observations at each reference location and the observa-
tions at all locations, including the reference locations themselves. For example, in
Fig. 2a, the first image in the first row gives the covariance between Z(sRef Loc 1, 1)
and Z(sl , 1), at every pixel location sl , l = 1, . . . , 2500. The second image in the first
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Fig. 1 Simulated realizations in the unit square on a 50 × 50 grid from the non-frozen Lagrangian
nonstationary covariance models in (5) and (6) with V ∼ N2

{
(0.1, 0.1)�, 0.01 × I2

}
, I2 is

the 2 × 2 identity matrix. (a) The spatially varying parameters have the following represen-
tations: for s = (sx , sy)�, φ(s) = (sx − 0.5) + 2(sy − 0.5) + (sy − 0.5)2, λ1(s) = −3 − 6(sx −
0.5)2 − 7(sy − 0.5)2, and λ2(s) = −5 + (sx − 0.5)2 − 4(sy − 0.5)2. (b) The deformation func-
tion assumed is the point-source deformation, i.e., f(s) = b + (s − b){1 + 2 exp(−0.5‖s − b‖2)},
b = (0.15, 0.15)�. Reference locations 1 and 2 are marked with ‘×’
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Fig. 2 Heatmaps of the non-frozen Lagrangian nonstationary covariance models in (5) and (6)
observed at two reference locationsmarkedwith ‘×’. (a) shows the strengths of dependence between
any two locations in space and time under the spatially varying parameters model and (b) under the
deformation model. See Fig. 1 for the corresponding random field realizations

row plots the covariance between Z(sRef Loc 1, 1) and Z(sl, 2), at every pixel loca-
tion sl , l = 1, . . . , 2500. Lastly, the third image in the first row plots the covariance
between Z(sRef Loc 1, 1) and Z(sl , 3), at every pixel location sl , l = 1, . . . , 2500. All
the other plots are organized in the same manner. Notice that among the covariances
taken at the same temporal locations, i.e., t1 = t2, the maximum covariance occurs
at the reference location. However, among the covariances taken between any two
space-time locations that are one time step apart, the maximum covariance no longer
occurs at the reference location. Instead, it can be observed at a spatial location
(0.1, 0.1)� away from the reference location. A similar observation can be made
when taking covariances between any two space-time locations that are two time
steps apart.
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3 Estimation

The parameters for any spatio-temporal nonstationary covariance functions spawned
by theLagrangian approach include both purely spatial and advection velocity param-
eters. The estimation methods to recover the former depend on the form of CS and
are already fully developed in their respective references; see Sect. 2. Here we pro-
pose a way to extend those estimation methods to space-time in order to recover both
the purely spatial and the additional advection velocity parameters. We focus on an
estimation strategy that operates on the spatio-temporal nonstationary covariance
matrix built using all the spatio-temporal locations. This allows inferences regarding
the second-order nonstationarity structure of the transported purely spatial random
field possible. However, alternative estimation strategies which involve fitting local
spatio-temporal stationary models can also be considered (Kuusela and Stein 2018).

3.1 Thin Plate Splines

Throughout the remainder of thiswork,we narrowour attention toLagrangian spatio-
temporal nonstationary models whose CS are the deformation and spatially varying
parametersmodels.We focus on these two classes because their second-order nonsta-
tionarity parameters can be considered a surface and we aim to leverage a technique
used to model surfaces, namely, thin plate splines (TPS). The TPS is a basis function
and is used to interpolate surfaces using a predetermined set of landmarks or the loca-
tions where the basis functions are centered (Bookstein 1989; Wahba 1990; Donato
and Belongie 2002; Chen and Geman 2014). TPS is a central topic in morphometrics
and has found a wide range of applications including biomedical, computer vision,
data mining, and engineering (Whitbeck and Guo 2006; Hegland et al. 1997; Ten-
nakoon et al. 2013; Chen et al. 2017; Bazen and Gerez 2003). This section describes
how TPS can be appropriately applied to model the second-order nonstationarity
parameters of the Lagrangian spatio-temporal nonstationary models.

Supposeψ(s) is an unknown second-order nonstationarity parameter of interest at
spatial location s. This parameter might be the x− or y−coordinate in the new spatial
domain for the deformation model or the spatially varying parameters λ1(s), λ2(s),
or φ(s). The TPS model for ψ(s) is

ψ(s) = A1 + A2sx + A3sy +
L∑

i=1

wiU (‖s∗i − s‖2), (7)

where U (h) = h2 log h, for h > 0, and zero otherwise, is a basis function, A =
(A1, A2, A3)

� ∈ R
3 and w ∈ R

L are the parameters responsible for the affine and
nonlinear components of the transformation, respectively, and L is the number of
landmarks. Sampson (2015) pointed out several problems springing from the for-
mulation in (7), including multiple local maxima in the log-likelihood function and
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highly correlated parameters. Hence, following their recommendation, we adopt
the form in (7) with wi = ∑L−3

j=1 β j gi, j , such that g j = (g1, j , . . . , gL , j )
� ∈ R

L ,
j = 1, . . . , L − 3, also called the principal warps, are the last L − 3 eigenvec-
tors of the bending energy matrix B corresponding to its L − 3 nonzero eigen-
values. The bending energy matrix B is the upper left L × L sub-matrix of B̃ =[
D P;P� O

]−1 ∈ R
(L+d+1)×(L+d+1) with elements:

• D ∈ R
L×L such that for l, r = 1, . . . , L , Dlr = d2

lr log(dlr ), if l 	= r , and Dlr = 0,
otherwise, where dlr = ‖s∗l − s∗r ‖,

• P ∈ R
L×(d+1), where the l-th row of P is (1, s�l ), s ∈ R

d , and l = 1, . . . , L , and
• O is a zero matrix in R

(d+1)×(d+1).

Together, the linear combinations of the coefficients, βi, j , and the principal warps,
g j , are termed partial warps.

A key ingredient in the TPS model is the set of landmarks, {s∗1, s∗2, . . . , s∗L}. The
TPS model interpolates at these landmark points while preserving maximal smooth-
ness (Bazen and Gerez 2003). The placement of these landmarks dictates the quality
of the parameter estimates (Lewis et al. 2004). The landmarks and the number of
landmarks are fixed prior to modeling and the choice is left to the discretion of the
modeler. In the morphometrics literature, the landmarks are often positioned where
important features can be observed (Gunz and Mitteroecker 2013). In the spatial
statistics literature, the observation locations are commonly designated as landmarks
(Kleiber et al. 2014).

In studying Lagrangian spatio-temporal random fields, there is a need to distin-
guish between the observation locations and the domain of the transported random
field. The former refers to the predefined locationswheremeasurements are obtained,
e.g., regular latitude/longitude grid, wireless sensor networks, wind turbine sites,
meteorological towers, and many others. The latter has its own coordinate system.
The measurements contained in the transported random field get picked up by the
data collection tools at the observation locations as the randomfield travels past them.
In frozen Lagrangian spatio-temporal random fields, the measurement Z(s, t) col-
lected at observation location s at time t corresponds to themeasurement Z(s − vt) at
spatial location s − vt in the domain of the transported random field. Figure 3 shows
a frozen Lagrangian spatio-temporal deformed random field traveling at a constant
velocity of v = (0.5, 0.5)�. While the observation locations are fixed at any time,
the corresponding locations in the Lagrangian random field are not. Choosing the
observation locations as landmarks, therefore, will not suffice in capturing the non-
stationarity of the entire Lagrangian spatio-temporal random field as every region
in the domain should be represented by these landmarks. Assuming that the domain
of the Lagrangian spatio-temporal random field is larger than the domain of obser-
vation locations, we advocate to situate the landmarks on a regular grid that covers
the entire Lagrangian spatio-temporal random field. In practice, unfortunately, the
appropriate size and resolution of this regular grid of landmarks cannot be identified
prior to modeling. However, cross-validation studies can be performed to determine
the suitable positioning and number of landmarks.
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Fig. 3 Marked in red are the observation locations on a regular 10 × 10 grid. Superimposed in black
are the spatial locations on the domain of the frozen Lagrangian spatio-temporal deformed random
field which travels past the observation locations with an advection velocity v = (0.5, 0.5)�, and
in green are the landmarks. The landmarks (green) may or may not coincide with the observation
locations (red)

3.2 Maximum Likelihood Estimation and Likelihood
Approximations in the Temporal Domain

Having established the representation of the unknown nonstationarity parame-
ters, we introduce the estimation procedure carried out in this work. Suppose
Z = {

Z(s1, t1), Z(s2, t2), . . . , Z(sn, tn)
}�

is a zeromeanmeasurement vector where
n ∈ Z

+ is the total number of space-time locations. Inference is performed through
maximizing the log-likelihood

l(Θ;Z) = −n

2
log(2π) − 1

2
log |Σ(Θ)| − 1

2
Z�Σ(Θ)−1Z (8)

with respect to all the parameters collected in Θ ∈ R
q . Here Θ includes all the

purely spatial, advection velocity, and the TPS parameters, and q is the total number
of parameters. The n × n covariance matrix Σ(Θ) is formed by a parametric spatio-
temporal nonstationary covariance function. Penalties can be introduced to Equation
(8) such as the L1 penalty for the deformation models in order to avoid folding of
the surface (Sampson 2015).

For spatio-temporal measurements that are regularly spaced in time, Z can be
rewritten asZ = (

Z�
1 , . . . ,Z�

T

)� ∈ R
NT such thatZt = {Z(s1, t), . . . , Z(sN , t)}� ∈

R
N , for t = 1, . . . , T . Here N and T specify the number of spatial and temporal loca-

tions, respectively, and n = N · T . Furthermore, the log-likelihood function above
can be approximated as follows:

l(Θ;Z1, . . . ,ZT ) ≈ l(Θ;Z1,t∗) +
T∑

j=t∗+1

l(Θ;Z j |Z j−t∗, j−1), (9)
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whereZa,b = (Z�
a , . . . ,Z�

b )� ∈ R
Nt∗ , for a < b, and t∗ specifies the number of con-

secutive temporal locations included in the conditional distribution. Here l(Θ;Z j |
Z j−t∗, j−1) is the log-likelihood function based only on the vector of space-time mea-

surements Z j−t∗, j−1 = (
Z�

j−t∗ , . . . ,Z
�
j−1

)�
. This kind of approximation is usually

preferred when T is large and the dependence in time relies heavily only on the more
recent measurements (Stein 2005c).

3.3 Two-Step Maximum Likelihood Estimation

The inclusion of the nonstationarity parameters in the model increases the dimen-
sion of the estimation problem. This kind of setup is known to run into numerical
difficulties and complications (Kathuria et al. 2019; Zhu and Wu 2010; Li and Sun
2018). Therefore, as a practical alternative to joint estimation of all the parame-
ters, in this work, the estimation problem is split into two parts. First, a Lagrangian
spatio-temporal stationary model is assumed and all the associated purely spatial and
advection parameters are estimated by maximizing the approximated log-likelihood
in (9). Second, fixing the estimates found in the first step, the nonstationary version
of the model is assumed and the parameters involved in the TPS are estimated also by
maximizing (9). After the second step, it is likely that the optimization routine may
still not reach the global maximum of (9). Hence, assuming the nonstationary model,
iterating between the two steps several times is pursued until a stopping criterion is
satisfied.

4 Simulation Study: Lagrangian Versus Non-Lagrangian
Spatio-Temporal Models

The Lagrangian spatio-temporal covariance functions are primarily used to model
transported space-time data. There are other classes of spatio-temporal covariance
functions that model space-time data that are not necessarily transported. In this
section, we investigate the outcome of fitting a non-Lagrangian model to transported
space-time data and the outcome of fitting a Lagrangian model to space-time data
that are not transported. We conduct the study under both second-order stationarity
and nonstationarity assumptions.

4.1 Second-Order Stationarity

For the Lagrangian spatio-temporal model, we hinge our simulation studies on a par-
ticular class of non-frozen models whose explicit forms were derived in Schlather



Lagrangian Spatio-Temporal Nonstationary Covariance Functions 437

(2010).WhenV ∼ Nd(μV,ΣV) andCS is the stationary squared exponential covari-
ance function, the model in (1) takes the form

C(h, u) = 1
√|Id + ΣVu2|

exp
{
−a (h − μVu)�

(
Id + ΣVu

2
)−1

(h − μVu)
}

,

(10)
where a > 0 is a scale parameter in space inherited from CS , and μV and ΣV are
the Lagrangian parameters. When μV = 0 and ΣV = σ 2

VId , the Lagrangian model
above reduces to

C(h, u) = 1

(1 + σ 2
Vu

2)d/2
exp

(
− a‖h‖2
1 + σ 2

Vu
2

)
, (11)

which is a spatio-temporal isotropic covariance function under the Gneiting class
(Gneiting 2002). The Gneiting model in (11), therefore, corresponds to a particular
Lagrangian model wherein the advection velocity vector has mean zero and has
independent components with common variance. While σ 2

V is interpreted as the
marginal variance of each component ofV in Lagrangian models, in non-Lagrangian
models such as that in (11), σ 2

V serves as a scale parameter in time, whose inverse
controls the range of dependence in time.

A question of scientific interest is how the twomodels differ when the components
of the advection velocity are no longer uncorrelated or when they do not share a
common variance or when the advection velocity vector has a nonzero mean. To
answer the first inquiry, we can scrutinize the form in (10) and compare it with (11).

Suppose d = 2, μV = 0, and ΣV = σ 2
V

[
1 ρ
ρ 1

]
then (10) reduces to

C(h, u) = 1
√

(1 + σ 2
Vu

2)2 − (ρσ 2
Vu

2)2
exp

[

−a

{
(h2x + h2y)(1 + σ 2

Vu
2) − 2hyhxρσ 2

Vu
2

(1 + σ 2
Vu

2)2 − (ρσ 2
Vu

2)2

}]

.

(12)

Direct comparisons between (11) and (12) for different values ofρ are not straight-
forward since the terms bearing ρ involve the temporal lag u and the components of
the spatial lag h = (hx , hy)

�. However, we can plot the values of (12) for different ρ,
u, and h, in order to visualize how the non-frozen Lagrangian spatio-temporal model
deviates from the non-Lagrangian spatio-temporal model when the components of
V are correlated. Figure 4 provides such illustrations. It juxtaposes the covariance
function values of the non-frozen Lagrangian spatio-temporal model,CLGR for nota-
tional convenience, at different combinations of spatial lags with Euclidean norm
equal to 1, at u = 1, 2, and 3, and at different strengths of dependence between the
components of the advection velocity. In the plots, the values of the covariance func-
tion are plotted as the distance from the origin (0, 0) to (hx , hy). Note that the case
ρ = 0 corresponds to the spatio-temporal Gneiting model in (11), denoted as CG.
The isotropy of CG , at any u, manifests by the constant value of CG when evaluated
at any (hx , hy). Another standout observation is that the value of CLGR depends on
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Fig. 4 Values of the non-frozen Lagrangian spatio-temporal covariance model in (12) for ρ =
0, 0.1, 0.5, and 0.9, at temporal lags u = 1, 2, and 3, at every h = (hx , hy)

� such that ‖h‖2 = 1.
Note that the case ρ = 0 corresponds to the non-Lagrangian Gneiting model in (11)

the signs of the components of the spatial lag and the magnitude of the correlation
parameter ρ.

It can also be seen in the example in Fig. 4 that at u = 1, when hx and hy have
the same signs, CG is less than CLGR. However, when hx and hy have different signs,
CG is greater than CLGR. This relationship between CG and CLGR at u = 1 does not
persist as the temporal lag increases as other scenarios are observed. At u = 3, for
example, CG and CLGR are almost identical when ρ is near zero. However, when
ρ = 0.5 or ρ = 0.9, CG is less than CLGR in any direction. The difference, there-
fore, between CG and CLGR under the presence of a nonzero dependence parameter
between the components of V is not clear-cut but can be explored under some sce-
narios. Nevertheless, the deviation of CLGR from CG gets more pronounced as ρ

increases.
We turn to some numerical experiments to answer the other unexplored ques-

tions, including what happens when CG is fitted to data simulated from CLGR,
denoted DLGR, such that the components of V have different marginal variances
or V has a nonzero mean. Suppose T = 10, N = 100, d = 2. The values DLGR =
Z = (Z�

1 , . . . ,Z�
10)

�, such that Zt = {Z(s1, t), . . . , Z(s100, t)}�, (s, t) ∈ R
2 × R,

are simulated from (10), with a = 5, on a 10 × 10 grid in the unit square, under
the following distributions of V:

(a) V ∼ N2

{
μ = 0,Σ =

(
1 ρ
ρ 1

)}
at different values of ρ;

(b) V ∼ N2

{
μ = 0,Σ =

(
1 0
0 σ 2

y

)}
at different values of σ 2

y ;

(c) V ∼ N2
{
μ = (μ,μ)�,Σ = I2

}
at different values of μ.

We reserve the values of Z10 for prediction purposes and use the remaining 900
spatio-temporal realizations for estimation. Given the small problem size, full maxi-
mum likelihood estimation is performed; see (8). At this point, we question the effect
of different values of ρ, σ 2

y , andμ on the estimates of σ 2
V in the non-Lagrangianmodel
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in (11). Figure 5 gives the boxplots of parameter estimates σ̂ 2
V for 100 rounds of fit-

ting CG on DLGR. The values of σ̂ 2
V reflect the changing degree of dependence in

space-time as we change the values of the different parameters associated to the
distribution of V. In the first panel in Fig. 5, for example, when ρ = 0.9, the median
of the estimates is 0.887 which translates to a stronger dependence in time, a fact
also established in Fig. 4. In the middle set of boxplots, interestingly, the median
of σ̂ 2

V is approximately equal to (1 + σ 2
y )/2. This result cannot be easily explained

mathematically. Numerically, however, this is expected as the optimization routine
finds the isotropic model parameters that maximize the log-likelihood given data
simulated from a model with elliptical contours that are stretched in the x-axis.
Lastly, as the mean of V gets farther from 0, the estimate for σ 2

V has to compensate
for a faster decorrelation in time which explains the increasing median of σ̂ 2

V as μ

increases. In the initial experiments concerning Fig. 5c, a number of experimental
replicates obtained σ̂ 2

V with values greater than 100 as μ increases. To obtain more
compact boxplots, we re-ran the experiments and bounded the values that σ̂ 2

V can
take to 10. This does not alter the insights provided by the unconstrained version
of the experiments for Fig. 5c and the results presented in Fig. 5a and b. That is, as
the non-frozen Lagrangian spatio-temporal model deviates from the non-Lagrangian
scenario, i.e.,V ∼ N2(μV,ΣV), whereμV = 0, andΣV = σ 2

VI2, the more disparate
the models (10) and (11) become.

Next, we study the effect of ρ on the predictions and the quality of those predic-
tions. Often, the assessment of the quality of the predictions is done by computing
the Mean Square Error (MSE)

MSE = 1

100

100∑

l=1

{
Ẑ(sl, 10) − Z(sl , 10)

}2
,

where Ẑ(sl, 10) is the prediction for Z(sl , 10) at spatial location sl , l = 1, . . . , 100,
and temporal location t = 10.Assuming themeanof themeasurement vector thatwas
used to estimate the parameters is 0, i.e., E

(
Z1,9

) = 0, whereZ1,9 = (
Z�
1 , . . . ,Z�

9

)�
,

predictions are computed using the simple kriging predictor

Ẑ(sl, 10) = c�
l Σ(Θ)−1Z1,9.

Here cl is the vector of N × (T − 1) covariance function values between Z(sl , 10)
and Z(sr , t), r = 1, . . . , N and t = 1, . . . , 9, i.e.

cl = {C(sl, s1; 10, 1), . . . ,C(sl , sN ; 10, 1),C(sl , s1; 10, 2), . . . ,C(sl , sN ; 10, 9)}� .

(13)
Nevertheless, the MSE is unable to give an appropriate measure of the loss of

statistical efficiency in cases when a different model is used instead of the truemodel.
In this regard, we turn to the proposed criteria of Stein (1999), namely, the Loss of
Efficiency (LOE) and the Misspecification of the Mean Square Error (MOM). The
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Fig. 5 Estimates of σ 2
V in (11) when fitted to DLGR generated using (10) with (a) V ∼

N2

{
μ = 0,Σ =

(
1 ρ
ρ 1

)}
at different values of ρ, (b) V ∼ N2

{
μ = 0,Σ =

(
1 0
0 σ 2

y

)}
at different

values of σ 2
y , and (c) V ∼ N2

{
μ = (μ,μ)�,Σ = I2

}
at different values of μ

LOE and MOM at space-time location (sl, t) are computed as follows:

LOE(sl, t) = Etr,m(sl, t)
Etr (sl, t)

− 1 and MOM(sl, t) = Em(sl, t)
Etr,m(sl, t)

− 1, (14)

where Etr (sl, t) and Em(sl, t) are the mean square errors of the predictors under the
true, tr , and misspecified, m, models, respectively, and are calculated as follows:

E j (sl, t) = C(sl , sl; t, t) − c j
l

�
Σ(Θ∗)−1c j

l , j = {tr,m} , (15)

where c j
l and Σ(Θ∗) are computed using Θ∗ = Θ , for model tr , and Θ∗ = Θ̂

m
for

model m. Here Θ is the true parameter vector while Θ̂
m
is the estimated parameter

vector under the model m. On the other hand, Etr,m(sl, t) is the mean square error,
with respect to the true model, of the predictor that is derived from the misspecified
model, and is given as

Etr,m(sl, t) = C(sl, sl; t, t) − 2ctrl
�
Σ(Θ̂

m
)−1cml + cml

�
Σ(Θ̂

m
)−1Σ(Θ)Σ(Θ̂

m
)−1cml .

(16)
Figure 6 plots the LOE and MOM values at every prediction location at t = 10. The
LOE is closer to zero when ρ is near zero compared to the LOE when ρ = 0.9. An
LOE near zero indicates that the misspecified model is similar to the true model.
Furthermore, the change in the LOE at each prediction location as we increase ρ is
different and is somehowdictated by the contours of the distribution ofV. Thismeans
that the quality of predictions is not equal everywhere and the worst misspecification
occurs in the direction where the highest correlation under CLGR occurs. The plots
for the MOM convey the same story.



Lagrangian Spatio-Temporal Nonstationary Covariance Functions 441

ρ = 0.1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s y
LO

E
ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

sx
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s y
M

O
M

sx
0.0 0.2 0.4 0.6 0.8 1.0

sx
0.0 0.2 0.4 0.6 0.8 1.0

sx
0.0 0.2 0.4 0.6 0.8 1.0

sx
0.0 0.2 0.4 0.6 0.8 1.0

sx
0.0 0.2 0.4 0.6 0.8 1.0

sx
0.0 0.2 0.4 0.6 0.8 1.0

sx
0.0 0.2 0.4 0.6 0.8 1.0

sx
0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.55

1.08

−0.65

−0.33

−0.01

Fig. 6 Values of the LOE and MOM at every spatial location when CG is fitted to DLGR simulated
with ρ = 0.1, . . . , 0.9. The closer the LOE values are to zero or the bluer the plots are, the better.
Similarly, the closer the values of the MOM are to zero or the redder the plots are, the better

4.2 Second-Order Nonstationarity

Similar analyses cannot be easily adapted to the nonstationary counterparts of the
models in the previous section since the covariances may depend on arbitrary nonsta-
tionarity parameters at each spatio-temporal location. However, we can draw insights
on the consequences of fitting CG to data generated fromCLGR and vice versa, under
second-order nonstationarity, by again looking at the quality of predictions.

The non-Lagrangian nonstationary covariance model used in the succeeding
numerical experiments, CG

NS , is the nonstationary version of (11) proposed in Garg
et al. (2012). It has the form

C(s1, s2; u) = σ(s1, s2)
(1 + atu2)d/2

Mν

[{
(s1 − s2)�D(s1, s2)−1(s1 − s2)

}1/2

(1 + atu2)1/2

]
, (17)

where σ(s1, s2) and D(s1, s2) are defined in Sect. 2 and the parameter at > 0 is the
scale parameter in time.Data generated from (17) are labeled DG

NS . On the other hand,
CLGR

NS is the non-frozen Lagrangian spatio-temporal nonstationary model in (5) and
data from this model are tagged as DLGR

NS . We assess the quality of the predictions
by comparing the mean LOEs (MLOE) and mean MOMs (MMOM) when CG

NS is
fitted to DLGR

NS and when CLGR
NS is fitted to DG

NS (Hong et al. 2021). Figure 7 plots the
medians of the computed MLOE and MMOM for both scenarios after 100 rounds of
parameter estimation via maximization of the full log-likelihood at different values
of ρ. It can be seen that at every ρ, the medianMLOE is greater whenCG

NS is fitted to
DLGR

NS compared to the median MLOE when CLGR
NS is fitted to DG

NS . Moreover, both
scenarios of model misspecification yield median MMOMs that are far from zero.
However, the median MMOMs are more favorable in cases when CLGR

NS is fitted to
DG

NS at larger values of ρ. This should advocate the use of Lagrangian models even
when the random field does not appear to be transported.
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5 Application to Particulate Matter Data

A spatio-temporal process that is known to be heavily influenced by the presence of a
transport medium is pollutant measurements. Pollutants in the atmosphere are trans-
ported by the wind to neighboring sites over time (National Research Council 2010).
This behavior causes the pollutant measurements at one site to be strongly correlated
to the pollutant measurements at a site along the path of transport. Thus, a model
incorporating this transport behavior to its spatio-temporal dependence structure is
physically reasonable.

5.1 PM 2.5 Data

Westudy the spatio-temporal dependence of log particulatematter (logPM2.5) resid-
uals. We retrieve the Modern-Era Retrospective Analysis for Research and Appli-
cations, Version 2 (MERRA-2) reanalyses dataset of hourly PM 2.5 measurements
from NASA Earthdata. Preliminary processing of the raw PM 2.5 data was done to
ensure that the resulting spatio-temporal residuals fulfill the modeling assumptions
of Gaussianity and zero mean. We consider the first 744 hourly measurements for
each year from 1980–2019, at 550 spatial locations, as spatio-temporally dependent,
while measurements across years are regarded as spatio-temporally independent.
Since the measurements between any two years are at least 11 months apart, this
independence assumption is reasonable. Figure 8 maps the log PM 2.5 residuals at
550 locations in Saudi Arabia, at 4 h intervals, starting from 0:00 of January 1, 2017.
The transport behavior is evident and can be identified when following the red, blue,
and yellow blobs. The direction of transport at every spatial and temporal location
appears to be different as the displacements of the red blob indicate transport to the
South or South East direction while a North or NorthWest movement can be detected
from the yellow blob.
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Fig. 8 Snapshots of the log PM 2.5 residuals on January 1, 2017. The spatial images are 4 h apart.
Two reference locations are marked for ease of transport movement detection

5.2 Models

Wefit six different spatio-temporal covariance functionswithMatérn spatialmargins.
The models under consideration are the following:

• M1: Non-frozen Lagrangian spatio-temporal stationary covariance:

C(h; u) = σ 2EV {Mν (a‖s1 − s2 − Vu‖)} ;

• M2: Non-frozen Lagrangian spatio-temporal spatially varying parameters model
in (5);

• M3: Non-frozen Lagrangian spatio-temporal deformation model in (6);

• M4: Non-Lagrangian spatio-temporal stationary covariance:

C(h; u) = σ 2

(at |u|2α + 1)βd/2
Mν

{
a‖h‖

(at |u|2α + 1)β/2

}
,

where α ∈ (0, 1] is the smoothness parameter in time and β ∈ [0, 1] is the space-
time interaction parameter;

• M5: Non-Lagrangian spatio-temporal nonstationary model:

C(s1, s2; u) = σ(s1, s2)
(at |u|2α + 1)βd/2

Mν

[{
(s1 − s2)�D(s1, s2)−1(s1 − s2)

}1/2

(at |u|2α + 1)β/2

]
,

a more flexible version of the model in (17); and
• M6: Non-Lagrangian spatio-temporal nonstationary covariance II:

C(s1, s2; t1, t2) = σ(s1, s2)

{|(t1 − t2)D(t1, t2)|2α + 1}β Mν

[
{(s1 − s2)�D(s1, s2)−1(s1 − s2)}1/2

{|(t1 − t2)D(t1, t2)|2α + 1}β/2

]

,

where D(t1, t2) = 1
2 {D(t1) + D(t2)} and D(t) controls the temporally varying

parameters. This is a more general nonstationary version of model M5; see Garg
et al. (2012).
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Table 1 A summary of the models fitted to the log PM 2.5 residuals and their corresponding
AIC∗, BIC∗, and MSE. The lower the values, the better. The best scores are in bold. The number
of parameters, q, are also reported

Model q AIC∗ BIC∗ MSE

M1 (S) 8 −13, 823, 238 −13, 823, 121 0.0050

M2 (NS) 37 −15, 051, 228 −15, 050, 688 0.0018

M3 (NS) 28 −14, 859, 980 −14, 859, 571 0.0023

M4 (S) 6 −13, 408, 544 −13, 408, 456 0.0171

M5 (NS) 35 −13, 808, 486 −13, 807, 975 0.0081

M6 (NS) 44 −14, 315, 594 −14, 314, 951 0.0035

The expectations in models M1, M2, and M3 are evaluated numerically with
respect toV ∼ N2(μV,ΣV). Furthermore, the covariancematrixΣV is parametrized
using its Cholesky decomposition to guarantee positive definiteness.

Each pixel in Fig. 8 is 0.5◦ × 0.625◦. The spatial coordinates are transformed
to their appropriate projections in kilometers (km). This means that the unit of the
advection velocity is in km/hr. The minimum distance between any two stations
is 16.9 km. Following the techniques presented in Sect. 3, we order the measure-
ments based on their locations in time and group them into blocks of 6 consecutive
purely spatial random fields and maximize the approximated log-likelihood in (9).
Moreover, we perform a two-step estimation where we retrieve first the estimates
of the space and time parameters of the stationary versions and plug in those esti-
mates to the nonstationary models in the next round of maximizing the approximated
log-likelihood with respect to the nonstationarity parameters.

To validate the models, we leave out the spatio-temporal observations in the last
5 h of January 31 and predict the measurements at all spatial locations. Table 1
reports the performance of the six models as measured by the MSE, Akaike (AIC∗),
and Bayesian information criteria (BIC∗), where AIC∗ = −2l(Θ̂1, Θ̂2) + 2q and
BIC∗ = −2l(Θ̂1, Θ̂2) + q log(Mn). Here l(Θ̂1, Θ̂2) is the value of the approxi-
mated log-likelihood function at the second estimation step with parameter esti-
mates Θ̂2 while fixing the parameters Θ̂1 obtained at the first estimation step and
M is the number of independent replicates of the spatio-temporal random field.
The nonstationary models show more favorable AIC∗ and BIC∗ values compared to
their stationary counterparts. The additional nonstationarity parameters provided the
nonstationary models more flexibility to model the space-time data. In terms of pre-
diction, the Lagrangian models report lower MSEs than the non-Lagrangian models.
Overall, the non-frozen Lagrangian spatially varying parameters model M2 is the
best performing model across all criteria. The estimated mean and covariance matrix
of V under M2 are μ̂ = (−0.0003, 0.0017)� km/hr and Σ̂ = (

1.719 2.257
2.257 3.301

) × 10−5

km2/hr2. This indicates that the estimated value of the correlation between the com-
ponents of V is ρ̂ = 0.948.
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6 Conclusion

The theme of this work focused on the practicalities of using Lagrangian spatio-
temporal covariance functions to model space-time data, especially under second-
order nonstationarity assumptions. The work undertaken in this article aims to illus-
trate the usability and utility of Lagrangian spatio-temporal models.

We demonstrated the use of thin plate splines in modeling second-order non-
stationarity parameters. We also advocated the maximization of the approximated
log-likelihood function when data are available at regular time intervals. We showed
through several numerical studies the effect of fitting Lagrangian models to data gen-
erated from non-Lagrangian models, and vice versa. We found that the predictions of
non-Lagrangian models on Lagrangian data are of inferior quality compared to the
quality of predictions of Lagrangian models on non-Lagrangian data. This should
provide support to using Lagrangian models even when the spatio-temporal random
field is not transported.

Furtherworkwouldbe to validate the estimateddistributionof the advectionveloc-
ity vector against the real wind data used as inputs to a partial differential equation
which generated the PM 2.5 measurements under study. The equivalence between
Lagrangian spatio-temporal models and physical models such as the advection-
dispersion equations in Physics is not straightforward and is worth exploring.

The models used in this work as underlying purely spatial nonstationary covari-
ance functions were limited to only two classes. There are other classes in the litera-
ture whose Lagrangian formulations deserve attention in terms of model interpreta-
tion and parameter estimation, such as the dimension expansion and basis functions
models. Future work will focus on these other classes.
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Logratio Approach to Distributional
Modeling

Peter Filzmoser, Karel Hron, and Alessandra Menafoglio

Abstract Distributional data, such as age distributions of populations, can be treated
as continuous or discrete data, but themain interest is in the relative information, e.g.,
in terms of ratios (or logratios) between the different age classes. Here we present
a unifying framework for the discrete and the continuous case based on the theory
of Bayes spaces. While the discrete case is more widely treated in the literature,
the continuous case allows to make a link to functional data analysis. Moreover, the
methodological framework of Bayes spaces can also be used to develop methods for
analyzing several distributional variables simultaneously. It turns out that the centered
logratio transformation is a convenient tool for practical computations. Two real data
examples illustrate the usefulness of this framework.

1 Introduction

Multivariate functional data arise frequently from distributing a given whole into a
finite or infinite number of components. This is reflected, also, by the domain of
such observations (data objects) which can be either countable or uncountable. In
the latter case, the domain is represented by a subset of the real line; for the mul-
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tivariate observations, this must not necessarily be the case as components might
represent disjoint categories. Clearly, these data have a relative character from their
nature, but in contrast to univariate relative data, now the additional feature is the
mentioned distribution of the whole among the parts. Accordingly, such observations
can be called distributional data. Formally, distributional variables can be defined in
terms of symbolic data analysis (Billard and Diday 2006; Diday 2016). Within this
methodological framework, they can be understood intuitively as variables formed
by realizations of a random variable and their respective relative frequencies, being
the result of aggregating large-scale data. However, for practical reasons, it may
be preferable to consider distributional data more generally as objects which carry
relative information and to develop any related methodology for their statistical pro-
cessing in the frame of object-oriented data analysis (Marron and Alonso 2014).
Distributional data thus represent variables (objects) whose values contain quantita-
tively expressed relative contributions on a whole— not necessarily a distribution in
the probabilistic or symbolic data sense. According to their domain (either countable
or uncountable), distributional variables are classified into discrete and continuous.
An example of the former is the relative structure of the GDP (Gross Domestic Prod-
uct), the structure of death causes, or the chemical composition of a rock; instances
of the latter are represented by population pyramids and particle size distributions.
Each of these distributional variables can be analyzed separately. However, they can
also occur together in a data set raising the challenge to analyze their relation to other
quantitative or qualitative variables, or the association between themselves.

The actual representation of contributions on the whole (probabilities, concen-
trations, ppm, etc.) can be chosen arbitrarily without any loss of information, a
property which is typical for compositional data (Aitchison 1986; Filzmoser et al.
2018; Pawlowsky-Glahn et al. 2015). The relative character of distributional vari-
ables is easy to imagine for the discrete case. For the continuous setting, the domain
is characterized by a subset of the real line, which is typically a bounded (or, some-
times an unbounded) interval. In this case, the probability-like function is replaced
by a density, i.e., a non-negative Borel measurable function with unit integral con-
straint. An example here is the age/income distribution in a certain region—the finite
domain being replaced by an infinite one. Note that, even if we used a representation
of the density that would lead to another integral value, the main feature—i.e., that
the density conveys relative contributions of Borel sets (subsets of the domain) to
the overall probability (weight, frequency)—remains unaltered. In other words, both
compositional data and density functions as distributional variables share the prop-
erty of scale invariance. Additionally, also their relative scale should be taken into
account. For example, for the case of densities, the relative increase of a probability
over a Borel set from 0.05 to 0.1 (multiple of two) differs from the increase of 0.5 to
0.55 (multiple of 1.1), although the absolute differences are the same in both cases.
Accordingly, not only scale invariance, but also relative scale of distributional vari-
ables should be reflected by their statistical processing. The features of both discrete
and continuous distributional variables are captured by the general framework of the
Bayes space (van den Boogaart et al. 2014) which results in the Aitchison geometry
on the simplex (Egozcue et al. 2003) when considering the special case of discrete



Logratio Approach to Distributional Modeling 453

distributional data (i.e., compositional data). Notably, the logratio methodology of
compositional data is also useful for the development of methods for symbolic data
analysis (Hron et al. 2017).

Even though compositional data analysis belongs to multivariate statistics and
the statistical processing of densities to functional data analysis (FDA, Ramsay and
Silverman 2005), they both represent just univariate cases when considering them as
distributional variables. Therefore, the main challenge in this setting is to extend the
existing compositional methodology to handle more than one distributional variable
(discrete or continuous) simultaneously. The aim of this chapter is to go a step
forward in this direction. Therefore, the next section is devoted to the description
of Bayes spaces and, as a special case, the Aitchison geometry for compositional
data, that form the milestones to introduce the statistical analysis of compositions
and density functions under a common framework through the logratio approach.
Concrete aspects of their modeling, with extension to multivariate distributional
variables, are discussed in Sect. 3. Two real-world data sets, representing discrete
and continuous distributions, are used in Sect. 4 to illustrate the methodological
developments. Finally, Sect. 5 concludes the work.

2 The Bayes Space Embedding for Compositional Vectors

2.1 An Introduction to Bayes Spaces

The distribution of a random variable is characterized by a σ -finite positive mea-
sure μ on a measurable space (�,A). Although in practice exclusively proba-
bility measures P are considered for this purpose, the condition of normaliza-
tion by P(�) = 1 is rather a convention than an actual need. In fact, any prob-
ability measure forms just a representation of a family of proportional measures
M = {μ | ∃c > 0 : ∀A ∈ A, μ(A) = cP(A)}, which are equivalent from the view-
point of the relative information they provide. Indeed, a rescaling of the measure
leaves the ratios (or logratios) between its “parts” unchanged—i.e., between the
measure of the measurable subsets of �—which, in turn, is the only relevant infor-
mation embedded into the measure itself. As such, two measures μ, ν are equivalent
if they are proportional, denoted hereafter by μ =B(λ) ν, where λ is a reference mea-
sure on (�,A). Given a measure μ, if there exists its Radon–Nikodym derivative
with respect toλ (i.e., the density dμ/dλ), it is identifiedwith themeasureμ itself. As
long as (R,B(R)) is concerned, the reference measure λ is often set to the Lebesgue
measure. However, any probability measure P could be considered as well. Given a
reference measure P, the equivalence classes of σ -finite measures can be equipped
with the geometrical structure of a Bayes space as in van den Boogaart et al. (2010),
whose origin is precisely the referencemeasureP.More specifically, a Bayes space is
a space of (B(P)-equivalence classes of σ -finite) measures on (�,A) endowed with
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a vectorial structure induced by the perturbation and powering operations (⊕,�),
which are defined as

(μ ⊕ ν)(A) = B(P)

∫
A

dμ

dP
(x)

dν

dP
(x) dP(x); (1)

(α � μ)(A) = B(P)

∫
A

(
dμ

dP
(x)

)α

dP(x), (2)

withμ, ν elements of the space and α a real number. Both perturbation and powering
can also be expressed in terms of densities; for f = dμ/dP and g = dν/dP we get

( f ⊕ g)(x) =B(P) f (x)g(x), (α � f )(x) =B(P) f (x)α. (3)

The result of both operations are densities again, possibly rescaled to unit integral
constraint using the closure operation C( f ) = f∫

f dP . Subtraction (or perturbation-
subtraction) of densities is then defined as f � g = f ⊕ (−1 � g) =B(P) f/g. This
operation can be used, e.g., to change the reference measure to P1 by employing the
well-known chain rule, (dμ/dP1)(dP1/dP) = dμ/dP.

Given a reference measure P, we call B2(P) the Bayes space whose elements are
(B(P)-equivalence classes of σ -finite) measures μ such that

∫ ∣∣∣∣ln dμ

dP

∣∣∣∣
2

dP < +∞.

Here, measures are identified with the corresponding Radon–Nikodym densities. In
B2(P) an inner product was defined originally in van den Boogaart et al. (2014),
reformulated later in Talská et al. (2020) in order to keep the dominance under a
change of the reference measure

〈 f, g〉B2(P) = 1

2P(�)

∫ ∫
ln

f (x)

g(x)
ln

f (y)

g(y)
dP(x) dP(y), (4)

for f, g densities in B2(P). The induced notions of norm and distance are then

|| f ||B2(P) = 1

2P(�)

∫ ∫
ln2

f (x)

f (y)
dP(x) dP(y)

and

dB2(P)( f, g) = 1

2P(�)

∫ ∫ (
ln

f (x)

f (y)
− ln

g(x)

g(y)

)2

dP(x) dP(y),

respectively. The space B2(P) equipped with the operations of perturbation and
powering (⊕,�), and the inner product 〈·, ·〉 is a separable Hilbert space (van den
Boogaart et al. 2014).

The reference measure P may be chosen according to convenience, although one
should be aware that the scale of the reference measure matters for the value of the



Logratio Approach to Distributional Modeling 455

inner product (van den Boogaart et al. 2014; Talská et al. 2020). Although several
options are discussed in van den Boogaart et al. (2014), two cases are thoroughly
considered in the literature: (a) the continuous uniform distribution Pc (van den
Boogaart et al. 2014; Hron et al. 2016; Menafoglio et al. 2014; Talská et al. 2018),
and (b) the discrete uniform distribution Pd , which leads to the Aitchison geometry
(Aitchison 1986; Egozcue et al. 2003; Pawlowsky-Glahn et al. 2015). The continuous
uniformmeasure, defined on the interval I = [a, b](≡ �), is commonly represented
by the Lebesgue measure, λ(I ) = b − a = η, with the respective density

dPc

dλ
(x) = dλ

dλ
(x) = 1;

it can be considered as a reference for functional distributional variables (i.e., con-
tinuous densities) with bounded domain. Nevertheless, Pc has often been consid-
ered as reference even for variables with (theoretically) unbounded domain, e.g., by
neglecting subdomains with very rare occurrence. In all these cases, the inner product
simplifies to

〈 f, g〉B2(Pc) = 1

2η

∫ b

a

∫ b

a
ln

f (x)

g(x)
ln

f (y)

g(y)
dx dy,

and by virtue of the Weierstrass theorem, continuous densities belong to B2(Pc).
In case of multivariate compositional data, the discrete uniform distribution is

usually employed as a reference measure on � = {m1, . . . ,mD} (Egozcue and
Pawlowsky-Glahn 2016), i.e.,

dPd

dλ
(x) = 1, x ∈ �,

thus obtaining the Aitchison geometry. Here, compositions with D parts, x =
(x1, . . . , xD)′, are identifiedwith discrete probability functions over� (thus referring
to a discrete distributional variable). Having set the unit sum representation of com-
positions, the sample space of compositional data becomes the (D − 1)-dimensional
simplex

SD =
{
x = (x1, . . . , xD)′, xi > 0,

D∑
i=1

xi = 1

}
.

In this setting, the closure operation reads C(x) = x/
∑D

i=1 xi ; as before, both x and
C(x) belong to the same equivalence class. For two compositions x, y ∈ SD and a
real α, the operations of perturbation and powering read

x ⊕ y =B2(Pd ) C(x1y1, . . . , xD yD)′, α � x =B2(Pd ) C(xα
1 , . . . , xα

D),

respectively, and the Aitchison inner product
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〈x, y〉A = 1

2D

D∑
i=1

D∑
j=1

ln
xi
x j

ln
yi
y j

.

This geometry is the basis of compositional data analysis of multivariate composi-
tional vectors, based on the logratio approach. In the next subsection, we illustrate a
practical strategy to employ the Bayes space geometry, either continuous or discrete,
for the statistical analysis of compositions.

2.2 Statistical Analysis in Bayes Spaces

A statistical analysis of continuous or discrete density functions needs to properly
account for both the data dimensionality and the geometrical structure governing
Bayes spaces. In fact, although continuous densities are functional data and dis-
crete compositions are multivariate observations, they both are featured by the basic
properties of compositions (as scale invariance and relative scale), that are captured
neither by FDA nor by classical multivariate methods. For instance, most methods
of FDA rely on the assumption that the data belong to the space L2(λ) of squared-
integrable functions with respect to the Lebesgue measure (the general case of L2(P)

needs to be mapped to L2(λ) using a nonlinear transformation Talská et al. 2020).
However, the geometrical structure of the space L2(λ) is not appropriate for compo-
sitions (e.g., the point-wise sum of compositions does not result in a composition).
Similarly, most multivariate statistical methods are built in the Euclidean setting,
which is not appropriate to analyze discrete compositions. Nevertheless, as long as
the data are embedded in a separable Hilbert space, one can map the observations
into L2(λ) or into the Euclidean space RD , and accordingly perform the statistical
analysis via FDA or multivariate statistics, while accounting for the Bayes space
geometry.

Let us first focus on the continuous case, having set the reference measure to a
probability measureP. As separable Hilbert spaces, an isometric isomorphism exists
between B2(P) and a subspace of L2(P). An instance of such an isometry is provided
by the centered logratio (clr) transformation, defined for a density f = dμ/dP as

clr( f ) = ln f − 1

P(�)

∫
ln f dP. (5)

Consequently, for α ∈ R, f, g ∈ B2(P) the following relations hold,

clr( f ⊕ g) = clr( f ) + clr(g), clr(α � f ) = α · clr( f ),

〈 f, g〉B2(P) = 〈clr( f ), clr(g)〉L2(P).
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We note that these relations enable one to handle clr transformed densities in the
L2 setting. Due to its construction, clr transformations fulfill the integral constraint∫
clr( f ) dP = 0 that should be taken into account in any statistical analysis based on

clr transformed data. The subspace of functions with zero integral wrt. P is denoted
hereafter as L2

0(P). Moreover, in case of a uniform reference measureP ≡ Pc, which
is of primary importance in practical applications, (5) reads

clr( f )(t) = ln f (t) − 1

b − a

∫ b

a
f (τ ) dτ. (6)

Note that it would also be possible to get rid of the zero integral constraint resulting
from the clr transformation, e.g., by expressing the densities via the Fourier coeffi-
cients of a basis in B2(Pc) (such as Legendre polynomials Tolosana-Delgado et al.
2008 or orthogonal splines Machalová et al. 2020); though, most recent literature
works propose clr-based methods (Hron et al. 2016; Menafoglio et al. 2014; Talská
et al. 2018).

The situation is a bit different for compositional data (the case ofPd ), where the clr
transformation of a composition x (in fact, coefficients with respect to a generating
system on the simplex) results in

clr(x) = (y1, . . . , yD)′ =
⎛
⎝ x1

D

√∏D
i=1 xi

, . . . ,
xD

D

√∏D
i=1 xi

⎞
⎠

′

. (7)

An orthonormal coordinate system can be built on the hyperplane y1 + . . . + yD = 0,
induced by clr coordinates, which is commonly called isometric logratio (ilr) coor-
dinates (Egozcue et al. 2003). Sequential binary partitioning (SBP) (Egozcue and
Pawlowsky-Glahn 2005) provides a range of possibilities to build interpretable ilr
coordinates. Indeed, SBPs enables one to construct D − 1 coordinates with respect to
an orthonormal basis of the simplex, on the basis of balances between groups of com-
positional parts, represented through their geometric means. The use of SBP usually
requires some prior knowledge about the problem at hand. However, “automated”
versions of orthonormal coordinates can be considered as well (Fišerová and Hron
2011). For instance, for a composition x one can obtain the (D − 1)-dimensional
real vector z = (z1, . . . , zD−1)

′, as Hron et al. (2012)

zi =
√

D − i

D − i + 1
ln

xi
D−i

√∏D
j=i+1 x j

, i = 1, . . . , D − 1, (8)

a permuted version of coordinates from Egozcue et al. (2003), known as pivot coor-
dinates in compositional data analysis (see Filzmoser et al. 2018, p. 49). Note that
only the first pivot coordinate contains the part x1 in terms of its logratio to the
remaining parts at hand, thus it conveys information about the dominance of x1
“on average”. The remaining pivot coordinates (z2, . . . , zD−1) then represent the
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subcomposition including the parts x2, . . . , xD . We notice that if the l-th part is of
interest, one can consider a permutation of the parts in the input composition such
that xl , l = 1, . . . , D takes the first position, the others being placed arbitrarily (dif-
ferent orthonormal coordinate systems are just rotations of each other Egozcue et al.
2003). In this case, the first element of the corresponding pivot coordinates, denoted
by z(l) = (z(l)

1 , . . . , z(l)
D−1)

′ would have the above interpretation.
An explicit relationship exists between the clr transformation and the first element

of z(l), as yl =
√

D−1
D z(l)

1 . This relation can be used to support the interpretation of
clr variables.

Once compositional data are expressed either via clr or in orthonormal coordi-
nates, all the standard methods of multivariate statistics that rely on the Euclidean
geometry (Eaton 1983) can be employed. We discuss this in more detail in the next
section from the perspective of modeling of distributional variables.

3 Implications for Distributional Modeling

In both the discrete and the continuous settings (i.e. compositional data and den-
sity functions), most methodologies available for logratio modeling in Bayes spaces
address just a univariate perspective from the viewpoint of object-oriented data anal-
ysis. Indeed, object- oriented methods open the possibility to cope with cases where
each statistical unit is formed by a set of more than one distributional variable (i.e.,
a vector of distributional variables), that appear with increasing frequency in the
applications. This raises an urgent need to provide sets of coordinates for composi-
tional data and densities, that would enable one to perform joint analyses of discrete
and continuous distributional data, through multivariate object-oriented statistical
analyses.

The problem of building coordinates for compositional data can be addressed
either through the centered logratio coefficients (7), or by using orthonormal coor-
dinates (8). Although for some methods (e.g. principal component analysis and the
associated compositional biplots Aitchison and Greenacre 2002) the clr coefficients
are preferable, in other cases both options are allowed (e.g. cluster analysis, or regres-
sion analysis with compositional covariates Bruno et al. 2015). On the other hand,
the link between clr coefficients and first pivot coordinates can be used also for the
mentioned case of principal component analysis (Kynčlová et al. 2016). It follows
that in practice, whenever possible, the orthonormal coordinates are employed. The
reason for this relies on the fact that they guarantee a regular covariance matrix of
the observations, which is a must for most robust multivariate methods (Filzmoser
and Hron 2011; Filzmoser et al. 2018). In the continuous case, a set of coordinates
can be obtained by using the Fourier coefficients of a basis in B2(Pc) (Egozcue et al.
2006), or a B-spline representation of clr transformed densities (Machalová et al.
2016; Machalová et al. 2020). Note that, in the latter case, one should take care of
the fact that B-splines should be orthonormalized first (Machalová et al. 2020).More-
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over, except for particular cases (van den Boogaart et al. 2014), density functions
need infinitely many coefficients to be described. Thus, in general, an appropriate
dimensionality reduction needs to be performed prior to their statistical analysis.

Among the compositional methods which are suitable to be extended to the multi-
variate object-oriented context, we focus here on two special cases that illustrate the
potential of the logratio approach to analyze distributional data. In the next section,
linear regression with a real response and several compositional covariates is pre-
sented, followed by multivariate principal component analysis for density functions.

3.1 Linear Regression with Discrete Distributions as
Covariates

In Wang et al. (2013), a regression model is presented, where both the response
and the explanatory variables are compositional data. Although the model was not
originally intended to provide a link between compositional and object-oriented data
analysis, it is particularly well-suited for our purposes. In the following, we employ
a simplified version of this model, based on p compositions x1, . . . , xp, containing
D1, . . . , Dp parts (D := D1 + · · · + Dp), that explain a real response variable Y .
Note that this setting represents a generalization of the so-called experiments with
mixtures (Scheffé 1958), that has been adapted to the logratio methodology in Hron
et al. (2012).

Instead of analyzing the original compositional data, we express these in orthonor-
mal coordinates, z1, . . . , zp,where z j = (z j,1, . . . , z j,Dj−1)

′, j = 1, . . . , p, and con-
sider the regression model

E(Y |(z1, . . . , zp)) = β0 + z1,1β1,1 + · · · + z1,D1−1β1,D1−1 + · · · + z p,Dp−1βp,Dp−1.

(9)
The linear model for the observations is

Y = Zβ + ε, (10)

where the n × (D − p + 1) design matrix Z is defined as

Z =
⎛
⎜⎝
1 z′

1,1 . . . z′
1,p

...
...

...

1 z′
n,1 . . . z′

n,p

⎞
⎟⎠ .

Themodel thus contains D − p + 1 regression parameters. Under the usual assump-
tions, the parameters can be estimated by a least squares (LS) method, i.e., by
minimizing the sum of squared residuals RSS. This yields the estimates β̂0, β̂1,1,

. . . , β̂p,Dp−1. The result can then be used for prediction purposes, or for further
statistical inference.
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Under the Gaussian assumption, a series of tests can be performed. For instance,
one may want to evaluate whether the j-th composition, j = 1, . . . , p, has a signif-
icant influence on the explanatory variable Y . For this purpose, the following test
statistic can be employed:

Q j = 1

(Dj − 1)S2
β̂

′
jW

−1
j β̂ j , j = 1, . . . , p, (11)

where S2 = RSS/(D − p + 1), β̂ j = (β̂ j,1, . . . , β̂ j,Dj−1)
′ and the (Dj − 1) ×

(Dj − 1) matrix W j is formed by the block of (Z′Z)−1 that corresponds to β j

as part of β = (β0,β
′
1, . . . ,β

′
p)

′. Under the null hypothesis β j = 0, the statistic Q j

follows a Fisher distribution with Dj − 1 and n − D + p − 1 degrees of freedom.
If, for the j-th composition (distributional variable), the above hypothesis is

rejected, one may want to investigate which of its part(s) does have significant
influence on Y . A solution can be provided again in terms of orthonormal coor-
dinates. Indeed, one may take advantage of the interpretation of (8), leading
to pivot coordinates z(l j )

j = (z
(l j )
j,1 , . . . , z

(l j )
j,Dj−1)

′ and the corresponding parameters

β
(l j )
j = (β

(l j )
j,1 , . . . , β

(l j )
j,Dj−1)

′.Here, only thefirst pivot coordinate of z(l j )
j and the corre-

sponding regression parameter are of primary interest. Concretely, if the significance
of the regression parameter β

(l j )
j,1 is confirmed by the rejection of the corresponding

hypothesis on a significance level α, then the relative information concerning the
l j -th part of the composition x j (resulting from summarizing logratios to the other
parts of x j ) has an influence on the response. The decision can be taken based on the
test statistic

Tjl j = β̂
(l j )
j,1√

S2{(Z′Z)−1}(l j ,l j )
, j = 1, . . . , p, l j = 1, . . . , Dj , (12)

where {(Z′Z)−1}(l j ,l j ) denotes the diagonal element of the matrix (Z′Z)−1 which

corresponds to the coefficient β̂
(l j )
j,1 . Under the null hypothesis β

(l j )
j,1 = 0, Tjl j follows

a Student’s t distribution with n − D + p − 1 degrees of freedom. Note that for
an exhaustive search for the significance of the coordinates in single explanatory
parts, pD regression models would need to be built. Nevertheless, the estimate of
the intercept parameter, as well as the coefficient of determination for the regression
model (9) are always the same (Hron et al. 2012), due to the orthonormality of the
pivot coordinates.
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3.2 Multivariate Functional Principal Component Analysis
When Data Are Density Functions

The focus of this subsection is onmultivariate functional composition (mFCs). These
are K -dimensional vectors whose elements are functional compositions (FCs, i.e.,
elements of the Bayes space B2). For instance, Figure 1 represents a dataset of pop-
ulation pyramids in 57 districts of Upper Austria. These are instances of mFCs of
dimension K = 2: they are coupled density functions, describing the age density
of males and females in these regions. The aim of this subsection is to introduce a
methodology to explore the variability of a dataset of mFCs, and consistently per-
form dimensionality reduction. To attain these goals in either multivariate statistics
and functional data analysis, (functional) principal component analysis is widely
employed. Here, the focus is posed on the main modes of variability of the sample,
whose interpretation is often insightful in terms of the observed phenomenon. A
similar problem is considered, in the case of multivariate discrete compositions, in
Wang et al. (2015). In the recent literature, Hron et al. (2016) introduces the simpli-
cial functional principal component analysis (SFPCA) as an extension of functional
principal component analysis to the Bayes space setting (for univariate density func-
tions). Here, we consider an approach similar to that introduced in Hron et al. (2016)
to derive an extension of simplicial principal component analysis to the multivariate,
simplicial and functional setting, that relies on the Hilbert space structure introduced
in Sect. 2.

We first note that mFCs are not multivariate density functions: only the marginal
densities are available, up to a scale factor. For instance, when population pyramids
are concerned, the available observations do not represent the joint age distribution
of male and female populations, but just their marginals. Instead, a mFC can be
considered as an element of the space [B2]K = B2 × . . . × B2, which is a separable
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Fig. 1 Population pyramids in the 57 districts of Upper Austria
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Hilbert space, if equipped with the component-wise B2 operations:

( f ⊕ g)i = fi ⊕ gi , (α � f )i = α � fi , f = ( fi ), g = (gi ) ∈ [B2]K , α ∈ R,

and the inner product 〈 f , g〉[B2]K = ∑K
i=1〈 fi , gi 〉B2 , for f = ( fi ), g = (gi ) ∈ [B2]K .

Let X1, . . . , XN be a dataset of mFCs, e.g. that displayed in Fig. 1. To simplify
the notation and without loss of generality, hereafter we assume the dataset to be
centered. Note that one can always consider the centered version of a given dataset,
that is X̃1, . . . , X̃N , with X̃ i = X i � X and X = 1

N � ⊕N
i=1 X i . In this setting,

multivariate SFPCA (mSFPCA) of X1, . . . , XN aims to find the main modes of
variability of the dataset. These are the orthogonal directions in [B2]K—identified
by a collection of orthogonal elements {ζ j } j≥1, ζ j ∈ [B2]K , of unitary norm—that
display the maximum variability of the dataset. That is, {ζ j } j≥1, ζ j ∈ [B2]K , are
found by maximizing the following objective functional:

1

N

N∑
i=1

〈X i , ζ 〉2[B2]K subject to ‖ζ‖[B2]K = 1; 〈ζ , ζ k〉A2 = 0, k < j, (13)

where 〈X i , ζ 〉2[B2]K represents the projection of X i along the direction identified by
ζ , and the orthogonality condition 〈ζ , ζ k〉[B2]K = 0, for k < j , is meaningful only
for j ≥ 2.

It is possible to show that, for each j = 1, 2, . . ., maximization of (13) leads to a
unique solution in [B2]K , as this is a separable Hilbert space (Horváth and Kokoszka
2012, Theorem 3.2). Indeed, the principal components are uniquely found as the
eigenfunctions of the sample covariance operator V : [B2]K → [B2]K , that acts on
x ∈ [B2]K as

V x = 1

N
�

N⊕
i=1

〈X i , x〉[B2]K � X i .

The operator V admits N − 1 non-zero eigenvalues,λ1 < λ2 < . . . < λN−1, that rep-
resent the variability of the dataset along its main modes of variability ζ 1, . . . , ζ N−1.
These can be displayed in a scree plot (as in multivariate PCA) to drive the dimen-
sionality reduction, as done for population pyramids in Sect. 4.2 (see Fig. 3a).

For the actual computation of the eigenpairs (λ j , ζ j ), j = 1, . . . , N − 1, we pro-
pose to employ the clr transformation introduced in Sect. 2, in order to map the
problem in L2

0 and proceed as in the multivariate functional case. Specifically, we
propose the following procedure:

1. Transform: For i ∈ 1, . . . , N , transform the i-th observed mFC as cl r(X i ),
where the mapping cl r acts as a component-wise clr transformation: cl r( f ) =
(clr( fl)) ∈ [L2

0]K , for f = ( fl) ∈ [B2]K ;
2. Solve in [L2

0]K : Compute the multivariate FPCs ξ 1, . . . , ξ N−1 in [L2
0]K and the

corresponding eigenvalues λ1, . . . , λN−1;
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3. Back-transform: Employ the inverse cl r-transformation to ξ 1, . . . , ξ N−1, i.e.,
apply component-wise the inverse of the clr transformation, and set ζ j =
cl r−1(ξ j ).

It is possible to prove that (i) the eigenvalues found at step (1) are the same as those
of the operator V , and (ii) the introduced procedure leads to a correct characterization
of the set of eigenpairs of V , since the clr transformation is an isometric isomorphism
between B2 and L2

0. The proof of these points can be obtained by generalizing the
arguments presented in Hron et al. (2016) (not shown). The dimensionality reduction
can then follow the same lines of the classical setting. For instance, one can employ the
scree plot to determine the relevant mSFPCs in terms of the proportion of explained
variability. The interpretation of themSFPCs can be based on graphical displays, such
as the plot of the eigenfunctions (possibly transformed via clr), or the perturbation of
themean via the eigenfunction perturbed by a coefficient. The former allows to single
out contrasts between parts of the domains which are attributed different weights;
the latter enables one to visualize the portion of variability around the mean which
is captured by the corresponding principal component. These graphical displays
shall be exemplified in Sect. 4.2, where the mSFPCA of population pyramids will be
presented.

4 Case Studies

4.1 Effect of GDP Components and Causes of Death on Life
Expectancy

Eurostat provides various data sets at http://ec.europa.eu/eurostat/data that refer to
economy, population, health, education, etc., of the EU countries. For the purpose
of illustrating the procedure outlined in Sect. 3.1, we consider the life expectancy as
response variable, and two compositions as explanatory variables. The first composi-
tion includes the most important components of the GDP (Gross Domestic Product),
namely the private final consumption expenditure (private), the government final
consumption expenditure (government), the gross fixed capital formation (capital),
the exports, and the imports. All these data are taken from the year 2011, for the EU
countries, as well as for Norway and Switzerland, and we use the data reported in
absolute values (million Euros). The second composition contains the most relevant
causes of death. Again, we use data from 2011, for the same countries as before, and
take the absolute numbers as the initial representation of the compositions. The fol-
lowing groups are considered (the abbreviations in brackets refer to the ICD codes,
and to the abbreviations we are using later on): Certain infectious and parasitic dis-
eases (A00-B99) (infect), Malignant neoplasms (C00-C97) (neoplasm), Endocrine
nutritional and metabolic diseases (E00-E90) (nutrition), Mental and behavioral
disorders (F00-F99) (mental), Diseases of the nervous system and the sense organs

http://ec.europa.eu/eurostat/data
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Fig. 2 Relation between all relative information to the diseases of the nervous system and the sense
organs, expressed in terms of the respective first pivot coordinate, with the life expectancy; left for
males, right for females

(G00-H95) (nervous),Diseases of the circulatory system (I00-I99) (circulatory),Dis-
eases of the respiratory system (J00-J99) (respiratory), and Diseases of the digestive
system (K00-K93) (digestive).

The life expectancy as well as the causes of death are available for the total
population, and for males and females separately. Therefore, in the analyses below,
we investigate models for these three cases separately. The GDP composition is of
course unchanged.

A first impression about the data structure is provided in Fig. 2. We compare the
relative dominance of death by diseases of the nervous system and the sense organs
(nervous) with the life expectancy, separately for males (left) and females (right).
Thus, in the second composition, the variable nervous is put to the first position, and
the first coordinate after applying Equation (8) represents all relative information
about nervous. According to the figure, high values on this coordinate correspond to
the dominance of the disease nervous, which relates to low life expectancy, and vice
versa. Themost important diseases covered by nervous areAlzheimer and Parkinson.

The regressionmodel (10) is now applied to the problem, and the idea is to identify
economic and/or health information that relates to life expectancy. The regression
models which are considered here (total, male, female) lead to multiple R2 values of
more than 0.9. Also the squared correlations between the responses and the leave-
one-out cross-validation predictions are above 0.7, indicating meaningful models.
We apply the test statistic (11) to the different settings, and the resulting p-values
are reported in Table 1. Both compositions have significant influence for the models
based on the total and on the female population, whereas for the males we do not
obtain significance.
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Table 1 Results of the test (11) for both compositions, for models based on the total population,
the males, and the females, respectively. Shown are the resulting p-values of the test for the two
compositions

Total Males Females

GDP compositions <0.001 0.22 <0.001

Causes of death <0.001 0.13 <0.001

Table 2 Results of the test (12) for the first composition, for models based on the total population,
the males and the females, respectively. Shown are the resulting p-values of the test, and the
regression coefficients (coeff.) for the parts of the first composition

Total Males Females

p-value Coeff. p-value Coeff. p-value Coeff.

Private 0.50 –1.32 0.98 0.08 0.58 –0.85

Government 0.18 2.42 0.47 1.64 0.22 1.66

Capital 0.56 –1.19 0.43 –2.18 0.47 –1.19

Exports 0.68 1.57 0.92 0.52 0.49 2.00

Imports 0.72 –1.49 0.99 –0.06 0.61 –1.61

The second test according to (12) tests for significance of the single parts in the
compositions via their corresponding coordinates. For this purpose, 5+8=13 regres-
sion models were built, where in each model the test concerns the first pivot coor-
dinate representing the part of interest. The (statistical) interpretation of these tests
wrt. rejecting and non-rejecting the hypothesis is then as usual, just reflecting the
specific interpretation of the first pivot coordinates (see Sect. 3.1 for details).

The results are presented in Table 2 for the first composition and in Table 3 for
the second composition. We realize that none of the parts in the first composition
is significant on its own. In order to get the significance, we would need to go for
other coordinates from (8) or even to consider a more complex coordinate system
(Egozcue and Pawlowsky-Glahn 2005), to find such rotation of the orthonormal
coordinates where the significance in one or more coordinates appears. In contrast,
several parts from the second composition are contributing significantly. For example,
the part nervous that was under consideration in Fig. 2 has significant contribution
in all settings (total, male, female), and the regression coefficient is negative, as
it was expected from the plot. So, the dominance of this disease (and subsequent
death) refers to countries with lower life expectancy. The dominance of neoplasm
for females also relates to low life expectancy, while the dominance of the other
significant diseases circulatory and digestive are in relation to countries with higher
life expectancy.

Note that the above analysiswould lead to exactly the same results if for expressing
in pivot coordinates the absolute values of the compositions (million Euro for GDP
composition, numbers of death causes) would have been expressed in relative units,
like proportions or percentages.
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Table 3 Results of the test (12) for the second composition, formodels based on the total population,
the males, and the females, respectively. Shown are the resulting p-values of the test, and the
regression coefficients (coeff.) for the parts of the second composition

Total Males Females

p-value Coeff. p-value Coeff. p-value Coeff.

Infect 0.60 0.40 0.10 1.60 0.66 0.24

Neoplasm 0.17 –3.71 0.52 –2.09 0.01 –5.06

Nutrition 0.21 –0.85 0.07 –1.67 0.49 –0.37

Mental 0.99 0.003 0.78 0.18 0.29 0.42

Nervous 0.004 –2.69 0.005 –3.70 <0.001 –2.76

Circulatory 0.03 3.40 0.04 3.35 <0.001 3.77

Respiratory 0.42 –1.056 0.17 –2.74 0.39 1.02

Digestive 0.005 4.49 0.004 5.06 0.01 2.74

4.2 Dimensionality Reduction of Population Pyramids via
mSFPCA in Bayes Spaces

We demonstrate the results of the methodology proposed in Sect. 3.2 on the dataset
of population pyramids displayed in Fig. 1, and presented in Hron et al. (2016). For
performing the computations, we resort to numerical integration to deal with clr
transforms and we solve numerically the eigenproblem in [L2

0]K involved in step (2).
Another strategy may be employed as well, e.g., to represent the data via a functional
basis and express the solution via the associated coefficients (Ramsay and Silverman
2005; Hron et al. 2016). Figure 3 summarizes the obtained results. Panel (a) shows a
rapid decrease of the variance explained by the principal components, which suggests
a possible dimensionality reduction to two or threemSFPCs. However, the variability
of the estimated scores along the third component (i.e., of 〈X i , ζ j 〉2[B2]K , with j = 3,
i = 1, . . . , N ) appears affected by the presence of an outlier. Hence, we focus on the
first two components for the scope of interpretation and dimensionality reduction.
To ease the interpretation, Fig. 3c-d display the clr transformation of the elements
of ζ 1 and ζ 2, i.e., ξ 1 and ξ 2 obtained from step (2); colors are used to identify the
gender. Indeed, the transformed eigenfunctions can be interpreted as in FPCA, e.g.,
looking for meaningful contrasts between portions of the domain. Notice that the
clr transformed eigenfunctions are non-zero and fulfill the zero integral constraints
which are the characteristics of clr transformed FCs. As such, contrasts are expected
in all the ξi , i ≥ 1. Considering the first mSFPCs, we notice that in both elements, a
contrast exists between the oldest population (age>80/75 years, for men andwomen,
respectively) and the younger one. We note that this result is consistent with that of
Hron et al. (2016), that analyzes separately men and women subpopulations. Hence,
high scores along the first mSFPC are expected for the municipalities with a higher
incidence of the elder population than the mean, and vice versa. This is evident also
when observing the plot displayed in Fig. 3e. Here, the effect of the variability along
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Fig. 3 Results of mSFPCA on the population pyramids. In panels (c) to (f): solid dark gray lines
indicate the perturbation of the mean by the mSFPC ζ j powered by +2 · √

λ j , j = 1, 2; solid light
gray lines indicate the perturbation of the mean by the mSFPC ζ j powered by −2 · √

λ j , j = 1, 2
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the first principal component is visualized via the perturbation of the mean by the
first mSFPC powered by ±2 · √

λ1. Having fixed the sign of the eigenfunction ξ 1
as in panel (c), data with high corresponding scores (dark gray line) tend to have
heavier tails than the mean and vice versa.

The interpretation of the second mSFPC in Fig. 3d is in terms of the contrast
betweenmen andwomen subpopulations,with a positive contribution inmen for right
tails (age>93 years) higher than the mean, and a negative contribution in women’s
right tails (age>75 years) higher than the mean. Overall, Fig. 3f shows that low
scores along the secondmSFPC associate withmore pronounced peaks in the density
functions and vice versa. Figure 3g and h display the contribution to the variability
along the twomSFPCs: in each panel, the elements 〈X i , ζ k〉[B2]K � ζ k , i = 1, . . . , N ,
k = 1, 2, are represented. In agreement with the previous comments, these plots
suggest that most variability is displayed within the right tails. In addition to this,
further evidence of the previous interpretation is given by plotting the elements with
maximum scores (black curves). Indeed, high scores along the first mSFPC in Fig. 3c
correspond to a higher incidence of the old population than the mean in both men
and women; instead, high scores along the second mSFPC correspond to a higher
incidence of the old population than the mean in men and lower incidence in women.
Similar interpretations—with opposite score signs—are obtained from the elements
with minimum scores. In this sense, the second mSFPC provides a contrast between
the behavior of men and women subpopulations for the elder ages. Finally, Fig. 3j
displays the approximation of the densitieswhich are attained via the first two SFPCs,
that together explain more than 80% of the overall variability.

5 Conclusions

This contribution has been devoted to the logratio approach to the analysis of dis-
tributional data, objects carrying relative information. In our setting, the relevant
information embedded in distributional data is being analyzed, based on the logra-
tios between the values of the compositional parts (the discrete case) or densities
(the continuous case). Here, we described a unifying framework for both the con-
tinuous and the discrete case, based on the theory of Bayes spaces. We illustrated
the discrete case through a regression setting, for a real response modeled in terms
of a number of compositions. We considered specific representations of the compo-
sitions in terms of coordinates, in order to use the classical tools for inference. To
this end, we employed a particular type of the ilr coordinates, so called pivot coordi-
nates. Orthonormal (ilr) coordinates are in general preferred in the discrete setting of
distributional variables because they are convenient for the computations and avoid
singularity issues, which occur with clr coefficients. However, when considering
discrete and continuous distributional variables together, clr transformed densities
are still represented in a functional space, and are thus easier to visualize, typically
as a curve. Although one needs to be careful with the interpretation because of the
zero integral, it is still more natural to link the resulting real function to the origi-
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nal density, because they are both functional. In contrast, for an ilr representation,
one would have to link the coordinates to the density through the functional basis,
which is usually not straightforward. In line with this, in the continuous setting, we
analyzed the multivariate distributional data in the form of densities by extending
the multivariate functional principal component analysis. Here, the key to bringing
theory to practice was to employ the clr transformation to simplify computations of
eigenfunctions.

The examples on regression and functional principal component analysis served
as illustrations of the great potential of this theory that enables one to deal with
both compositional data and densities in the common framework of the Bayes space
methodology, embedded in the broad context of (multivariate) object-oriented data
analysis (and, in a narrower sense, of symbolic data analysis). This opens new views
even to cope with mixed types of data (e.g., Euclidean, functional, compositional),
that remains one of the greatest challenges for the future.
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A Spatial Durbin Model for
Compositional Data

Tingting Huang, Gilbert Saporta, and Huiwen Wang

Abstract A compositional linear model (regression of a scalar response on a set
of compositions) for areal data is proposed, where observations are not independent
and present spatial autocorrelation. Specifically, we borrow thoughts from the spatial
Durbin model considering that it produces unbiased coefficient estimates compared
to other spatial linear regression models (including the spatial error model, the spa-
tial autoregressive model, the Kelejian-Prucha model, and the spatial Durbin error
model). The orthonormal log-ratio (olr) transformation based on a sequential binary
partition of compositions and maximum likelihood estimation method are employed
to estimate the new model. We also check the proposed estimators on a simulated
and a real dataset.
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1 Introduction

With rapid development of computer technology, a huge amount of data characterized
with complex structures, such as functional data (Ramsay and Silverman 2002, 2005;
Horváth and Kokoszka 2012; Wang et al. 2016), compositional data (Pawlowsky-
Glahn and Buccianti 2011; Pawlowsky-Glahn et al. 2015; Martín-Fernández et al.
2019) and symbolic data (Billard andDiday 2012, 2020; Bock andDiday 2012; Ochs
et al. 2016) have been stored.Among them, compositional data, which describes parts
of some whole, receives much attention owing to its wide applications in biology,
economics, survey analysis, and genomics (Pawlowsky-Glahn and Buccianti 2011;
McKinley et al. 2020). The key problem of using statistical tools to analyze com-
positional data is that components of a composition are not independent. Aitchison
(1986) has made a great contribution by introducing the concept of independence in
the simplex, i.e., sample space of compositional data.

In compositional data analysis, linear regressions play an important role. Existing
linear models developed for compositional data can be divided into two categories.
For the first group, explanatory variables are compositional while dependent variable
is scalar. Hron et al. (2012) used this type of model to study the relationship between
life expectancy and GDP compositions for the European Union member states. As to
the second type, covariates and responses are both compositional. Wang et al. (2013)
employed model in this sub-category, multiple linear regression for compositional
data, to learn how the employment and investment levels are related to the gross
regional product. In this research, we are interested in Compositional Linear Model
with Numerical Responses (CLMNR).

In the CLMNR, it is commonly presumed that observations are independent.
However, this assumption can break down in practical issues, especially when dis-
posing of data with spatial autocorrelation. For instance, to understand how three
strata of industry are concerned in PM2.5 concentration for 34 major cities of China,
it is unreasonable to assume these cities are independent, as a city’s PM2.5 con-
centration can be influenced by nearby cities’ because of air movements. There are
mainly two kinds of spatially dependent data, point-referenced data and areal data
(lattice data), which are separately considered (Anselin 2002). We focus on lattice
data. Huang et al. (2019) proposed a spatial autoregressive model for compositional
data (SARCD), for the purpose of modeling areal data whose observed covariates
are compositional and scalar whereas responses are numerical. This new model is
built upon the popular spatial autoregressive (SAR) model, which includes spatial
dependence in the dependent variable. Nevertheless, as explained in Lesage and Pace
(2009), SAR model is not the best model to be assumed when the true data generat-
ing process is uncertain. For example, if the true model is the spatial Durbin model
(SDM), using SAR model will suffer from omitted variables bias. In contrast, SDM
produces unbiased coefficient estimates when the true model is a spatial error model
(SEM), an SAR model or a Kelejian–Prucha model. Therefore, constructing a SDM
for compositional data (SDMCD) is more useful than building a model upon SAR.
Based on this consideration, we put forward a new SDMCD.

The new model involves the effect of spatial average of neighboring responses
and neighboring explanatory variables, thus more flexible than the existing SARCD.
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To estimate our SDMCD, the orthonormal log-ratio (olr) transformation (Martín-
Fernández et al. 2019) and maximum likelihood estimation (MLE) method are
employed to handle compositional covariates and spatial terms, respectively. Numer-
ical experiments show that our estimators are efficient. A real dataset of PM2.5

concentration and three strata of industry is analyzed using our model.
The chapter is organized as follows. Section 2 reviews preliminaries of compo-

sitional data and introduces the SDMCD. Section 3 gives details of the estimation
method. The simulation study and real data analysis is displayed in Sects. 4 and 5.
The last section is a discussion.

2 Model Specification

About notations: normally, we use bold “x” to denote a composition of D parts, i.e.,
x = (x1, · · · , xD)′. Nevertheless, a d-dimensional vector of real numbers is often
written as x = (x1, · · · , xd)′ as well. To avoid confusion, we add a superscript “D”,
i.e., xD = (xD

1 , · · · , xD
D )′, to represent compositional data. Correspondingly, XD is

a n × D matrix collecting compositions on n units.

2.1 Preliminaries of Compositional Data

In this subsection, we introduce the Aitchison geometry (Pawlowsky-Glahn et al.
2015, pp. 23–30), a geometric space made up of compositional data.

Firstly, the set formed by compositions xD with D parts is the simplex SD , where

SD = {
xD = (xD

1 , xD
2 , · · · , xD

D )′ | xD
j > 0,

D∑

j=1

xD
j = k, j = 1, 2, · · · , D

}
.

Note that all the parts xD
j of xD are non-negative and k is a rescaling parameter.

Without loss of generality, we set k = 1, i.e., sum of all the proportions is 100%. For
elements in the simplex SD , operations of adding and scalar multiplying are defined
to produce a linear space for compositional data.

Denote any two compositions in SD by xD = (xD
1 , xD

2 , · · · , xD
D )′ and yD =

(yD1 , yD2 , · · · , yDD )′. The addition ⊕ and scalar multiplication � are

xD ⊕ yD = C
(
xD
1 yD1 , xD

2 yD2 , · · · , xD
D y

D
D

)
,

α � xD = C
(
(xD

1 )α, (xD
2 )α, · · · , (xD

D )α
)
,

where α is a scalar value. We call ⊕ and � perturbation and powering, respectively.
Here, C(·) is the closure operation

C(xD
1 , xD

2 , · · · , xD
D ) =

(
xD
1∑D

j=1 x
D
j

,
xD
2∑D

j=1 x
D
j

, · · · ,
xD
D∑D

j=1 x
D
j

)′
.
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It is known that the closure operation ensures that the resulting composition belongs
to SD . Based on perturbation and powering, operation of substraction � can be
derived

xD � yD = xD ⊕ (−1 � yD) = C

(
xD
1

yD1
,
xD
2

yD2
, · · · ,

xD
D

yDD

)
.

Notice the above operations are linear, hence inner product for compositional data
should be also introduced, which is

〈xD, yD〉a =
D∑

j=1

ln
xD
j

gm(xD)
ln

yDj
gm( yD)

where gm(·) is geometric average of all the parts of a composition, i.e., gm(xD) =
(
∏D

j=1 x
D
j )

1
D , gm( yD) = (

∏D
j=1 y

D
j )

1
D . Here, the simplex togetherwith operations of

perturbation, powering, and inner product form a Hilbert space, called the Aitchison
space. Subscript a in 〈· , ·〉a implies the evaluation is within the Aitchison space.

To maintain consistency, in the following sections, 〈· , ·〉a is also used to denote
an inner product between a vector of compositions XD = (xD

1 , · · · , xD
n )′ and a com-

position θ D , i.e.,

〈XD, θ D〉a =
⎛

⎜
⎝

〈xD
1 , θ D〉a

...

〈xD
n , θ D〉a

⎞

⎟
⎠ .

Similarly, we use � to indicate a vector of compositions XD = (xD
1 , · · · , xD

n )′ is
multiplied by a scalar matrix W ,

W � XD =
⎛

⎜
⎝

w11 · · · w1n
...

. . .
...

wn1 · · · wnn

⎞

⎟
⎠ �

⎛

⎜
⎝

xD
1
...

xD
n

⎞

⎟
⎠ =

⎛

⎜⎜⎜⎜
⎝

n⊕
k=1

w1k � xD
k

...
n⊕

k=1
wnk � xD

k

⎞

⎟⎟⎟⎟
⎠

.

2.2 The SAR Model and the SDM Model

Among spatial linear models, the SAR model is one of the most widely studied,
which has the following expression:

y = ρWy + Xβ + ε, ε ∼ N (0, σ 2 In) (1)
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where y = (y1, y2, · · · , yn)′ is response, X = (xi j )n×p is covariate that has p
explanatory variables,W = (wii ′)n×n is a spatialweightmatrix and ε = (ε1, · · · , εn)

′
is disturbance that follows multivariate normal distribution N (0, σ 2 In) where In is
the identity matrix. β = (β1, · · · , βp)

′, ρ, σ 2 are parameters to be estimated. Note
thatW is predefined, which is constructed according to spatial scenarios. In general,
we buildW based on adjacent relations (rook matrix, queen matrix), geographic dis-
tance or friend relationship (refer to Anselin 1998 for more details). Some unusual
distance like economic distance has also been employed.

The SDM is another important model, which contains spatial dependence in both
dependent variable and independent variables

y = ρWy + Xβ + WXθ + ε, ε ∼ N (0, σ 2 In), (2)

where y, X,W , ρ,β, ε are defined as those in (1) and WX is the spatial lag of
explanatory variables. Obviously, the SAR model is a special case of the SDM.

For the purpose of illustrating importance of the SDM, there is a need of intro-
ducing the Manski model, which additionally involves the spatial autocorrelation of
residuals

y = ρWy + Xβ + WXθ + u, u = λWu + ε, ε ∼ N (0, σ 2 In). (3)

At the first sight, (3) is a more general model that nests the SDM thus deserving
more attention. However, Manski (1993) pointed out that the parameters in (3) are
unidentified except that one of the spatial lag terms (i.e., ρWy, WXθ or λWu) is
excluded from the Manski model. It is found that excluding ρWy or WXθ will
lead to biased estimates if they are present in the true model. On the other side,
ignoring λWu will only cause a loss of efficiency if it is involved in the true model
(refer to Lesage and Pace (2009) (pp. 155–158) and Elhorst (2010) for more details).
Therefore, the best strategy to solve the identification problem is omitting spatial
dependence in the disturbances, which obtains an SDM. The SDM also nests the
SEM, as it reduces to

y = Xβ + u, u = ρWu + ε ε ∼ N (0, σ 2 In).

when θ = −ρβ. To sum up, the SDM is the best model to choose if we do not know
the underlying data generating process.

2.3 The Spatial Durbin Model (SDM) for Compositional Data

Following Qu and Lee (2015), we suppose the spatial process takes place on an
uneven lattice L , L ⊂ R p, p ≥ 1. Besides, the distance between any two points on
L is greater than 0. There are n units observed from L . For each unit i , the recorded
data is {yi , xD

i = (xD
i1, x

D
i2, · · · , xD

iD)′}. Write XD = (xD
1 , xD

2 , · · · , xD
n )′, the new

model is
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y = ρWy + 〈XD,βD〉a + 〈W � XD, θ D〉a + ε, ε ∼ N (0, σ 2 In) (4)

where ρ and W are defined as those in (2), βD and θ D are compositional parame-
ters. We regard W � XD , linear combination of neighborhood covariates, as a new
independent variable in addition to XD . For the fist component of the first element
n⊕

k=1
w1k � xD

k of W � XD , it is the first part of spatial average of nearing xD
i s. β

D

and θ D can be seen as the projection directions that most explain y. Model (4) has
much generality.

• When ρ = 0 and θ D = ( 1
D , 1

D , · · · , 1
D )′, the proposed model reduces to the com-

mon compositional linear model

y = 〈XD,βD〉a + ε.

• When θ D = ( 1
D , 1

D , · · · , 1
D )′ and numerical covariates present, our model is the

SAR model for compositional data (Huang et al. 2019)

y = ρWy + 〈XD,βD〉a + Xβ + ε,

where X = (xi j )n×p is a matrix of p numerical covariates.

3 Estimation Method

Although we have learned how to evaluate inner product of two compositions, it
is not straightforward to estimate compositional parameters βD, θ D in (4). In this
section, we first employ the olr transformation to deal with compositions, then use
MLE method to handle the spatial terms.

3.1 Orthonormal Log-Ratio (olr) Transformation

With the sum-to-one constraint, components of a composition are not independent,
which makes it hard to cope with in regressions. We adopt the olr transformation
rather than additive log-ratio (alr) transformation here, as the alr is not distance
preserving. The key idea of olr transformation is representing compositions by coor-
dinates under an orthonormal basis.

Given a set of orthonormal compositions {eDi }D−1
i=1 , any composition xD can then

be expanded as

xD = 〈xD, eD1 〉a � eD1 + 〈xD, eD2 〉a � eD2 + · · · + 〈xD, eDD−1〉a � eDD−1.
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Thus, coordinates ξ = (ξ1, ξ2, · · · , ξD−1)
′ of the olr transformation is

ξ = olr(xD) = (〈xD, eD1 〉a, 〈xD, eD2 〉a, · · · , 〈xD, eDD−1〉a
)′

Different techniques have been raised to construct orthonormal basis in the Aitchison
geometry. For the purpose of interpretability, we adopt the method introduced by
Hron et al. (2012). Under this special basis, coefficients are

ξ1 =
√

D − 1

D
ln

xD
1

D−1

√∏D
k=2 x

D
k

(5)

ξ j =
√

D − j

D − j + 1
ln

xD
j

D− j

√∏D
k= j+1 x

D
k

, j = 2, 3, · · · , D − 1.

Observing Eq. (5), ξ1 is log-ratio of the first part xD
1 and geometric mean of the rest

parts D−1

√∏D
k=2 x

D
k scaled by a coefficient

√
D−1
D . Thus, ξ1 can be regarded as relative

weight of the first part and average of the rest part, which on the other side represents
relative information of xD

1 with respect to average of the rest parts of xD .
Supposeolr coordinates ofβD isβ = (β1, β2, · · · , βD−1)

′.Anddenoteolr(XD)=(
olr(xD

1 ), olr(xD
2 ), · · · , olr(xD

n )
)′ = (ξ 1, ξ 2, · · · , ξ n)

′ = � where ξ i = (ξi1,

ξi2, · · · , ξi(D−1))
′. According to orthonormal property of the olr basis, we have

〈XD,βD〉a = �β,

where β is unknown and to be estimated. Similarly, we have

〈W � XD, θ D〉a = W�θ ,

where θ = (θ1, θ2, · · · , θD−1)
′ is the coordinate of θ D and to be estimated. Therefore,

model (4) can be expressed by

y = ρWy + �β + W�θ + ε. (6)

Now the original compositional regression is rewritten by a scalar model. And
from expression (5), we know ξ1 represents the relative information of xD

1 as
regard to average of the rest of parts. Therefore, by estimating β1, coefficient of
ξ ·1 = (ξ11, ξ21, · · · , ξn1)

′, we can understand how the first component xD
1 influences

responses. Concretely, if β1 is negative, increasing ξ ·1, i.e., log-ratio of xD
1 and

D−1

√∏D
k=2 x

D
k , will make y decrease, which on the other hand means the first part is

negatively related to y. Similarly, to see impacts of the rest parts, Eq. (5) need to be
changed accordingly. Taking xD

2 as an example, the first expression of (5) will be

replaced by ξ1 =
√

D−1
D ln xD

2
D−1
√∏

k �=2 x
D
k

. This procedure needs to be done D times in
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total to understand affects of all the components on y (details refer to Hron et al.
(2012)). In Sect. 5, we will adopt the method to study how different industry sectors
are related to PM2.5 pollution.

3.2 Maximum Likelihood Estimation (MLE) Method

We briefly introduce the process of estimating model (6). Write Z = (�,W�) and
� = (β ′, θ ′)′, then (6) is

y = ρWy + Z� + ε. (7)

Based on the fact that ε follows normal distribution, the log-likelihood function
L(ρ,�, σ 2) of y can be obtained. The next step is to maximize L(ρ,�, σ 2) with
respect to ρ,� and σ 2. However, the optimization requires heavy computation and
is not applicable. The log-likelihood function L(ρ) concentrated with regards to �

and σ 2 has many advantages over L(ρ,�, σ 2), and is generally used to get estimated
parameters (more details refer to Lesage and Pace 2009).

Once �̂ is gained, β̂
D
and θ̂

D
are evaluated through inverse of the olr transfor-

mation by β̂ and θ̂ . Take β̂
D
as an example

βD
1 = exp

(√
D − 1√
D

β1

)

,

βD
j = exp

⎛

⎝−
j−1∑

k=1

1√
(D − k + 1)(D − k)

βk +
√
D − j√

D − j + 1
β j

⎞

⎠ , j = 2, . . . , D − 1,

βD
D = exp

(

−
D−1∑

k=1

1√
(D − k + 1)(D − k)

βk

)

.

θ̂
D
can be similarly computed. ρ̂ comes from optimization of L(ρ).

4 Simulation Study

Several experiments are conducted to evaluate finite-sample performance of the esti-
mators of ρ,βD, θ D . All of the computations were carried out in the R environment,
and we used existing functions in the R packages ‘spdep’ (https://r-forge.r-project.
org/projects/spdep/), ‘compositions’ (http://www.stat.boogaart.de/compositions),
and ‘robCompositions’ (can be freely downloaded from CRAN).

The spatial scenario is designed as the rook case (Anselin 1998), where two units
are neighbors if they share a common edge. We randomly apportioning n agents on
a regular square grid of R rows and T columns; each agent occupies a cell on the
grid. Thus, sample size n = R × T . Agents in the inner field of the grid have four

https://r-forge.r-project.org/projects/spdep/
https://r-forge.r-project.org/projects/spdep/
http://www.stat.boogaart.de/compositions
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neighbors while objects along the boarders and in the corners have two and three. The
spatial matrix W is an adjacency matrix. We set n = {10 × 30, 20 × 25, 30 × 30}
in the simulation. Besides, different levels of spatial dependency in regression are
considered, i.e., ρ = {0, 0.5, 0.8}.

As for the data generating process, we produce y = (y1, y2, · · · , yn)′ through the
following three compositional spatial linear models:

(1) spatial autoregressive model for compositional data (SARCD)

y = (In − ρW)−1
(
〈XD,βD〉a + 0.5ε

)
,

(2) spatial error model for compositional data (SEMCD)

y = 〈XD,βD〉a + u, u = (In − ρW)−1(0.5ε),

(3) spatial Durbin model for compositional data (SDMCD)

y = (In − ρW)−1
(
〈XD,βD〉a + 〈W � XD, θ D〉a + 0.5ε

)
,

for the purpose of comparing properties of these models’ estimators. Here

βD =
(
4

9
,
2

9
,
1

3

)′
, θ D =

(
3

8
,
1

8
,
1

2

)′
, εi ∼ N (0, 1).

And the explanatory compositions XD = (xD
1 , xD

2 , · · · , xD
n )′ are simulated by the

multivariate normal distribution Ns(μ
D,�) (Pawlowsky-Glahn et al. 2015) (pp. 114–

118) on the simplex, where

μD =
(
1

6
,
1

3
,
1

2

)′
, � =

(
2 −1.5

−1.5 2

)
.

Estimationmethod of the SARCD is introduced in Huang et al. (2019). Parameters of
the SEMCD can be obtained similarly by first representing compositional covariates
using olr coordinates and then employing the MLE method for the SEM (Lesage
and Pace 2009). For each simulated dataset, we use three models, the SARCD, the
SEMCD, and the SDMCD to fit and estimate their parameters.

The experiment is repeated 500 times in each setting. We assess the performance
of the estimator ρ̂ by mean bias and standard deviation. As for βD, θ D , their behav-
ior is evaluated by the simplicial bias and the simplicial root mean square error
(Pawlowsky-Glahn et al. 2015) (pp. 134–135). We mention that value of the simpli-
cial bias is compositional while that of the simplicial root mean square error is scalar.

Denote the empirical mean of β̂
D
by β

D = 1
n � n⊕

k=1
β̂

D

k , where β̂
D

k is the estimated

βD for the kth simulated dataset. The simplicial bias of β
D
is
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Table 1 The empirical average biases and standard deviations (in brackets) of ρ̂

True model Sample size Fitting model ρ = 0 ρ = 0.5 ρ = 0.8

SDMCD n = 300 SDMCD −0.0021
(0.0418)

−0.0019
(0.0290)

−0.0011
(0.0145)

SARCD 0.4219
(0.0770)

0.3077
(0.0307)

0.1469
(0.0107)

SEMCD −0.0698
(0.4866)

0.3625
(0.0306)

0.1655
(0.0096)

n = 500 SDMCD 0.0000
(0.0349)

−0.0019
(0.0230)

−0.0010
(0.0114)

SARCD 0.4334
(0.0574)

0.3169
(0.0225)

0.1503
(0.0085)

SEMCD −0.0366
(0.4688)

0.3711
(0.0230)

0.1691
(0.0075)

n = 900 SDMCD −0.0013
(0.0243)

−0.0023
(0.0174)

−0.0002
(0.0083)

SARCD 0.4376
(0.0396)

0.3202
(0.0168)

0.1534
(0.0060)

SEMCD −0.0181
(0.4281)

0.3744
(0.0176)

0.1721
(0.0053)

SARCD n = 300 SDMCD −0.0041
(0.0806)

−0.0126
(0.0590)

−0.0099
(0.0347)

SARCD −0.0014
(0.0514)

−0.0050
(0.0442)

−0.0053
(0.0275)

SEMCD −0.0038
(0.0811)

0.0595
(0.0629)

0.0767
(0.0284)

n = 500 SDMCD −0.0045
(0.0594)

−0.0063
(0.0469)

−0.0068
(0.0256)

SARCD −0.0010
(0.0418)

−0.0059
(0.0358)

−0.0044
(0.0201)

SEMCD −0.0046
(0.0598)

0.0646
(0.0508)

0.0792
(0.0214)

n = 900 SDMCD −0.0013
(0.0469)

−0.0091
(0.0354)

−0.0023
(0.0195)

SARCD −0.0034
(0.0314)

−0.0055
(0.0268)

−0.0020
(0.0156)

SEMCD −0.0012
(0.0471)

0.0629
(0.0388)

0.0831
(0.0154)

SEMCD n = 300 SDMCD −0.0041
(0.0806)

−0.0152
(0.0625)

−0.0147
(0.0405)

SARCD −0.0014
(0.0514)

−0.2265
(0.0598)

−0.2227
(0.0602)

SEMCD −0.0038
(0.0811)

−0.0117
(0.0623)

−0.0113
(0.0398)

n = 500 SDMCD −0.0045
(0.0594)

−0.0065
(0.0494)

−0.0097
(0.0299)

SARCD −0.0010
(0.0418)

−0.2287
(0.0462)

−0.2201
(0.0481)

SEMCD −0.0046
(0.0598)

−0.0040
(0.0493)

−0.0077
(0.0298)

n = 900 SDMCD −0.0013
(0.0469)

−0.0099
(0.0368)

−0.0035
(0.0231)

SARCD −0.0034
(0.0314)

−0.2299
(0.0350)

−0.2134
(0.0377)

SEMCD −0.0012
(0.0471)

−0.0086
(0.0369)

−0.0023
(0.0230)
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Table 2 The simplicial biases and the simplicial root mean square error (in brackets) of β̂
D
when

fitting model is the SARCD
ρ = 0 ρ = 0.5 ρ = 0.8True

model n β̂D
1 β̂D

2 β̂D
3 β̂D

1 β̂D
2 β̂D

3 β̂D
1 β̂D

2 β̂D
3

SDMCD 300 0.3232
(0.0935)

0.3654 0.3114 0.3185
(0.0871)

0.3680 0.3135 0.3187
(0.0866)

0.3614 0.3200

500 0.3214
(0.0695)

0.3665 0.3121 0.3175
(0.0634)

0.3682 0.3143 0.3219
(0.0673)

0.3597 0.3184

900 0.3220
(0.0543)

0.3660 0.3120 0.3185
(0.0482)

0.3675 0.3140 0.3201
(0.0482)

0.3598 0.3201

SARCD 300 0.3332
(0.0424)

0.3336 0.3333 0.3326
(0.0430)

0.3334 0.3340 0.3330
(0.0453)

0.3334 0.3336

500 0.3329
(0.0351)

0.3335 0.3336 0.3331
(0.0340)

0.3337 0.3333 0.3338
(0.0354)

0.3331 0.3331

900 0.3331
(0.0261)

0.3335 0.3334 0.3334
(0.0246)

0.3334 0.3333 0.3332
(0.0254)

0.3335 0.3334

SEMCD 300 0.3332
(0.0424)

0.3336 0.3333 0.3326
(0.0462)

0.3333 0.3341 0.3334
(0.0534)

0.3330 0.3337

500 0.3329
(0.0351)

0.3335 0.3336 0.3330
(0.0367)

0.3338 0.3332 0.3336
(0.0421)

0.3331 0.3333

900 0.3331
(0.0261)

0.3335 0.3334 0.3333
(0.0263)

0.3334 0.3333 0.3333
(0.0307)

0.3335 0.3332

Table 3 The simplicial biases and the simplicial root mean square error (in brackets) of β̂
D
when

fitting model is the SEMCD
ρ = 0 ρ = 0.5 ρ = 0.8True

model n β̂D
1 β̂D

2 β̂D
3 β̂D

1 β̂D
2 β̂D

3 β̂D
1 β̂D

2 β̂D
3

SDMCD 300 0.3378
(0.2664)

0.3234 0.3387 0.2920
(0.0918)

0.4273 0.2806 0.2869
(0.0834)

0.4280 0.2850

500 0.3338
(0.2490)

0.3293 0.3370 0.2913
(0.0681)

0.4268 0.2818 0.2897
(0.0674)

0.4259 0.2843

900 0.3341
(0.2254)

0.3317 0.3342 0.2924
(0.0527)

0.4260 0.2816 0.2888
(0.0470)

0.4254 0.2858

SARCD 300 0.3333
(0.0427)

0.3334 0.3333 0.3243
(0.0453)

0.3430 0.3328 0.3143
(0.0451)

0.3547 0.3310

500 0.3330
(0.0352)

0.3334 0.3336 0.3247
(0.0352)

0.3430 0.3322 0.3158
(0.0359)

0.3539 0.3304

900 0.3332
(0.0262)

0.3335 0.3333 0.3252
(0.0255)

0.3426 0.3322 0.3151
(0.0253)

0.3539 0.3310

SEMCD 300 0.3333
(0.0427)

0.3334 0.3333 0.3326
(0.0417)

0.3335 0.3340 0.3329
(0.0410)

0.3335 0.3335

500 0.3330
(0.0352)

0.3334 0.3336 0.3332
(0.0332)

0.3336 0.3332 0.3337
(0.0325)

0.3332 0.3330

900 0.3332
(0.0262)

0.3335 0.3333 0.3333
(0.0237)

0.3334 0.3333 0.3332
(0.0230)

0.3334 0.3334

sBias(β
D
) = β

D � βD.

Note that when β
D
is an unbiased estimator of βD , we have sBias(β) = ( 13 ,

1
3 ,

1
3 )

′.
The simplicial rootmean square error sRMSE is defined by the total variance totvar ,
i.e.,

sRMSE(β̂
D
) =

√
totvar(β̂

D
)
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Table 4 The simplicial biases and the simplicial root mean square error (in brackets) of β̂
D
when

fitting model is the SDMCD
ρ = 0 ρ = 0.5 ρ = 0.8True

model n β̂D
1 β̂D

2 β̂D
3 β̂D

1 β̂D
2 β̂D

3 β̂D
1 β̂D

2 β̂D
3

SDMCD 300 0.3332
(0.0443)

0.3333 0.3334 0.3327
(0.0442)

0.3332 0.3341 0.3328
(0.0465)

0.3334 0.3337

500 0.3329
(0.0365)

0.3334 0.3337 0.3331
(0.0349)

0.3335 0.3334 0.3337
(0.0359)

0.3331 0.3332

900 0.3332
(0.0269)

0.3334 0.3334 0.3334
(0.0256)

0.3332 0.3334 0.3331
(0.0256)

0.3335 0.3334

SARCD 300 0.3332
(0.0428)

0.3335 0.3333 0.3328
(0.0433)

0.3332 0.3340 0.3331
(0.0461)

0.3332 0.3337

500 0.3329
(0.0353)

0.3334 0.3336 0.3331
(0.0342)

0.3336 0.3332 0.3339
(0.0356)

0.3330 0.3331

900 0.3332
(0.0261)

0.3335 0.3333 0.3334
(0.0247)

0.3333 0.3333 0.3332
(0.0255)

0.3334 0.3334

SEMCD 300 0.3332
(0.0428)

0.3335 0.3333 0.3326
(0.0431)

0.3334 0.3340 0.3328
(0.0455)

0.3336 0.3337

500 0.3329
(0.0353)

0.3334 0.3336 0.3331
(0.0342)

0.3337 0.3332 0.3336
(0.0353)

0.3333 0.3331

900 0.3332
(0.0261)

0.3335 0.3333 0.3333
(0.0246)

0.3334 0.3333 0.3331
(0.0253)

0.3335 0.3333

Table 5 The simplicial biases and the simplicial root mean square error (in brackets) of θ̂
D
when

fitting model is the SDMCD
ρ = 0 ρ = 0.5 ρ = 0.8True

model n θ̂D1 θ̂D2 θ̂D3 θ̂D1 θ̂D2 θ̂D3 θ̂D1 θ̂D2 θ̂D3

SDMCD 300 0.3333
(0.0928)

0.3333 0.3334 0.3342
(0.0901)

0.3326 0.3332 0.3337
(0.0867)

0.3327 0.3336

500 0.3344
(0.0678)

0.3331 0.3326 0.3329
(0.0700)

0.3338 0.3333 0.3328
(0.0700)

0.3333 0.3339

900 0.3337
(0.0511)

0.3337 0.3326 0.3336
(0.0516)

0.3331 0.3333 0.3333
(0.0508)

0.3337 0.3330

SARCD 300 0.2108
(0.1006)

0.6311 0.1582 0.2123
(0.0912)

0.6293 0.1584 0.2123
(0.0886)

0.6292 0.1585

500 0.2118
(0.0719)

0.6305 0.1577 0.2106
(0.0723)

0.6316 0.1579 0.2111
(0.0707)

0.6305 0.1584

900 0.2107
(0.0557)

0.6319 0.1575 0.2114
(0.0536)

0.6305 0.1581 0.2107
(0.0517)

0.6315 0.1577

SEMCD 300 0.2108
(0.1006)

0.6311 0.1582 0.1653
(0.0901)

0.6923 0.1424 0.1407
(0.0867)

0.7269 0.1324

500 0.2118
(0.0719)

0.6305 0.1577 0.1637
(0.0714)

0.6946 0.1417 0.1399
(0.0691)

0.7279 0.1322

900 0.2107
(0.0557)

0.6319 0.1575 0.1644
(0.0527)

0.6936 0.1420 0.1397
(0.0505)

0.7287 0.1316

totvar(β̂
D
) =

D−1∑

j=1

var(β̂ j ), olr(β̂
D
) = (β̂1, β̂2, · · · , β̂D−1)

The results are summarized in Table 1 (ρ̂), Table2 (β̂
D
when fitting model is

the SARCD), Table3 (β̂
D
when fitting model is the SEMCD), Table4 (β̂

D
when

fitting model is the SDMCD) and Table5 (θ̂
D
when fitting model is the SDMCD).

Examination of Tables 1, 2, 3, 4, 5 leads to the following conclusions.
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(1) Comparing ρ̂ of the SARCD, the SEMCD, and the SDMCD in Table 1, it can
be seen ρ̂ of the SDMCD always performs well whenever what the true model is.
On the other side, the SARCD behaves poorly when true models are the SDMCD
and the SEMCD. The SEMCD has similar problems as well.
(2) See results of ρ̂ when the fittingmodel is the SDMCD in Table 1, it can be found
that the mean biases are small and the standard deviations decrease as sample size
n increases. Thus, our proposed estimator for ρ is efficient.

(3) Compare β̂
D
when using the SARCD, the SEMCD, and the SDMCD as fitting

models in Tables 2, 3, 4. Firstly, it can be observed that the sBiases of β̂ of the
SARCD are relatively large when the simulated data is generated by the SDMCD

(see Table 2). And the sBiases of β̂
D
of the SEMCD are far from neutral element

( 13 ,
1
3 ,

1
3 )

′ when the true models are the SDMCD and the SARCD (see Table 3).

β̂
D
of the SDMCD, by contrast, has stable and rather small simplicial biases under

all the cases (see Table 4).

(4) Table 5 shows results of θ̂
D
. We can find θ D is accurately estimated if the true

model is the SDMCD. However, under other settings, θ̂
D
is simplicial biased.

(5) Checking Tables 4, 5 when the true model is the SDMCD, β̂
D
and θ̂

D
behave

similarly, i.e., having small simplicial biases and decreasing sRMSE with increas-
ing n.

5 Real Data Analysis

In this section, the proposed model is employed to investigate how three strata of
industry affect pollution of PM2.5 (fine particulate matters with diameter smaller
than 2.5 mm) in 34 major cities of China in 2016. The PM2.5 data was collected
from China National Environmental Monitoring Centre. The industry structure data
(proportions of theprimary sector, the secondary sector, and the tertiary sector in gross
domestic product (GDP)) was fromStatistical Communiqué of the People’s Republic
of China on the 2016 National Economic and Social Development (http://www.tjcn.
org/tjgb/00zg/). We show locations of the 34 major cities on the map of China in
Fig. 1. The Moran’s I statistics is applied to test if there exists spatial autocorrelation
among the PM2.5 data. The resulting value of the Moran’s I statistics is 0.63 with
p-value equalling 0.00002 (selection of the spatial weight matrix W will be given
in the second paragraph), which means spatial effects are significant and there is a
need to utilize spatial models. Besides, it is obvious that the industry structure data is
compositional. Therefore, compositional spatial linear models should be employed.

Specifically,we consider threemodels, theSARCD, theSEMCD, and theSDMCD
to make a comparison, which are, respectively, formed as

http://www.tjcn.org/tjgb/00zg/
http://www.tjcn.org/tjgb/00zg/
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Fig. 1 The 34 major cities on map of China. Reprinted from [26] by permission from Springer
NatureCustomerServiceCentreGmbH,©Springer-VerlagGmbHGermany, part of SpringerNature
2020

yi = ρ

n∑

j=1

wi j y j + 〈xD
i ,βD〉a + εi , (8)

yi = 〈xD
i ,βD〉a + ui , ui = ρ

n∑

j=1

wi ju j + εi , (9)

yi = ρ

n∑

j=1

wi j y j + 〈xD
i ,βD〉a + 〈 n⊕

j=1
wi j � xD

j , θ D〉a + εi , (10)

where yi is the annual mean concentration of PM2.5 of the i th city, xD
i is a com-

position of the i th city, composed of proportions of the three sectors, and wi j is the
weight constructed according to the distance di j between centers of city i and j .
Here, di j is computed using the haversine formula based on city centers’ latitudes
and longitudes. The inverse distance is employed, i.e., wi j = 1

di j
. We have also con-

sidered two factors that may affect behavior of models (8)–(10). The first is distance
threshold d0. If two cities are far from each other, spatial dependence between them
will be small. In this case, we setwi j = 0 when di j > d0. The second is the number of
nearest neighbors N0. If there are many cities close to city i , i.e., di j < d0, it is impor-
tant to decide value of N0 so that neighbors that really count are included. We set
N0 = {1, 2, 3, 4, 5, 6, 7} in this case. And for each N0, search for a d0 which makes
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Table 6 The values of the Moran’s I statistics under different values of N0 and d0
N0 1 2 3 4 5 6 7

d0 (km) 431.5 459.2 459.2 459.2 375.0 375.0 375.0

Moran’s I 0.51 0.66 0.63 0.61 0.62 0.62 0.62

Table 7 The R-square, value of theMoran’s I statistics of residuals, estimated parameters and their
p-values (in brackets) for the SARCD

R-square Moran’s I ρ̂ β̂D
1 β̂D

2 β̂D
3

0.73 0.04 0.55 2.494 × 10−6 0.9999975 6 × 10−9

– – – −2.80 12.99 −10.20

– (0.33) (0.0002) (0.40) (0.08) (0.09)

Table 8 The R-square, value of the Moran’s I statistics of residuals, estimated parameters, and
their p-values (in brackets) for the SEMCD

R-square Moran’s I ρ̂ β̂D
1 β̂D

2 β̂D
3

0.74 0.07 0.58 0.014872 0.985119 9 × 10−6

– – – 1.32 6.46 −7.77

– (0.26) (0.0003) (0.69) (0.34) (0.17)

Table 9 The R-square, value of the Moran’s I statistics of residuals, estimated parameters, and
their p-values (in brackets) for the SDMCD
R-square Moran’s I ρ̂ β̂D

1 β̂D
2 β̂D

3 θ̂D1 θ̂D2 θ̂D3

0.74 0.07 0.58 1.283 × 10−5 0.9999871 7 × 10−8 3 × 10−8 0.9999979 2.07 × 10−6

– – – −2.00 11.80 −9.80 −10.11 13.07 −2.96

– (0.26) (0.0003) (0.56) (0.11) (0.09) (0.02) (0.21) (0.74)

the Moran’s I statistics take the greatest value. At last, we select the combination of
N0 and d0, with which the value of the Moran’s I statistics is the greatest. Table 6
summarizes results of the Moran’s I statistics when N0 and d0 take different values.
It can be seen N0 = 2 and d0 = 459.2 is the best choice. As Urumchi and Lhasa
are far from other cities, we exclude their records from the dataset. The estimation
results of models (8)–(10) are summarized in Tables 7, 8, 9.

Comparing values of the R-square of the SARCD, the SEMCD, and the SDMCD
in Tables 7, 8, 9, we can find the SEMCD and the SDMCD have better fitting results.

Then observe the estimated compositional coefficient β̂
D = (β̂D

1 , β̂D
2 , β̂D

3 )′ of the
SEMCD and the SDMCD in Tables 8, 9. It is obvious that the coefficient for the
first coordinate ξ1 of the SEMCD is 1.32, which means the first sector is positively
related to the PM2.5 pollution, while that of the SDMCD is −2.00, indicating a
negative relationship (recall explanations of the coordinates in Sect. 3.1). As it is
more convincing that the primary industry is environmentally friendly, we conclude
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that the SDMCD provides a better interpretation for the first sector compared to the
SEMCD.

At last, we examine other important parameters of the SDMCD in Table 9. The
spatial autoregressive parameter ρ̂ is significant with p-value being 0.0003, as we
expected. And the value of the Moran’s I statistics of residuals of the SDMCD is
0.07, which implies the spatial dependence in y is eliminated. As for the coefficients

for the second and the third coordinates of β̂
D
, they are 11.80 and −9.80, showing

the second and the third parts of xD
i are positively and negatively connected with

PM2.5 concentration, respectively. The other coefficient θ̂
D
indicates how a city’s

air quality is related to near cities’ industry structure. The coordinate coefficients are

−10.11, 13.07, and −2.96, can be similarly interpreted as those of β̂
D
.

6 Conclusion and Discussion

The compositional linear model which associates a scalar response to a set of com-
positional covariates is an important part of compositional data analysis. However,
literature related to this type of compositional regression and considering spatial auto-
correlation is relatively scanty. To fill the gap, Huang et al. (2019) put forward a new
model on the basis of an SAR model. Nevertheless, the SAR model produces biased
estimators for coefficients when the spatial lag of explanatory variables presents in
the true model. The spatial Durbin model is a better choice as it does not suffer from
biased estimates when the true spatial linear model is unknown. Therefore, we pro-
pose a spatial Durbin model with compositional predictors. The olr transformation
with interpretability of coordinates and the maximum likelihood estimation method
has been used to obtain estimators. And the proposed method performs well on the
simulated and the real dataset.

This new model can be easily generalized to a complex situation, where a mix of
scalar, compositional, and functional predictors are involved, like in articles (Wang
et al. 2019a, b). Besides, in this study, we focussed only on the quality of estimators,
another important issue is about prediction: how well our model will generalize
for new observations? The Goulard et al. methodology (2017) for finding optimal
strategies is an interesting answer which needs to be adapted. Further developments
in order to investigate the robustness are also necessary in the spirit of Huang et al.
(2020).
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Compositional Analysis of Exchange
Rates

Wilfredo L. Maldonado, Juan José Egozcue, and Vera Pawlowsky-Glahn

Abstract Triangular arbitrage in the foreign exchangemarket of a group of countries
exists whenever it is possible to make profit by buying and selling their currencies
using the spot exchange rates. Working in the framework of the Aitchison geometry,
and using characterizations of the absence of triangular arbitrage, we present two
applications to the currencies of Brazil (Real), the European Union (Euro), Great
Britain (Pound Sterling), and the United States of America (US Dollar). The first
application refers to the Special Drawing Rights, an asset created by the International
Monetary Fund to provide liquidity to the member countries. The exchange rates
matrix is projected onto the subspace of no-arbitrage exchange rate matrices, and
its only eigenvector, associated with a non-null eigenvalue, is demonstrated to be
compositional and close to the Special Drawing Rights. The second application
studies the relative exchange rate bubbles among the countries. It uses the closest
no-arbitragematrix of an exchange ratematrix and the purchasing power parity values
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for the fundamental exchange rates to analyze the dynamics of those bubbles. These
applications show the potential the compositional approach has for the matrices of
exchange rates.

1 Introduction

The Foreign Exchange (FX) market is one of the most liquid markets in the world.
According to the Bank of International Settlements, the global average daily volume
was USD 2.0 trillion in April 2013. The three major currencies negotiated on that
market are the US Dollar (USD), the Euro (EU), and the Japanese Yen (JPY). Fur-
thermore, the new information technologies make the dissemination of information
almost instantaneous among the traders.

Despite such enormous liquidity and the speed of information propagation, an
intriguing phenomenon has been recurrently present in that market: the existence
of Triangular Arbitrage (TA). A TA is a financial operation with the spot prices of
financial assets that allow for a strictly positive profit without any cost. For example,
consider the following values of the exchange rates among the USD, EU, and JPY1: 1
EU is worth 1.1148 USD, 1 USD is worth 105.30 JPY (both are ask prices), and 1 EU
is worth 117.3674 JPY (bid price). Then, with one EU one could buy 1.1148 USD,
and with those US Dollars one could buy 1.1148 × 105.30 JPY. Finally, one could
sell those JPY and receive 1.1148 × 105.30/117.3674 = 1.0002 EU. Consequently,
it would have been possible to obtain strictly positive gains with no cost.

In the literature, we can find several publications showing evidence of the exis-
tence of TA in the FX markets. Aiba et al. (2002) show the existence of TA among
the USD, the EU, and the JPY. They propose a model including past effects of TA
that satisfactorily fits the exchange rate movements. Regarding the duration and size
of a TA, Fenn et al. (2009) and Ito et al. (2012) found that it occurs in less than one
second and in very small magnitudes. Moreover, they showed that opportunities for
TA have dramatically declined in the first decade of this century. More precisely,
Gradojevic et al. (2019) found that on average 80–100 short duration (100–500 mil-
lisecond) arbitrage opportunities exist on a daily basis for the EUR/USD, USD/JPY,
and EUR/JPY exchange rates.

An immediate consequence of TA is the non-verification of the Efficient Market
Hypothesis, which proposes that asset prices fully reflect all available information.
However, as the duration is short and the size is small, we can argue that the TAs
are small adjustments toward the equilibrium prices of the exchange rates. Another
consequence is the negative value for the auto-correlation function of each exchange
rate when TA exists, as found in Aiba et al. (2003). TA may suggest the existence
of a correlation between foreign exchange rates. However, Aiba and Hatano (2004)
showed that such a correlation may exist even without actual TA transactions. In
Choi (2011), empirical tests showed that small profitable arbitrage episodes occurred

1These are approximated values on August 23, 2019, used just for illustration.
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over very short intervals of uncertainty and turbulence. This fact was also verified in
Maldonado et al. (2020), exhibiting the emergence of TA inGreece’smost acute crisis
period. The last consequence of the existence of TAwe shouldmention is that pointed
out by Cross and Kozyakin (2013), where it is found that in a 5-currency world,
arbitrage sequences follow an exponential law and display periodicity; however, in
higher order currency worlds, a double exponential law may emerge, increasing the
instability of the efficiency market hypothesis.

As one can deduce, the TA is a consequence of a lack of or lagged information. For
example, Lyons andMoore (2009) modeled the dynamics of exchange rates depend-
ing on the trade size that conveys information and showed that, in this situation, the
TA is not significant. In a more descriptive work, Schaumburg (2014) observed the
increasing incidence of algorithmic and high-frequency trading on the FX market.
As a consequence, the rapid dissemination of information reduced TA opportunities.
Parallel conclusions were found by Chaboud et al. (2014).

Finally, it is worth mentioning the methodologies with which to detect the exis-
tence of TA. In Bjønnes and Longarela (2014), amethodologywas proposed to detect
TA of any order based on a simple linear program. Using the Electronic Broking
Services (EBS) platform, they found several short-lived arbitrage events involving
up to five currencies. A theoretical and computational methodology based on the
Perron-Frobenius theorem was provided by Cui et al. (2018) to detect and identify
the presence of TA in the FXmarket. Using elements of compositional data analysis,
Maldonado et al. (2020) defined a geometry of the space of the matrices of exchange
rates. With such geometry, a distance to the no-arbitrage of exchange rate matrices
subspace was defined and used here to detect the presence of TA.

This paper has four sections, including this Introduction. In Sect. 2, we define the
primary concepts and resume themain results found inMaldonado et al. (2020)which
we use in later sections. In Sect. 3, we present the main contribution of this work:
two applications of the modeling of exchange rate matrices and the corresponding
no-arbitragematrices. The first one illustrates the closeness between the single eigen-
vector of the projection of a matrix of exchange rates onto the no-arbitrage subspace
and the Special Drawing Rights exchange rates. As we will argue later, this is related
to the negligible TA in a group of currencies. The second application is the analysis
of the dynamics of the exchange rate bubbles in a group of countries. To this end, we
firstly define the fundamental value of an exchange rate as that corresponding to the
purchasing power parity between two countries; then, the bubble size is the deviation
of the spot exchange rate from its fundamental. We develop a technique to calculate
the levels of the fundamental values by minimizing the total size of the bubbles in
the group. Finally, in Sect. 4 we discuss the main conclusions of this work, and in
Appendix we prove the proposition given in Sect. 3.2.
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2 Preliminaries

Since most of the analysis in the following sections uses the framework and results
found inMaldonado et al. (2020), in this section we summarize themain findings and
characterizations described in that work. The proofs of the propositions below can be
found there. Consider a group of N ≥ 2 countries indexed by i = 1, 2, . . . , N , and
let ai j > 0 be the exchange rate between the currencies in countries i and j , that is,
to buy one unit of the currency of country j , an individual must pay ai j units of the
currency of the country i . It is clear that aii = 1must be met for any i = 1, 2, . . . , N .
Therefore, A = [ai j ] is amatrix of exchange rates (MER) if all its entries are strictly
positive and the diagonal is filled with 1s. We denote the set of matrices of exchange
rates by E .

Among the matrices of exchange rates, we have particular interest in those pre-
cluding TA. Thus, we have the following definition:

Definition 1 The matrix A = [ai j ] ∈ E is a no-arbitrage matrix of exchange rates
(NAMER) if for any k ≥ 2 and i1, i2, . . . , ik ∈ {1, · · · , N } the following condition
is satisfied:

ai1i2ai2i3 · · · aik−1ik aik i1 = 1 . (1)

If condition (1) is not satisfied (for example, if the left side is greater than
1) with one unit of the currency of i1 buying consecutively the currencies in
ik, ik−1, · · · , i2, i1,wewill obtainmore than one unit of the i1 currency; this is known
as triangular arbitrage. The set of no-arbitrage (in fact, no-triangular-arbitrage)
matrices is denoted by E ′.

For any u ∈ R
N+ , the matrix u(u−1)� satisfies (1) and therefore it is in E ′. In

Maldonado et al. (2020), it is proven that any element in E ′ has that form, as claimed
below.

Proposition 1 The set of no-arbitrage matrices of exchange rates is characterized
by

E ′ = {A ∈ R
N×N
+ : A = u(u−1)�; u ∈ R

N
+} . (2)

Therefore, if A = u(u−1)� ∈ E ′, then it is easy to check that it has only two
eigenvalues: N (associated with u) with multiplicity one and 0 with multiplicity
N − 1. Reciprocally, if u ∈ R

N+ is an eigenvector of A ∈ E ′ associated with the
eigenvalue N , then A = u(u−1)�. The vector u ∈ R

N+ may be multiplied by any
positive real number and the resultu(u−1)� remains unchanged.Thismeans that it is a
compositional vector (see Pawlowsky-Glahn et al. (2015), Egozcue and Pawlowsky-
Glahn (2019)) and, therefore, the information it contains is relative. This fact is used
to study the time evolution of NAMERs as a compositional time series.

Another remarkable finding in Maldonado et al. (2020) is the Euclidean space
structure that can be defined in the set of exchange rate matrices: given A =
[ai j ], B = [bi j ] ∈ E and r ∈ R, we can define addition, scalar multiplication and
inner product by
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A ⊕ B = [ai j bi j ], r � A = [ari j ] and 〈A, B〉 =
∑

i, j

(ln ai j )(ln bi j ) . (3)

Thus, with the operations given in (3), E is a Euclidean vector space, with the norm
associated to the inner product, ||A|| = 〈A, A〉1/2, and E ′ is a vector subspace of the
same. This Euclidean structure of RN×N

+ is compatible with the Aitchison geometry
of the simplex applied to MERs and NAMERs as proven in Pawlowsky-Glahn et al.
(2015).

The importance of the Euclidean structure defined by (3) is that it allows us to
define a distance in the space E and, in particular, the projection of elements in E
onto the subspace E ′. The next proposition provides a formula to this end.

Proposition 2 Let A = [ai j ] ∈ E . The projection of A onto the vector subspace E ′
is A∗ = [a∗

i j ] ∈ E ′ given by

a∗
i j =

(
gm(Ai )gm(A j )

gm(Ai )gm(A j )

)1/2

, i, j = 1, · · · , N , (4)

where Ai (A j ) represents the row i (column j) of the matrix A, and gm(v) is the
geometric mean of the components of a vector v ∈ R

N+ . As a consequence, if we
define ui = (gm(Ai )/gm(Ai ))1/2, we can write A = u(u−1)�.

Summing up, the set of matrices of exchange rates E is a Euclidean vector space
with the operations given in (3). The set of matrices of exchange rates that do not
allow for TA E ′ is a subspace of E , and its elements are characterized by (2). Finally,
the closest element in E ′ to A ∈ E has its components given by (4). Here, closest
refers to closest in the sense of the distance of the space E .

3 Application to a Group of Countries

In this section, we present two applications of the framework and results presented
in Sect. 2 for a group of countries. The first one is the empirical verification of the
proximity of the eigenvector of the projection of anMER onto the NAMER subspace
to the exchange rates of the currencies with the Special Drawing Rights (SDR). The
SDR is an asset created by the International Monetary Fund to provide liquidity to
the member countries. The second application is the analysis of the dynamics of the
exchange rate bubbles in the group. This analysis allows us to describe the deviations
from the fundamentals of the exchange rate of each pair of countries.

We consider the following currencies: the Brazilian Real (BRL), the Euro (EU),
the Pound Sterling from theUnitedKingdom (GBP), and theUSDollar (USD). From
nowon,we refer to that group of countries asBEGU.All the currencies are negotiated
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in the Central Banks of the respective country/region. The data was collected from
the Central Bank of Brazil, the European Central Bank, the Bank of England, and
the Federal Reserve System from August 1, 2011, to December 29, 2017, on a daily
basis. We consider only the common days where all the currencies were actually
traded and use the closing ask value of the exchange rates. As such, this and the time
zone differences may produce some deviations from the no-arbitrage values.

In Maldonado et al. (2020), it was shown that the matrices of exchange rates of
those countries in that period were close to their corresponding projections onto the
no-arbitrage subspace of matrices of exchange rates. The relative errors or deviations
with respect to the no-arbitrage composition is around 0.5%2 and, as asserted before,
may be a consequence of different time zones for the closure of trade and/or the fact
of using only the ask price of the exchange rates. The exceptionwas in a sub-period in
the data, which corresponds to the most severe part of the Greek crisis, as explained
in their work.

In the following subsections, we present two applications of the projections onto
the subspace of the no-arbitrage matrices of exchange rates given in Sect. 2.

3.1 No-Arbitrage Matrix of Exchange Rates and SDR

As stated in Sect. 2, any NAMER can be written as u(u−1)�, where u ∈ R
N+ is

the eigenvector of that matrix associated with the eigenvalue N (see Proposition 1
and subsequent paragraph). Therefore, if A∗ = [a∗

i j ] is the projection of an MER

A = [ai j ] onto the subspace E ′, then a∗
i j = uiu

−1
j , for all i and j, where u ∈ R

N+ is
given in Proposition 2. Moreover, it is the eigenvector of A∗ that is associated with
the eigenvalue N .

In this way, the eigenvector u (or its opposite composition u−1) of the MER
projection onto theNAMERs subspace shows the relative exchange rates between the
countries when TA is precluded. For example, the first row of A∗ is u1(u−1

1 , u−1
2 , · · · ,

u−1
N ) = u−1

1 u−1. If we normalize to u1 = 1, it results that u−1 provides the exchange
rates without TA of country 1 with respect to all other countries. Reciprocally, u
provides the exchange rates without TA of all the countries with respect to that of
country 1. Notice that the compositions u and u−1 can be normalized arbitrarily.
A typical normalization consists of dividing by the sum of all components so that
all normalized components add to one, as in Fig. 1. Accordingly, the time series of
those eigenvectors describe the evolution of the NAMERs in the group. As shown in
Fig. 1, the component u1 has a sharp increase, whereas u4 exhibits a slight decrease;
therefore a∗

14 = u1u
−1
4 has an intensive increment. Since a∗

14 represents the exchange
rate of theBRL (country 1)with respect to theUSD (country 4)whenTA is precluded,
that intensive increment shows the strong devaluation of the BRL against the USD.

2They defined the relative error as ||A � A∗||/||A||, where || · || is the norm induced by the inner
product defined in (3).
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Fig. 1 Evolution of the eigenvector components (normalized for summing to one)

Likewise, we can observe the evolution of the exchange rates free of TA in the other
countries.

In this subsection, we analyze the close relationship between the eigenvectors of
the NAMERs projections and the Special Drawing Rights (SDR). According to the
web page of the International Monetary Fund (IMF) (www.imf.org, 2019.08.29), the
SDR is an international reserve asset created by the IMF in 1969 to supplement its
member countries’ official reserves. So far SDR 204.2 billion (equivalent to about
USD 291 billion) have been allocated to members, including SDR 182.6 billion
allocated in 2009 in the wake of the global financial crisis. The value of the SDRwas
initially defined as equivalent to 0.8886 grams of fine gold (about one US Dollar).
However, after the collapse of the Bretton Woods System in 1973, its value was
defined through abasket of currencies.As ofOctober 1, 2016, theSDRbasket consists
of the USDollar, Euro, Chinese Renminbi, Japanese Yen, and Pound Sterling, quoted
at noon each day on the London market. The weights used for each currency reflect
their relative importance in the world’s trading and financial systems, and they are
reviewed either every 5 years or if the circumstances warrant an earlier review. The
current weights are 41.73% forUSD, 30.93% for EUR, 8.33% for ChineseRenminbi,
8.09% for Japanese yen, and 10.92% for GBP.

To obtain the exchange rate of SDRs with respect to the currencies of other
countries, first the IMF computes the exchange rate with respect to the US Dollar
using the weights given above. Then, it uses the USD exchange rate with respect to
the other countries to find the SDR exchange rate with respect to the local currency.
As the exchange rates are close to those corresponding to no-arbitrage values (except
for periods of liquidity shortage of a currency), the SDRs exchange rates must be
close to the inverse eigenvector u−1 of the projections onto the NAMER subspace.
Figure 2 shows the time series of both compositional vectors, normalized to sum up
to one.
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Fig. 2 Illustration of the similarity between the time series of normalized SDRs (left) and the
normalized vectors u−1 (right). Horizontal-axis: time. Vertical-axis: components of normalized
SDRs and u−1 proportions

Fig. 3 Relative Aitchison distances Eq. (5) between SDRs and the vectors u−1 expressed in per-
centages

We use the Aitchison distance (Aitchison 1983; Pawlowsky-Glahn et al. 2015) to
measure the relative distance between the compositional vectors SDR and u−1. The
relative distance is

da(SDR, u−1)

da(SDR, 1)
= da(SDR, u−1)

‖SDR‖ , (5)

where d2
a (x, y) = ∑N

i=1(ln(xi/gm(x)) − ln(yi/gm(y)))2, x, y ∈ R
N+ , and 1 =

(1, . . . , 1) ∈ R
N+ . Figure 3 shows the time series of the relative distances between

SDRs and u−1. They vary between 0 and 5%, with the quartiles being Q1 = 0.25%,
Q2 = 0.46%, and Q3 = 0.77%, indicating that the vector u−1 can be used as a proxy
to the SDRs.
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To justify the proximity between the SDRexchange rates and the vectoru−1, recall
the empirical result found in Maldonado et al. (2020). There it is shown that, with
exception of the period May–June 2012, the exchange rates between the currencies
in the BEGU group are close to those without TA, namely, ai j = a∗

i j = uiu
−1
j . On

the other hand, by definition, one unit of the SDRs is computed as a geometric mean
of the most important currencies in the world, expressed in USD. Let G be the value
of 1 SDR in US Dollars. To obtain the value of 1 SDR in units of currency i , we have
to multiply ai4 by G, so 1 SDR amounts to Gai4 units of currency i . Therefore, using
the result of Maldonado et al. (2020) mentioned above, we can approximately write
Gai4 = Guiu

−1
4 as the number of units of currency i that amounts to 1 SDR. Then,

(Guiu
−1
4 )−1 = G−1u4u

−1
i units of SDRs amount to one unit of currency i . Writing

this in vector form, G−1u4u−1 (or equivalently u−1) contains the exchange rates of
the SDR with respect to all other currencies.

It is worth noting that, as in the case of the relative errors of the MERs, the
relative distance oscillates around 0.5%, except in the same period ofMay–June 2012
as explained in the introduction of this section. That exception happened because
during the Greek crisis, the exchange rates gradually differed more and more from
their values without TA, until the crisis was overcome, as shown in Maldonado et al.
(2020). Therefore, in normal periods, the SDRs can be defined using the inverse of
the components of the NAMER eigenvector.

3.2 Exchange Rate Bubbles Using the NAMERs

Maldonado et al. (2020) verified that thematrices A(t) of exchange rates in theBrazil,
European Union, United Kingdom, and United States of America group are close to
the no-arbitragematrices of exchange rates. Their projections A∗(t)onto theNAMER
subspace are characterized by the eigenvectors time series in the 3−dimensional
simplex (also called the 4−part simplex) u(t) ∈ S

(4−1).3 Since the matrices A∗(t)
represent the exchange rates free of potential TA, we use the eigenvectors that define
those matrices to estimate the level of the fundamental exchange rate in each country
with respect to another.

The fundamental exchange rate between the currency of one country with respect
to another can be defined in different ways, depending on the structural model that
is considered for the exchange rate. Using the prices of tradable commodities, the
interest rates, and the money supply defined by the central bank authority in each
country, we can define different structural models and thus different fundamental
exchange rates. In Van Norden (1996), a regime switching model was used to test
the existence of bubbles in the exchange rates of Canada, Germany, and Japan with
respect to the US Dollar. In that work, three fundamental values were used for
the exchange rate: the Purchasing Power Parity (PPP) value, the uncovered interest
parity value, and a value coming from a monetary model based on sticky prices.

3
S

(4−1) = {(u1, u2, u3, u4) ∈ R+; ∑4
i=1 ui = 1}.
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In Maldonado et al. (2012), three fundamental values (analogous to those of Van
Norden) were defined for modeling the exchange rate bubble dynamics in Brazil.
They proposed a methodology to find the level of the fundamental value, as well as
to test the rational expectations hypothesis in the exchange rate future market. In a
later study, Maldonado et al. (2016) analyzed the existence of cointegration among
the exchange rate bubbles in the BRICS (Brazil, Russia, India, China, and South
Africa) group countries. Finally, Hu and Oxley (2017) test the existence of bubbles
in the exchange rates of BRICS and some Asian and G10 countries. All these studies
analyzed the bubble dynamics of the exchange rates of local currencies with respect
to the US Dollar. In this work, however, we propose analyzing such dynamics by
considering all the exchange rates between the BEGU country group currencies.

Finding the level of the fundamental value for the exchange rate of country i with
respect to country j is essential for measuring the exchange rate bubble size of i with
respect to j . In doing that, we have to take into account that the bubble size of country
i with respect to country j is the inverse of the bubble size of country j with respect
to country i . Thus, the proposal here is the joint determination of the fundamental
values in all countries, such that the bubble sizes (deviations of the exchange rates
from their fundamentals) of all of them are minimized.

Recall that ai j is the number of monetary units of country i needed to buy one
monetary unit of the currency of country j , and consider the fundamental value for
the exchange rate to be the one given by the PPP value. Thus, if pi and p j are the
prices of the tradable commodity baskets in countries i and j , respectively, then the
fundamental value of the exchange rate between countries i and j is a f

i j = pi/p j .
That fundamental value equalizes the price of a (representative) tradable good in
countries i and j and the Law of One Price proposes that it should be the long-
run value for the exchange rate between the currencies in both countries. These
values can be arranged in a matrix A f . In order to disregard the eventual presence
of TA, and since the MERs are very close to the corresponding NAMER, we will
use the corresponding projection a∗

i j rather than ai j . In monetary economics, the
bubble in the exchange rate is any deviation from its fundamental value. If the spot
exchange rate is greater (lower) than its fundamental value, then the currency i is
undervalued (overvalued) with respect to the currency in j . Thus, the bubble size
in the exchange rate can be defined as the difference between its spot value and the
corresponding fundamental value. Since we are working with compositional vectors
and non-negative values, we choose to define the bubble size in the exchange rate
of country i with respect to country j as bi j = a∗

i j/a
f
i j . Therefore, this bubble size

reports the gross rate of undervaluation (or overvaluation) of currency i with respect
to currency j .

Definition 2 For each t = 1, · · · , T , let

A∗(t) = [a∗
i j (t)] = u(t)(u−1(t))� ∈ E ′ ⊂ R

N×N
+

be the NAMER projection of A(t) ∈ E ⊂ R
N×N
+ , and let pi (t), p j (t) be the prices

of the tradable commodity baskets in countries i and j at time t , respectively. The
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bubble matrix B(t) ∈ R
N×N
+ is

B(t) = [bi j (t)] = A∗(t) � A f (t) =
[
a∗
i j

a f
i j

]
=

[
ui (t)p j (t)

u j (t)pi (t)

]
, (6)

which is also an element of E ′ for any t . It is worth noting that the bubble matrix
contains all the information regarding undervaluation and overvaluation among the
currencies in the group of countries.

Tomeasure the fundamental PPP value of the exchange rate, the use of theWhole-
sale Price Index (WPI) is recommended by Terra and Vahia (2008). For Brazil, the
United Kingdom, and the United States of America, it is available in the correspond-
ing Central Bank sites. However, for the European Union, the only time series data
available is the Harmonized Index of Consumer Prices (HICP), so we will use those
data. Since the price of the commodities basket is amultiple of the index, wewill have
that pi (t) = kiWPIi (t) where k = [k1 · · · kN ]� is a vector that we have to estimate.
In terms of k, the bubble matrix defined in (6) is given as

B(t; k) =
[
ui (t)k jWPI j (t)

u j (t)kiWPIi (t)

]
= k−1x(t)

(
(k−1x(t))−1

)�
, (7)

where x = [xi (t)] = [ui (t)WPIi (t)].
It is important to notice that the exchange rate bubble size of country i with respect

to country j is
bi j (t) = k−1

i k j xi (t)(x j (t))
−1 .

As a consequence, decreasing the value of ki reduces the bubble size of i with respect
to j , but at the same time, the bubble size of all the other countries with respect to
i increases. Therefore, we propose estimating the vector k ∈ R

N+ as being the one
that minimizes the joint bubble sizes in the whole group, namely, the minimum of
the quadratic sum of the bubble matrix sizes.

Proposition 3 The components of the vector k∗ = [k∗
1 · · · k∗

N ] ∈ R
N+ which mini-

mize

N∑

t=1

‖B(t; k)‖2 ,

are

k∗
i = gm (xi (1), · · · , xi (T )) ,

where gm(v) is the geometric mean of the components of v.

To compute bubble sizes in the exchange rates of the BEGU group countries,
we use the exchange rate values from the last business day of each month, because
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Fig. 4 Exchange rate bubble dynamicswith respect to theUSD in%.Horizontal-axis: time.Vertical-
axis: ratio to the USD

the price indexes are measured on the same day. Then, we compute the vector u,
which defines the NAMER. The levels of the fundamental values for each country
of the group, the vector k∗, are estimated using Proposition 3. As a result, we find
a f
i j = pi/p j = k∗

i k
∗−1
j WPIiWPI−1

j , the fundamental exchange rate values of each
country with respect to all other countries, as well as the exchange rate bubble
dynamics. In Fig. 4, we show the evolution of the exchange rate bubbles of all the
countries with respect to the US Dollar along the analyzed period. In that figure we
are plotting the time series bubbles bi,4(t) = a∗

i4(t)/a
f
i4(t), for i = 1, 2, 3, namely,

BRL, EU, and GBP, respectively. Level “1” (or close to it) of the bubble represents
the no existence of it (a∗

i4 = a f
i4); it is the level at which the long-run behavior of the

bubble sizes should converge, according to the PPP principle. Analogously, a value
lower (greater) than 1 means that a∗

i4 < a f
i4 (a∗

i4 > a f
i4), then, the exchange rate of

the currency i with respect to the USD is overvalued (undervalued) with respect to
its fundamental value.

At this point, it is important to discuss the reasons for the appearance of exchange
rate bubbles. The deviations of an exchange rate from its fundamental value are
strongly related to the capital flight and/or to the excess of optimism regarding the
financial perspective of a country. The pessimism triggers capital flight, thus exerting
pressure over the demand for foreign currency, and this produces the undervaluation
of the domestic currency. When the optimism of the financial market returns, invest-
ments in foreign currency arrive and the local currency recovers its value. That said,
let us proceed to analyze the dynamics of bubbles in exchange rates in the group.

The Great Britain Pound keeps its spot value very close to its fundamental value
until the middle of 2016, when the Brexit referendum triggers a continuous devalua-
tion with respect to the US Dollar. For the Brazilian Real, we observe an overvalued
currency up to the end of 2014. The perception of balanced growth and not too
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deteriorated public accounts allowed for that overvaluation that then progressively
diminishes. In fact, the overvaluation of BRL currency with respect to the others in
the group experienced a slow decrease at the end of 2014. From the beginning of
2015 until the end of that year, the bubble size increased vigorously, leading the spot
exchange rate to attain more than 140% of its fundamental value. Three events fed
the rise of the bubble that year: (i) the deterioration of the public accounts (Hol-
land 2019); (i i) the corruption cases deflagrated in different spheres of the current
and former government4; and (i i i) the uncertainty regarding the consolidation of the
impeachment process of the president Dilma Rousseff (Nunes andMelo 2017). After
August 2016 the bubble burst, following the market perception of the social secu-
rity reforms approval. However, from the beginning of 2017, we observe a bubble
growth following a global tendency of currency devaluations in emerging markets.
Regarding the Euro (EU) and the Pound Sterling (GBP), the dynamics of the almost
nonexistent bubble size with respect to the US Dollar are quite similar to that of
the end of 2014. The devaluation of the Euro, and the consequent bubble rise from
2015 on, was correlated to three events: the likelihood of an increase in US interest
rates from 0.2% at the beginning of 2016 to more than 2% in 20195, the deepening
of the crisis in Greece (Amini 2015), and the effect of the European Central Bank’s
quantitative easing programme, buying bonds from local banks, and creating in this
way currency liquidity in the bank system (Claeys and Leandro 2016). However,
prices were adjusted by inflation, so the bubble with respect to the US Dollar started
to burst at the beginning of 2016. All those episodes meant the international investor
preferred American investments, thus increasing the Euro exchange rate with respect
to the US Dollar.

It is evident that the set of C-bubble (Compositional-bubble) sizes6 B(t; k) are
NAMERs and, therefore, they can be represented by the eigenvector v(t) such that
B(t; k) = v(v−1)�; note that, for notational simplicity, dependence on time has
been dropped. The vector v ≡ v(t) is a 4-part composition and the corresponding
exploratory techniques can be used to show the evolution in time beyond the curves
shown in Fig. 4. The compositional principal component analysis (Aitchison 1983)
and the corresponding biplots (Aitchison and Greenacre 2002; Pawlowsky-Glahn
et al. 2015, Chap. 5) provide a graphical tool to visualize the evolution of bubbles.
Figure 5 shows the form biplots of the sample v’s along time, both in the first and
second (left panel) and first and third (right panel) principal components. The origin
of rays is the center (compositional mean) of the C-bubbles along time; it can be
considered as a null C-bubble computed using Proposition 3. The 3 axes follow the
principal components and account for the whole variation of the sample which is
3-dimensional. Each point represents a value of v(t) in isometric log-ratio coordi-
nates (Egozcue et al. 2003; Pawlowsky-Glahn et al. 2015) such that the distances to
the origin are proportional to the size of the bubble; the distances from one point to

4https://www.britannica.com/event/Petrobras-scandal.
5https://www.macrotrends.net/2015/fed-funds-rate-historical-chart.
6C-bubble sizes is an alternative name for the bubble matrix defined in (6), where we highlight the
compositional nature of that object.

https://www.britannica.com/event/Petrobras-scandal
https://www.macrotrends.net/2015/fed-funds-rate-historical-chart
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another are their Aitchison distances, meaning that two nearby points stand for small
deviations. The rays from the origin, and labeled with BRL, EU, GBP, and USD,
are the projections of unitary vectors pointing to the directions of the increasing
bubble of the currency, relative to all other countries. In Fig. 5, the unitary vectors
representing each variable are projected on a plane. Then, a short ray, e.g. EU (Euro),
in the first and second axes projection, means that the vector is quite orthogonal to
that projection plane producing a visual reduction of the vector length. To better
understand Fig. 5, the C-bubbles have been colored by year. In the right panel, we
observe that from 2011 to 2015 there is a linear trend along the first axis meaning
a continuous increase of the C-bubble mainly caused by overpricing BRL, relative
to USD and GBP. In 2016 and 2017, this trend changes its direction dramatically
with the role of the GBP, which suddenly increases its bubble with respect to the
other currencies, especially with respect to the BRL which has a decreasing bubble
in these years (see also Fig. 4). Additionally, Fig. 5 shows a noticeable continuity in
the evolution of the C-bubble, well described by the low variability of the third axis
(right panel) which is dominated by the contrast between EU and GBP.

4 Conclusions

In this work, we present two applications of the theory developed in Maldonado
et al. (2020) to analyze the existence and the measurement of TA in the exchange
rates of a group of countries. Using data on a daily basis from the foreign exchange
(FX) markets of Brazil, the European Union, United Kingdom, and United States
of America (here called the BEGU group) for the period August 2011 to December
2017, we perform the following empirical analyses.

First, we find the proximity between the eigenvector of the matrix of exchange
rates projection onto the no-arbitrage subspace and the exchange rates of the Spe-
cial Drawing Rights (SDR), an asset created by the International Monetary Fund
to provide liquidity to the member countries with respect to the currencies of the
countries in the BEGU group. The exchange rate between one SDR and the USD
is determined through a basket of currencies where the weights are defined by the
relative importance of the country in the world’s trading and financial systems. Using
the computed exchange rate of the SDR with respect to the USD, its exchange rates
with respect to the other currencies in the BEGU group are computed multiplying
their spot exchange rates with respect to the USD (the last column of the matrix
of exchange rates of the BEGU’s currencies). Since the TA between the BEGU’s
currencies is almost negligible, all the columns in the exchange rate matrix of the
group are nearly proportional between them and close to the single eigenvector of
the projection matrix onto the NAMER subspace. Thus, the SDR exchange rates
with respect to the BEGU’s currencies are also close to that eigenvector. Hence, we
are able to empirically check the close proportionality between the SRD’s exchange
rates and the eigenvector of the exchange rates matrix of the group of countries.
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Second, using the exchange rates free of TA, we compute the level of the fun-
damental exchange rate values, considering as the fundamental value the one cor-
responding to the Purchasing Power Parity. Those levels are calculated in such a
way that the distance between the spot exchange rate and its fundamental value is
minimized for the whole group (according to the Law of One Price). With those
levels in mind, we simultaneously analyze the exchange rate bubble dynamics in the
whole group. This allows us to take into account that the bubble size in currency i
with respect to currency j is the inverse of the bubble size in currency j with respect
to currency i , because in minimizing the bubble size of one of them, the bubble size
of the other increases. The movements of the bubble sizes in each country in the
group correspond to economic and financial events (crises or liquidity problems)
that occurred in the countries in the group during the analyzed period, as discussed
in Sect. 3.

Some open issues arise from the analysis in this work. First, it was shown that,
in general, the MER is close to the corresponding NAMER projection (except for
periods of strong liquidity shortage). However, the NAMER and its characteristic
eigenvector significantly vary over time. The inclusion of economic variables like
prices, interest rates, Gross Domestic Product, imports/exports, and short-run debts
in the explanation of the dynamics of the NAMER projection eigenvector could shed
light on how the exchange rates in a group of countries may vary in the short run.
This is a very important issue for financial economics. Also, the analysis performed
here assumed that the bid-ask spread of prices in the FX market trading is zero.
A more accurate treatment would consist of considering that there is a difference
in buying and selling prices and, consequently, reformulating the definition and
characterizations of no-arbitrage. Another interesting issue is the analysis of the
possible influence of TA on the future values of the exchange rates. This has been
proposed and tested byGradojevic et al. (2019) and, if theoreticallymodeled, it could
establish a connection between TA and inter-temporal arbitrage. Finally, despite
the fact that the analysis proposed here is based on the FX markets, other markets
(financial or non-financial) can be considered in order to capture the inefficiencies
or the transaction costs that can produce TA.
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Appendix

Proposition 3. The components of the vector k∗ = [k∗
1 · · · k∗

N ] ∈ R
N+ which mini-

mize
N∑

t=1

‖B(t; k)‖2 ,
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are
k∗
i = gm(xi (1), · · · , xi (T )) ,

where gm(v) is the geometric mean of the components of v.

Proof The (i, j)-component of the bubble matrix is

bi j (t) = k−1
i k j xi (t)x

−1
j (t)

and, taking logarithms,

ln(bi j (t)) = ln(xi (t)) − ln(x j (t)) − ln(ki ) + ln(k j ) .

Consider di (t) = ln(xi (t)) and zi = ln(ki ). The function to be minimized is

T∑

t=1

∑

i, j

(di (t) − d j (t) − zi + z j )
2 .

Note that if (z1, z2, · · · , zN ) is a solution then, for any real number r , (z1 + r, z2 +
r, · · · , zN + r) is a solution as well. Thus, we may suppose that

∑
i zi = 0 and, after

finding a solution, we may even add a constant if it leads to a simplification.
The first-order condition with respect to the component i0 is

T∑

t=1

⎡

⎣−2
∑

j

(
di0(t) − d j (t) − zi0 + z j

)

+2
∑

i

(
di (t) − di0(t) − zi + zi0

)
]

= λ ,

where λ ≥ 0 is a Lagrange multiplier. Rearranging the terms inside the brackets and
using

∑
i zi = 0 yields

4
T∑

t=1

(
−Ndi0(t) + Nzi0 +

∑

i

di (t)

)
= λ .

Summing up on i0 and using
∑

i zi = 0, we obtain λ = 0. Therefore,

zi0 =
∑T

t=1 di0(t)

T
− 1

N

T∑

t=1

N∑

i=1

di (t) .
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If we add the amount r = N−1 ∑T
t=1

∑N
i=1 di (t) to each component of the vector

(z1, z2, · · · , zN ), we get

zi0 =
∑T

t=1 di0(t)

T
.

Substituting the values of di (t) = ln(xi (t)) and zi = ln(ki ), we complete the
proof. �
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Log-contrast and Orthonormal Log-ratio
Coordinates for Compositional Data with
a Total

Josep Antoni Martín-Fernández and Carles Barceló-Vidal

Abstract Compositional data require an appropriate statistical analysis because they
provide the relative importance of the parts of a whole. Methods based on log-ratio
coordinates give a consistent framework for analyzing this type of data.Any statistical
model including variables created using the original parts should be formulated
according to the geometry of the simplex. This geometry includes the log-contrast:
a simple way to express a set of log-ratios in a linear form. Basic concepts and
properties of log-ratios, log-contrasts, and orthonormal coordinates are revisited.
In addition, we introduce an approach that includes both the log-ratio orthonormal
coordinates and an auxiliary variable carrying absolute information. We illustrate
the approach through the principal component analysis and discriminant analysis of
real data sets.

1 Compositional Analysis and a Typical Linear
Combination of Variables

When the components w1, . . . ,wD of a real vector w of IRD
+ (the strictly positive

octant of IRD) describe the disjoint parts of a whole, one says thatw is a D-part com-
position (Aitchison 1986). The generic term compositional data (CoDa) refers to a
data set consisting of compositions. Sometimes, the original units of the components
of w represent absolute magnitudes (e.g., grams, euros, and liters); in other situa-
tions, they represent relative magnitudes (e.g., proportions, percentages, ppm, and
mg/L). When the parts w1, . . . ,wD constitute an exhaustive partition of a whole, one
assumes that one is dealing with full compositions where the absolute total amount
for the realizations (samples) can be a constant K , equal to K = w1 + · · · + wD , or
can be different throughout the samples. In the case of a fixed total, the composition
is only characterized by the relative information because the absolute values of the
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components are not informative. Typical examples are the data from day-time-use
surveys where the components of all D-part vectors of the data set refer to a constant
absolute total equal to K = 24h (or 1440min). Another typical example are the data
from experiments with mixtures in industry where K = 1 (or 100). On the other
hand, in other very common situations the parts w1, . . . ,wD do not constitute an
exhaustive partition of a fixed whole because they form a subcomposition, that is,
a composition not including all parts into which the whole has been divided. This
case occurs frequently in geochemistry or air pollution data, among others, where the
CoDa are concentrations of a few specific chemical elements. In other situations, the
whole simply does not take a constant value across the samples. For instance, in eco-
nomics or waste management, among others, these data are very common. In these
two scenarios, where the total is not a fixed value, one can assume that the information
provided by a composition can be split into two different parts: relative and abso-
lute (Martín-Fernández et al. 2020). For example, the relative information provided
by the vectors (0.03, 0.08, 0.10), (0.12, 0.32, 0.40) of a 3-part subcomposition of
three chemical elements (in mg/L) is the same but the two vectors provide different
absolute information because the concentrations in the second sample are four times
the concentration in the former composition. Barceló-Vidal and Martín-Fernández
(2016) coined the term compositional analysis (CoAn) to refer to the analysis of the
relative information provided by compositional data, that is, the log-ratio analysis
proposed in Aitchison (1986). In this chapter, we propose an approach to complete
a CoAn by adding the analysis of the absolute information.

In a CoAn, the components of a composition represent relative magnitudes that
stop being independent of each other, since any change in one of the parts nec-
essarily causes the relative change in one or more of the other components. This
effect is evident if w is a full composition with a fixed total. However, this lack of
independence between the components is also present even when one is doing a
CoAn with subcompositions. This lack of independence between the components
of a compositional data set prevents us from applying the standard procedures of
statistical analysis. Aitchison (1986) showed that this serious inconvenience can be
overcome if one analyzes the ratios wi/wj between the components of the com-
positions instead of their individual values. For strictly mathematical requirements,
Aitchison proposed working with the logarithms of these ratios (log-ratios). Ratios
and logarithms force us to avoid the case of zero values in CoAn. We consider the
zero as a special value that deserves a particular analysis according to its nature.
The reason why a zero value is present in CoDa is because it is informative and
determines the approach to be applied (Palarea-Albaladejo and Martín-Fernández
2015). The requirement that a CoAn must be based on the ratios of the components
of the compositions is equivalent to a scale invariance requirement (Barceló-Vidal
and Martín-Fernández 2016). That is, the results of any analysis of CoDa must be
the same if one replaces any D-part vector w of the data set by the vector kw,
for any value k > 0. One considers that w and kw are compositionally equivalent
or, in mathematical terms, that they are members of the same equivalence class.
All members of an equivalence class provide the same relative information, that is,
the information given by the ratios between the components. For example, the 3-part
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Fig. 1 A 3-part composition w as an equivalence class (violet dashed line): three representatives
w1, w4, and w8 in the simplex when the constant sum constraint, respectively, equals 1, 4 and 8

vectors (0.3, 0.5, 0.2), (1.2, 2.0, 0.8), (2.4, 4.0, 1.6), (7.2, 12, 4.8), and (30, 50, 20)
provide the same relative information although they, respectively, sum 1, 4, 8, 24,
and 100. In other words, they are members of the same equivalence class. Con-
sequently, in CoAn, the sample space is not IRD

+ , it is the quotient space IRD
+/∼,

where ∼ symbolizes the compositional equivalence relation. Observe that the differ-
ent expressions—absolute, proportions, percentages, ppm...—of a D-part vector w
belong to the same equivalence class. Despite the D-part vector chosen to represent
the equivalence class being irrelevant in CoAn, it is usual to choose the representa-
tive whose components’ sum is equal to 1. The operation closureCw = w/

∑D
j=1 wj

(Aitchison 1986) provides this representative. This criterion could be generalized to
representatives with a sum equal to 100 or any other positive value. Figure1 shows
an equivalence class w (violet dashed line) and three of its representatives w1, w4,
and w8 with constant sum constraints, equal to 1, 4, and 8. The set of vectors of IRD

+
whose sum is equal to one is the unit simplex (Aitchison 1986):

SD = {x = (x1, . . . , xD)t : x1> 0, . . . , xD > 0; x1 + · · · + xD = 1}.

The fundamentals of CoAn were introduced in Aitchison (1986) and have been
completed and justified mathematically in Pawlowsky-Glahn and Buccianti (2011),
Barceló-Vidal and Martín-Fernández (2016), and Egozcue and Pawlowsky-Glahn
(2019), among many other papers.
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In statistics, the sample space of a random vector x is of crucial importance for
any linear model. These models, which are based on the linear combinations of the
components of x, are the fundamentals of, among others, regressionmodels, principal
component analysis (PCA), and discriminant analysis (DA). For example, consider
the linear combinations for a typical PCA (Krzanowski 2000) defined as

z = � · (x − μ) , (1)

where μ is the arithmetic mean of x, � = (λi j ) is a (D × D) matrix of constants
(loadings), whose rows are orthogonal unit vectors of length D. z = (z1, . . . , zD)t is a
latent randomvectorwithmean zero and a covariancematrix� =diag(ψ2

1 , . . . , ψ
2
D).

Note that the structure of this matrix indicates that the variables z j are uncorrelated
with each other.

When one wants to analyze the relative information of the random vector x, the
expression in Eq. (1) should provide the same information regardless of the represen-
tative selected for the composition. Consequently,when one uses the representative in
the unit simplex it holds that

∑D
j=1 x j = 1,

∑D
j=1 μ j = 1, and

∑D
j=1 (x j − μ j ) = 0.

Therefore, from Eq. (1), for each zi , i = 1, 2, . . . , D, it holds that

zi = λi1(x1 − μ1) + λi2(x2 − μ2) + · · · + λi D(xD − μD) ,

and, because
∑D

j=1 (x j − μ j ) = 0,

zi = (λi2 − λi1)(x2 − μ2) + (λi3 − λi1)(x3 − μ3) + · · · + (λi D − λi1)(xD − μD),

suggesting that at least one variable, zi , should be equal to zero (i.e., λi1 = λi2 =
· · · = λi D), because otherwise onewould have D uncorrelated orthonormal variables
in a D − 1-dimensional sample space (simplex), which is absurd.

The bloodMN data set records the absolute frequencies of the genotypes MN,
MM, and NN observed in 32,572 blood samples coming from 49 different ethnic
groups around the world (Boyd 1950, pages 234–235). For example, in 300 Italian
people, the genotype MN was observed 144 times, genotype MM 96 times, and
genotype NN 60 times. Therefore, the (MN, MM, NN)-part vector of the Italian
ethnic group is (144, 96, 60) or (0.48, 0.32, 0.20), when the unit-sum representative
is considered. Figure2 shows the ternary diagram associated with the compositional
analysis of the bloodMN data set. Following Aitchison (1986), the ternary diagram is
a popular representation of the simplex space for D = 3 (Fig. 1). The convex shape
of the point cloud suggests that any typical latent variable model that consists of
standard linear forms will not be able to explain this kind of association. In fact, the
first component of the standard PCA based on the covariance matrix on the set of
compositions expressed as proportions (green dashed line in Fig. 2) explains 80% of
total variance. The equation of the standard PCA expressed in matrix form is
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Fig. 2 Ternary diagram:
MN, MM, and NN blood
type composition in 49
ethnic populations. Green
dashed line: typical linear
PCA. Red solid line:
log-ratio linear PCA

MN

MM NN

z =
⎛

⎝
0.222 −0.791 0.570
0.786 −0.201 −0.585
0.577 0.577 0.577

⎞

⎠ ·
⎛

⎝
x1
x2
x3

⎞

⎠ −
⎛

⎝
−0.071
0.164
0.577

⎞

⎠ , (2)

where x = (x1, x2, x3)t represents a (MN,MM,NN)-part composition expressed in
proportions. From Eq. (2) one can derive that z3 is equal to zero because x1 + x2 +
x3 = 1. The results shown in Eq. (2) as well as the other results in this chapter have
been obtained using the programming language R (R Core Team 2019).

It is well-know that using the expression of a PCA (Eq. (1)) one can find a
potential sample x which has given pc scores. For example, taking extreme val-
ues for the pc scores one can characterize what the potential outliers are. Using
Eq. (2) to detect the sample with pc scores (0.5, 0, 0), one obtains the composition
(0.557,−0.039, 0.482). Despite being mathematically consistent because the unit-
sum constraint is verified, the result cannot be a composition because a valueMM< 0
is not in the sample space (Fig. 2).

This fact suggests that the typical PCA is not appropriate for CoAn because
its assumptions are not fulfilled. Many authors (Mooijaart et al. 1999) suited this
kind of typical linear techniques, like PCA, factor-analysis, and least squares, to the
CoDa peculiarities. However, these typical linear techniques are not appropriate for
modeling common associations between compositional parts (Fig. 2). At this point,
two possible alternatives appear: either modify and adapt a more complex typical
technique, or apply techniques that are appropriate for the particular geometry of the
simplex. Although we admit that the first alternative could provide reasonable results
in some scenarios, we use the second because we believe that the more coherent the
method is, the more reasonable the results will be.



514 J. A. Martín-Fernández and C. Barceló-Vidal

2 Log-Contrast and Log-Ratio Variables

Currently, there is a general agreement among CoAn researchers that the geometry
of the simplex is based on log-ratio coordinates (Pawlowsky-Glahn and Buccianti
2011). For example, the red solid line in Fig. 2 suggests that a log-ratio linear PCA
fits better than the typical (green dashed line) PCA does.

Let w be a D-part vector and a = (a1, . . . , aD)t be a vector in IRD
�=0, being 0 a

vector of zeros. We symbolize by ll(a;w) the log-linear (ll) combination a1 lnw1 +
· · · + aD lnwD of the components of lnw. The log-linear combination ll(a;w) can
be written in matrix form as at · lnw. We say that ll(a;w) is unitary if at · a = 1.

If a1 + · · · + aD = 0, then ll(a;w) is scale invariant and is called a log-contrast
(lc(a;w)) (Aitchison 1986). In fact, lc(a; kw) = lc(a;w), for any k > 0, in particular,
lc(a;w) = lc(a; x), where x is the unit-sum representative. Importantly, any linear
combination of pairwise log-ratios can be expressed as a log-contrast. For exam-
ple, for D = 3, the linear combination α ln(w1/w2) + β ln(w1/w3) + λ ln(w2/w3)

can be rewritten as lc(a;w), with a = (α + β, λ − α,−β − λ)t . Inversely, any log-
contrast lc(a;w) can be rewritten in differentways as a linear combination of pairwise
log-ratios. For example, if one considers aD = −a1 − · · · − aD−1 then lc(a;w) =
at · lnw = a1 ln(w1/wD) + · · · + aD−1 ln(wD−1/wD). Consequently, linear combi-
nations of pairwise log-ratios and of log-contrasts are equivalent concepts.

The most common log-ratio scores used in CoAn to represent a composition are
simply a set of log-contrasts. For example, the clr-score:

clrw = (ln(w1/g(w)), . . . , ln(wD/g(w)))t ,

where g(w) is the geometric mean of w, can be formulated in terms of D log-
contrasts:

clrw =
⎛

⎝D − 1

D
lnw1−

∑

j �=1

1

D
lnwj , . . . ,

D − 1

D
lnwD−

∑

j �=D

1

D
lnwj

⎞

⎠

t

. (3)

Thus, the first component of clrw is the log-contrast lc(a1;w), where a1 = (1−
1/D,−1/D, . . . ,−1/D)t . Equation (3) can be written in matrix form as clrw =
G · lnw, where G = I − 1

DJ, with I being the D × D identity matrix and J the
D × D matrix of ones.

Observe that the sum of the components of vector clrw, as well as the columns
and rows of the symmetric D × D matrix G, is equal to 0. In fact, if we inter-
pret clr as a map from IRD

+ to IRD , the image clr IRD
+ (and also clrSD) is the sub-

spaceVVV = {y ∈ IRD : ∑D
i=1 yi = 0} of dimension D − 1. Then, given an orthonor-

mal basis {v1, . . . , vD−1} ofVVV, we call the orthonormal log-ratio coordinates (olr )
of a composition, w, the coordinates of clrw relative to {v1, . . . , vD−1} (Martín-
Fernández 2019). The concept of orthonormal coordinates was firstly introduced
by Egozcue et al. (2003) when defining the isometric log-ratio transformation. The
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matrix expression of the corresponding coordinate vector olrw is equal to

olrw = Vt · clrw = Vt · G · lnw = Vt · lnw , (4)

where the matrixV is equal toV = (v1 : · · · : vD−1), in thatVt · V = I andV · Vt =
G. Since the sum of the components of vi are equal to 0, the olr coordinates of w
are log-contrasts. The olr and clr scores of a composition w are related since it holds
that olrw = Vt · clrw and clrw = V · olrw. This relation can be introduced in the
expression of a log-contrast to obtain the expression lc(a;w) = at · lnw = (G · a)t ·
lnw = at · G · lnw = at · clrw = (Vt · a)t · olrw, where one states that any log-
contrast is a linear combination of log-ratios.

The particular geometry of the simplex on which CoAn is based has three basic
elements: the operations perturbation and powering, and an inner product. All three
can be defined from the clr scores or the olr scores of compositions. For example,
the inner product between two compositions w and w∗ is defined as the usual inner
product between the vectors clrw and clrw∗ in IRD or between the vectors olrw
and olrw∗ in IRD−1. In this way, the simplex is structured as a Euclidean space of
dimension D − 1 (Barceló-Vidal and Martín-Fernández 2016). This allows one to
apply the well-known properties of Euclidean spaces to compositions. For example,
one can make orthogonal projections, define angles, and calculate ellipses. In short,
one can properly apply any multivariate method to analyze the relative information
in CoDa (Mateu-Figueras et al. 2011).

The covariance structure of a random composition w can be defined from the
covariance matrix � of clrw as

� = (γi j ) = (
cov{(clrw)i , (clrw) j }

)
.

It could also be defined from the covariance matrix � of olrw, that is,

� = (δi j ) = (
cov{(olrw)i , (olrw) j }

)
.

The two covariance matrices are well related because it holds that

� = V · � · Vt,

� = Vt · � · V.

Both covariancematrices have the same trace which is a measure of the total variance
of w.

As in standard PCA, the first principal component (PC1) associated with w will
be the unitary log-contrast lc(a1;w) which maximizes var{lc(a;w)}, that is, which
maximizes at · � · a (Aitchison 1986). The procedure for calculating the other prin-
cipal components lc(a2;w), . . . , lc(aD;w) is similar to the typical algorithm. Thus,
Eq. (1) becomes
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z = (a1 : · · · : aD)t · (clrw − μ) , (5)

where μ is the mean of the random variable clrw.
For example, the log-ratio PCA of the bloodMN data set is equal to

z =
⎛

⎝
0.008 −0.711 0.703
0.816 −0.401 −0.415
0.577 0.577 0.577

⎞

⎠ ·
⎛

⎝
(clrw)1
(clrw)2
(clrw)3

⎞

⎠ −
⎛

⎝
−0.487
0.546

0

⎞

⎠ , (6)

or in terms of log-contrasts

z =
⎛

⎝
0.008 −0.711 0.703
0.816 −0.401 −0.415

0 0 0

⎞

⎠ ·
⎛

⎝
lnw1

lnw2

lnw3

⎞

⎠ −
⎛

⎝
−0.487
0.546

0

⎞

⎠ , (7)

where z3 = 0 and where PC1 captures 98.4% of the total relative variance of the
CoDa. The log-ratio PCA (Eq. (6)) could also have been performed using the covari-
ance matrix � of olrw. That is, the resulting PCA equation, once the olr coordinates
are expressed in logarithms, is equal to Eq. (7). Note that the expression of PC1 can be
approximated by 0.707 ln(w3/w1) + 0.487 suggesting that the variance is retained
by the information provided by the ratio between the genotypes NN and MM. If
we consider an olr basis where the first vector is formed using this ratio, then the
second vector of the basis is formed using the ratio between the genotype MN and
the geometric mean of genotypes MM and NN. Because these two olr vectors are
orthogonal, the second vector approximates the direction of the PC2. This compo-
nent can be considered approximately constant because it captures only 1.6% of the
variance. Consequently, the ratio between the genotype MN and the geometric mean
of the genotypes MM and NN can be considered approximately constant, consistent
with the Hardy–Weinberg equilibrium.

3 Log-contrast and Multiplicative Total

LetVVV⊥ be the subspace of IRD orthogonal to the subspaceVVV. Since the dimension
ofVVV is D − 1, the dimension ofVVV⊥ is equal to 1. Therefore, the unit-norm vector
t = 1√

D
1, where 1 is the D-vector of ones, is a basis ofVVV⊥. Then, any vector y in

IRD can be uniquely decomposed as the sum yVVV + yVVV⊥ of two orthogonal vectors,
one belonging toVVV and the other toVVV⊥:

yVVV = G · y =
(

I − 1

D
J
)

· y and yVVV⊥ = 1

D
J · y =

∑D
j=1 y j

D
1 .
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When the orthogonal decomposition is applied to the vector a of a log-linear
combination ll(a;w), a decomposition in terms of two log-linear combinations is
obtained:

ll(a;w) = (aVVV + aVVV⊥)t · lnw =
= atVVV · lnw + atVVV⊥ · lnw =
= ll(aVVV;w) + ll(aVVV⊥;w) , (8)

which can be expressed in terms of a log-contrast as

ll(a;w) = ll(aVVV;w) + ll (aVVV⊥;w) =
= atVVV · lnw + atVVV⊥ · lnw =

= at · G · lnw +
∑D

j=1 a j

D
(

D∑

j=1

lnwj ) =

= lc(G · a;w) +
∑D

j=1 a j√
D

∑D
j=1 lnwj√

D
. (9)

Consequently, the log-linear combination ll(a; x) decomposes into two parts. The
relative (scale invariant) part corresponds to the log-contrast lc(G · a;w). The abso-
lute part is the last term in Eq. (9). This involves the logarithm of the multiplicative

total t (w) = ∏D
j=1 w

1/
√
D

j introduced in Pawlowsky-Glahn et al. (2015). That is,

ll(a;w) = lc(G · a;w) +
∑D

j=1 a j√
D

∑D
j=1 lnwj√

D
=

= at · clrw +
∑D

j=1 a j√
D

ln t (w) =

= (Vt · a)t · olrw +
∑D

j=1 a j√
D

tlog w , (10)

where tlog w represents the total of logarithms.
Following (Coenders et al. 2017), this decomposition can be generalized. Indeed,

given an orthonormal basis {v1, . . . , vD−1} of the subspaceVVV, one can complete the
set of D − 1 vectors to an orthonormal basis of IRD by adding the vector t = 1√

D
1

because t is a unit-norm vector that is orthogonal to the subspaceVVV. Let U = [v1 :
. . . : vD−1 : t] be the D × D matrix whose columns are the vectors of the basis of
IRD . Since it is an orthonormal basis, it holds that Ut · U = U · Ut = I. In particular,
for any D-part vector w in IRD

+ , it holds that (olrw : tlog w) = Ut · lnw. Regarding
the scale invariance property, it holds that

Ut · ln(kw) = (olr (kw) : tlog (kw)) =
(
olrw : (tlog w + √

D ln k)
)

, for any k > 0 .
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Fig. 3 Decomposition into relative and absolute information of a composition.All the compositions
in the same equivalence class (violet dashed line) have the same relative information (clrw) but
different absolute information (tlog w). The gray plane represents the space V where an olr basis
can be defined

That is, any compositionw canbedecomposed into two termsproviding, respectively,
its relative and absolute information (Fig. 3).

Figure3 shows how the information provided by a D-part composition w is
decomposed. When the log-transformed composition lnw is projected to the vec-
tor clrw, the relative information can be expressed in terms of an olr vector of
coordinates. Projecting the lnw vector into the direction of the vector t gives the
absolute information associated with the value tlog w. All the points on the verti-
cal violet dashed line share the same relative information (clr scores) because they
belong to the same equivalence class. For example, let v1 = ( 2√

6
,− 1√

6
,− 1√

6
), v2 =

(0, 1√
2
,− 1√

2
) be an olr basis of the spaceV. The corresponding olr coordinates of

the 3-part compositions (0.3, 0.5, 0.2), (1.2, 2.0, 0.8), (2.4, 4.0, 1.6), (7.2, 12, 4.8),
and (30, 50, 20) are equal to (−0.043, 0.648). However, their tlog scores are,
respectively, −2.025, 0.377, 1.577, 3.480, and 5.952. In contrast, the compositions
(30, 50, 20), (50, 20, 30), and (20, 30, 50), sharing the same tlog score (5.952), have
different vectors of olr coordinates, respectively, (−0.043, 0.648), (0.583,−0.286),
and (−0.540,−0.361).

Equation (10) can be also obtained using the expressions of the basis of IRD:
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ll(a;w) = at · lnw =
= at(U · Ut) · lnw =
= (Ut · a)t · (Ut · lnw) =

=
(

Vt · a :
∑D

j=1 a j√
D

)t

· (olrw : tlog w) =

= (Vt · a)t · olrw +
∑D

j=1 a j√
D

tlog w . (11)

The equation-matrix of the PCA based on the covariance matrix of the logarithms
of the (MN,MM,NN)-parts of the bloodMN data set expressed in its original units is
equal to

z =
⎛

⎝
0.572 0.458 0.680
0.083 0.793 −0.604
0.816 −0.402 −0.415

⎞

⎠ ·
⎛

⎝
lnw1

lnw2

lnw3

⎞

⎠ −
⎛

⎝
7.835
1.739
0.540

⎞

⎠ (12)

where w = (w1,w2,w3)
t represents a generic (MN,MM,NN)-part vector expressed

in absolute format. The PC retain, respectively, 80.4%, 19.2%, and 0.4% of the total
variance of the data set. Note that PC3 can be considered as a constant pc score. In
addition, the PC1 loadings (0.572, 0.458, 0.680) suggest a parallel direction to the
vector t, whereas the loadings of PC2 and PC3 are both approximately coefficients
of a log-contrast.

When Eq. (9) is used for the PC, its log-linear combination decomposes into
relative and absolute parts as

z =
⎛

⎝
0.002 −0.112 0.110

−0.008 0.702 −0.694
0.816 −0.401 −0.415

⎞

⎠ · lnw +
⎛

⎝
0.988
0.157

−0.001

⎞

⎠ · tlog w −
⎛

⎝
7.835
1.739
0.540

⎞

⎠ .(13)

The directions provided by vectors (0.002,−0.112, 0.110) and (−0.008, 0.702,
−0.694) of the two first log-contrasts are quite similar to the direction associated
with the vector (0.008,−0.711, 0.703) (Eq. (7)), suggesting again that the relative
information for PC1 and PC2 are associated with the ratio NN/MM. As expected, the
largest coefficient of the absolute information (0.988) corresponds to PC1. However,
because the decomposition is not based on orthonormal coordinates, one cannot
evaluate the quality of the representation of the information in Eq. (13). To have
an orthogonal decomposition of the PCA (Eq. (12)), one can express lnw on the
orthonormal basis of IRD given by the matrix U. Indeed, as suggested by the log-
contrasts of PC1 and PC2 in Eq. (13), we select the basis

v1 =
(

0,− 1√
2
,

1√
2

)t

, v2 =
(

2√
6
,− 1√

6
,− 1√

6

)t

, t =
(

1√
3
,

1√
3
,

1√
3

)t

,

(14)
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with the coordinates of lnw with respect to this basis being

olr 1 = 1√
2
ln

w3

w2
, olr 2 =

√
2

3
ln

w1

(w2 · w3)1/2
, tlog = 1√

3

3∑

j=1

lnwj . (15)

The expression of the PCA (Eq. (12)) in this basis is

z =
⎛

⎝
0.157 0.002 0.988

−0.988 −0.009 0.157
−0.010 0.999 −0.001

⎞

⎠ ·
⎛

⎝
olr 1
olr 2
tlog

⎞

⎠ −
⎛

⎝
−0.848
5.467
5.839

⎞

⎠ . (16)

The vector (0.157, 0.002, 0.988) suggests that the tlog scores are very well repre-
sented by PC1 because its relative quality is 97.6% (0.9882). The best representation
of the variable olr 1 is on PC2, whereas the constant pc scores provided by PC3
represent the variable olr 2, consistent with the Hardy–Weinberg equilibrium.

Importantly, despite the PCA in Eq. (16) completing the expression obtained by
CoAn (Eq. (7)), this analysis is recommended for the analysts who are interested
only in the relative information. That is, an analyst, who is interested only in the
proportions of the genotypes, should carry out a CoAn because in this analysis one
assumes that CoDa provides only relative information.

4 Decomposition of a Linear Discriminant Analysis Model

In a clinical study, the amount of three metabolites—total cortisol, total corticos-
terone, and pregnanetriol + �-5-pregnentriol—present in people’s urine has been
analyzed (Aitchison 1986, pages 363–364). The study involved 67 healthy people:
37 adults and 30 children. The 3-part composition w = (w1,w2,w3)

t represents the
amount (in mg) of the three metabolites present in the urine expelled for 24h for
each person. The aim is to analyze if the presence of these metabolites in the urine is
different in adults and children. Possible differences may be in the absolute amounts
of the metabolites, in their proportions or in both.

A linear discriminant analysis (LDA) may be the first approximation to the anal-
ysis. The linear discriminant function (LDF) of LDA on lnw, being w in its original
units, is

LDF1 : ll(a;w) = (−0.303,−0.640,−1.036)t · lnw . (17)

The leave-one-out cross-validated misclassification rate (MCR) of LDF1 is equal to
4.5% (= 3/67). The structure matrix indicates that lnw3 is the coordinate most cor-
related with the LDF1 scores. However, using the expression in Eq. (17), one is not
able to know if this discriminating power of part w3 is due to the different absolute
values of this part in the two groups (adults and children) or if it is because of its
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relative values or because of both causes. To assess the extent to which this misclas-
sification rate is due to the absolute values of the metabolites, we can orthogonally
decompose the log-linear combination (Eq. (17)):

ll(a;w) = (0.357, 0.020,−0.377)t · lnw − 1.143 · tlog w . (18)

If we use as the linear discriminant function (LDF2) the scores provided by the
log-contrast lc(aVVV;w) = (0.357, 0.020,−0.377)t · lnw, MCR increases to 13.4%
(= 9/67). In contrast, the MCR of the LDF3 performed from the scores given
by −1.143 · tlog w —the absolute part of Eq. (18)—increases only up to 6.0%
(= 4/67). These results suggest that the relative information discriminates more
poorly than the absolute information does. Note that the log-contrast lc(aVVV;w) =
(0.357, 0.020,−0.377)t · lnw ≈ 0.367 ln(w1/w3), suggesting that the relative infor-
mation is based on the ratio w1/w3.

To simultaneously analyze the influence the relative and absolute information have
in w on the LDA, one can express lnw on the orthonormal basis {v1, . . . , vD−1, t}
of IRD . To do this, we select the basis

v1 =
(

1√
2
, 0,− 1√

2

)t

, v2 =
(

− 1√
6
,

2√
6
,− 1√

6

)t

, t =
(

1√
3
,

1√
3
,

1√
3

)t

.

(19)
That is, the coordinates of lnw with respect to this basis are

olr 1 = 1√
2
ln

w1

w3
, olr 2 =

√
2

3
ln

w2

(w1 · w3)1/2
, tlog = 1√

3

3∑

j=1

lnwj . (20)

The coordinates olr 1 and olr 2 provide the relative information contained inw, while
the last coordinate (tlog score) gives the total of w in a logarithmic scale. The LDF1
on lnw (Eq. (18)) expressed in this basis is 0.518 olr 1 + 0.024 olr 2 − 1.143 tlog.
Note that coherently with the log-contrast in Eq. (18), the coordinate olr 1 is the
most relevant log-ratio. If one substitutes olr 1, olr 2, and tlog by their expressions
(Eq. (19)), then the LDF1 in Eq. (17) is obtained. However, using the new expres-
sion of LDF1, one can calculate the structure matrix being the correlations of the
discriminant scores with olr 1, olr 2, and tlog, respectively, −0.684, −0.471, and
0.974. Consequently, one states that the absolute information (tlog coordinate) of w
is the most relevant part to discriminate between children and adults in relation to
the metabolites contained in the urine.

Figure4 shows the orthonormal coordinates of the metabolites data set. The olr
coordinates represented in Fig. 4a suggest that, as regards the relative information,
the two groups (adult: circles; children: triangles) mix in the center of the point
cloud. On the other hand, the color and the size associated with the value of the tlog
coordinate suggest that this score may better discriminate the two groups. Figure4b
shows the distribution of the tlog coordinate for each group. This figure corroborates
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Fig. 4 Orthonormal coordinates of metabolites data set: a olr coordinates; b tlog coordinate

that only a few cases will be misclassified when using this coordinate to classify
metabolite composition.
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5 Final Concluding Remarks

WhenCoDahas a constant constraint sumor the analyst is interestedonly in analyzing
the relative information, then CoAn is the analysis recommended. On the other hand,
when CoDa does not have a constant constraint sum or the analyst is also interested in
the absolute information, CoAn should be completed using the multiplicative total.
Using the fundamentals of the Aitchison geometry, log-linear models (linear models
applied to log-transformed data) can be decomposed into the relative and absolute
information parts. This decomposition is based on the decomposition of log-linear
combinations into log-contrasts and the log-score of the multiplicative total. As a
result, a decomposition of a log-linear model into its relative and absolute parts
allows the importance of each type of information to be evaluated. In this chapter,
we have illustrated this new approach by performing a PCA and an LDA of real data
sets.
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Independent Component Analysis for
Compositional Data

Christoph Muehlmann, Kamila Fačevicová, Alžběta Gardlo, Hana Janečková,
and Klaus Nordhausen

Abstract Compositional data represent a specific family of multivariate data, where
the information of interest is contained in the ratios between parts rather than in abso-
lute values of single parts. The analysis of such specific data is challenging as the
application of standard multivariate analysis tools on the raw observations can lead
to spurious results. Hence, it is appropriate to apply certain transformations prior to
further analysis. One popular multivariate data analysis tool is independent compo-
nent analysis. Independent component analysis aims to find statistically independent
components in the data and as such might be seen as an extension to principal com-
ponent analysis. In this paper, we examine an approach of how to apply independent
component analysis on compositional data by respecting the nature of the latter and
demonstrate the usefulness of this procedure on a metabolomics dataset.
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1 Introduction

Independent component analysis (ICA) is a well-established data analysis method in
signal processing with the goal of recovering hidden signals that are usually meant
to have a physical meaning. In recent years, ICA methods have attracted increasing
interest in the statistics community as an extension of normality-based multivari-
ate methods that only use second-order moments. In principle, ICA can be seen as
a refinement of principal component analysis where, after removing second-order
information, higher order moments are used to search for hidden structures which
are not visible in the principal components. Classical ICAmethods are mainly devel-
oped for independent and identically distributed observations in a Euclidean space.
Nevertheless, these methods are also applied, for example, on time series, spatial
data, etc. but to the best of our knowledge not on iid compositional data.

Compositional data is special in the way that the entries (parts) of a d-variate
vector are positive and carry relative rather than absolute information about the
respective observation of interest. Moreover, the parts of the compositional vector
are by nature not independent and in some specific situations, e.g. when all parts
are bounded by a constant sum constraint, a spurious correlation between them is
present. Therefore, compositional data lies on a simplex and does not follow the real
Euclidean geometry. Examples of compositional data are geochemical data where
the chemical composition of soil samples is of interest, the composition of nutrients
of food intake or the distribution of market shares. For further details and examples
of compositional data, see, for example, Aitchison (1986), Egozcue and Pawlowsky-
Glahn (2019), Fačevicová et al. (2016), Filzmoser et al. (2018), Morais et al. (2018),
Pawlowsky-Glahn and Buccianti (2011), Trinh et al. (2019).

It is well established that standard multivariate methods should not be applied
directly to compositional data. Either methods which take the geometry of composi-
tional data into account or methods that transform compositional data in such a way
that standard multivariate analysis tools can be applied are appropriate. In this paper,
we take the latter approach.

We review some basic ICA methods in Sect. 2. In Sect. 3, we describe compo-
sitional data and methods to transform such data into the real space. Based on the
former two sections, we present how ICA can be performed on compositional data
in Sect. 4 and conclude the paper with the analysis of a metabolomics dataset from
healthy newborns in Sect. 5 and a discussion in Sect. 6.

2 Independent Component Analysis

From a statistical perspective, independent component analysis is usually formulated
as a latent variable model as follows.

Definition 1 An observable p-vector x follows the independent component (IC)
model if
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x = Az + b,

whereA is a p × p non-singularmatrix,b a p-vector, and the latent p-variate random
vector z satisfies

(A1) E(z) = 0 and COV(z) = Ip,
(A2) the components of z are independent, and
(A3) at most one component of z is Gaussian.

ThusE(x) = b andCOV(x) = AA�. The goal of ICA is to find a p × pmatrixW
such that Wx has independent components. Note however that in general it will not
hold that W(x − b) = z as the IC model assumptions only fix the location and scale
of z but not the signs or the order of the components. Therefore, for every solution
W, also PJW is a solution, where P is a p × p permutation matrix (1 per row and
column, 0 elsewhere) and J is a p × p sign-change matrix (a diagonal matrix with
±1 on its diagonal).

There are many suggestions in the literature on how to estimate W based on a
sampleX = (x1, . . . , xn), and for recent reviews see, for example, Comon and Jutten
(2010), Nordhausen and Oja (2018). Almost all ICA methods make, however, use
of the following result:

Key result Let x follow the ICmodel and denote xst = COV(x)−1/2(x − E(x)), then
there exists an orthogonal p × p matrix U such that

U�xst = z.

This result implies that after estimatingCOV(x) andE(x), the problem is reduced
from finding a general p × p matrix to a p × p orthogonal matrix. Also note that
this means that the performance of ICA methods does not depend on the values of A
and b, as these are accounted for when standardizing the data. An unmixing matrix
estimate is therefore obtained asW = U�COV(x)−1/2 and different ICA approaches
differ in the way they estimate U. In the following, we will show how some popular
ICA methods estimate this rotation.

2.1 FOBI

Fourth-order blind identification (FOBI), presented in Cardoso (1989), was one of
the first ICA methods but is still popular as it has a closed-form solution. For FOBI,
we need to define the scatter matrix of fourth-order moments

COV4(x) = 1

p + 2
E

(
(x − E(x))�COV(x)−1(x − E(x))(x − E(x))(x − E(x))�

)
.

Then we can define the following:
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Definition 2 The FOBI unmixing matrix is WFOBI = U�
FOBICOV(x)−1/2 where the

columns of UFOBI are given by the eigenvectors of COV4(xst ).

FromdenotingUFOBIDU�
FOBI to be the eigendecomposition ofCOV4(xst )which is

needed to computeWFOBI, it is obvious that FOBI is onlyuniquewhen the eigenvalues
contained in the diagonal matrix D are distinct. One can actually show that these
eigenvalues are linked to the kurtosis values of the independent components. For
FOBI to be well-defined, Assumption (A3) from the IC model needs to be replaced
by the stronger assumption:

(A4) The kurtosis values of the independent components must be distinct.

FOBI is often the first ICA method applied as it is quick to compute, gives a
fast first impression, and its statistical properties are well known; see, for example,
Miettinen et al. (2015), Nordhausen and Virta (2019) for more details. FOBI can
also be of interest outside the IC model and can be seen as an invariant coordinate
selection method (Tyler et al. 2009).

2.2 JADE

Assumption (A4) is considered highly restrictive. Joint approximate diagonalization
of eigenmatrices (JADE) can be seen as an extension of FOBI which relaxes this
strict assumption, Cardoso and Souloumiac (1993).

For JADE, we have to define the fourth-order cumulant matrices

Ci j (x) = E
(
(xst�Ei jxst )xstxst�

)
− Ei j − E�

i j − tr(Ei j )Ip,

where Ei j = eie�
j with ei being a vector of dimension p with the i th element equals

1 and 0 otherwise. As i and j range from 1 to p, there are in total p2 such cumulant
matrices. In the IC model, Ci j (z) = 0 if i �= j and for the case where i = j Ci i (z)
corresponds to the kurtosis of the i th component. The matrix of fourth moments can
actually be expressed as

COV4(x) = 1

p + 2

p∑
i=1

Ci i (x) + (p + 2)Ip,

meaning that it uses not all possible cumulant information. The idea of JADE is to
exploit the information contained in all cumulant matrices.

Definition 3 The JADE unmixing matrix is WJADE = U�
JADECOV(x)−1/2 where

UJADE is the maximizer of

p∑
i=1

p∑
j=1

||diag(U�Ci j (xst )U)||2F .
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Thus, JADE tries to maximize the diagonal elements of U�Ci j (xst )U which is equiv-
alent to minimize the off-diagonal elements by the orthogonal invariance of the
Frobenius norm || · ||F . As in the IC model, only Ci i (z) is non-zero and corresponds
to the kurtosis of zi . This means that JADE relaxes the FOBI assumption (A4) to the
following:

(A5) At most one independent component can have zero kurtosis.

For a finite sample, the joint diagonalization of more than two matrices needs to
be carried out approximately; many algorithms that jointly diagonalize two or more
matrices are available; see, for example, Illner et al. (2015). For the purpose of this
paper, we will use an algorithm based on Givens rotations, Clarkson (1988).

The statistical properties of JADE are, for example, given in Miettinen et al.
(2015); from an asymptotic point of view, FOBI is never superior compared to JADE.
JADE is however computationally more expensive, especially when the number of
independent components grows, as p2 matrices need to be computed and jointly
diagonalized.

As a compromise, k-JADE was suggested in Miettinen et al. (2013). The idea is
to use not all matrices Ci j , but only those whose indices are not too far apart, i.e.
|i − j | < k. This requires however that the first step, the whitening step, is not done
using just the covariance matrix but using WFOBI.

Definition 4 Denote xst ′ = WFOBI(x − E(x)) and choose an integer 1 ≤ k ≤ p,
then the k-JADE unmixing matrix is WkJADE = U�

kJADEWFOBI where UkJADE is the
maximizer of

p∑
|i− j |<k

||diag(U�Ci j (xst ′)U)||2F .

Thevalue k is basically a tuningparameter. The intuition is that themultiplicities of
the distinct non-zero kurtosis values of the independent components are atmost k, and
that there is at most one component having kurtosis zero. Usually, k is simply chosen
by the user based on expert knowledge. In Virta et al. (2020), some guidelines for the
selection are offered, which are however not very practical. The statistical properties
of k-JADE are given inMiettinen et al. (2013), Virta et al. (2020). It can be shown that
for a value of k which fulfills the multiplicity condition, k-JADE is asymptotically
as efficient as JADE but has, if k is small, a much smaller computational complexity.

2.3 FastICA

FOBI, JADE, and k-JADE are often called algebraic ICA methods. Another large
group of ICAmethods is based on projection pursuit ideas, where themost prominent
one is FastICA. It was originally suggested in Hyvärinen (1999a). Some of the many
FastICA variants are discussed below.
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The general idea of FastICA is to find the column vectors u1, . . . , up of U which
maximize the non-Gaussianity of the components of U�xst . Non-Gaussianity of a
univariate random variable x is measured by |E(G(x))| with some twice contin-
uously differentiable and non-quadratic function G that satisfies E(G(y)) = 0 for
y ∼ N (0, 1). The most popular choices for G are

pow3: G(x) = (x4 − 3)/4,
tanh: G(x) = log(cosh(x)) − ct , and
gauss: G(x) = − exp(−x2/2) − cg .

The constants ct = E(log(cosh(y))) ≈ 0.375 and cg = E(− exp(−y2/2)) ≈
−0.707 are normalizing constants. The derivatives of G, denoted as g, are called
non-linearities and are the name givers as pow3 : g(x) = x3, tanh : g(x) =
tanh(x) and gauss : g(x) = x exp(−x2/2).

2.3.1 Deflation-Based FastICA

FastICA was first suggested in Hyvärinen and Oja (1997) using the non-linearity
pow3 and finding the column vectors of UDF one after another which is now known
as deflation-based FastICA.

Definition 5 The deflation-based FastICA unmixing matrix is defined as WDF =
U�

DFCOV(x)−1/2, where the kth column of U, uk , maximizes

|E[G(u�
k xst )]|

under the constraints uT
k uk = 1 and uT

j uk = 0, j = 1, . . . , k − 1.

To obtain estimates, a modified Newton-Raphson algorithm is used which iterates
the following steps until convergence:

uk ← E[g(u�
k xst )xst ] − E[g′(u�

k xst )]uk

uk ←
(

Ip −
k−1∑
l=1

ulu�
l

)
uk

uk ← ||uk ||−1uk .

The last two steps perform the Gram-Schmidt orthonormalization.
The properties of deflation-based FastICA have been studied in detail in Ollila

(2010), Nordhausen et al. (2011). One issue with deflation-based FastICA is that
besides the global maximum it has many local maxima and the order in which the
vectors uk are found depends heavily on the initial value of the algorithm, where in
turn the estimation performance depends on the order in which the vectors uk are
found. Using asymptotic arguments, Nordhausen et al. (2011) suggested reloaded
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Table 1 Table of default candidate set of non-linearities of adaptive deflation-based FastICA,where
(x)+ = x if x > 0 and 0 otherwise, and (x)− = x if x < 0 and 0 otherwise

g1(x) = x3 g6(x) = (x)2+ + (x)2− g11(x) =
(x − 1.0)2+ + (x + 1.0)2−

g2(x) = tanh(x) g7(x) =
(x − 0.2)2+ + (x + 0.2)2−

g12(x) =
(x − 1.2)2+ + (x + 1.2)2−

g3(x) = x exp(−x2/2) g8(x) =
(x − 0.4)2+ + (x + 0.4)2−

g13(x) =
(x − 1.4)2+ + (x + 1.4)2−

g4(x) = (x + 0.6)2− g9(x) =
(x − 0.6)2+ + (x + 0.6)2−

g14(x) =
(x − 1.6)2+ + (x + 1.6)2−

g5(x) = (x − 0.6)2+ g10(x) =
(x − 0.8)2+ + (x + 0.8)2−

FastICA, which estimates first the independent components using FOBI or k-JADE
and then derives an optimal order based on the estimated independent components.

The idea of reloaded FastICA to fix the extraction order based on asymptotic argu-
ments was extended in Miettinen et al. (2014) to also select an optimal non-linearity
for each component out of a candidate set of possible non-linearities. This is known
as adaptive deflation-based FastICA. We will denote the adaptive deflation-based
FastICA unmixing matrix as WADF. The candidate set of non-linearities suggested
in Miettinen et al. (2014) contains, for example, the non-linearities presented in
Table 1.

2.3.2 Symmetric FastICA

A FastICA variant estimating all directions in parallel was suggested in Hyvärinen
(1999b).

Definition 6 The symmetric FastICA estimator WSF = U�
SFCOV(x)−1/2 uses as a

criterion for USF
p∑

j=1

|E[G(u�
j xst )]|

which should be maximized under the orthogonality constraint U�
SFUSF = Ip.

The steps of the iterative algorithm to compute USF are

uk ← E[g(uT
k xst )xst ] − E[g′(u�

k xst )]uk, k = 1, . . . , p

U�
SF ← (U�

SFUSF)
−1/2U�

SF.

The first update step of the algorithm is similar to that of the deflation-based
FastICA estimator. The orthogonalization step can be interpreted as taking an average
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over the vectors of the first step. This differs from the deflation-based approach
where errors made in the kth direction carry on to the following directions and
therefore the errors accumulate. This is often the reason why symmetric FastICA is
usually considered superior to the deflation-based FastICA. However, there are also
cases where the accumulation is preferable to the averaging. This occurs when some
independent components are easier to find than the others. Statistical properties of
symmetric FastICA are given in Miettinen et al. (2015), Wei (2015), Miettinen et al.
(2017).

2.3.3 Squared Symmetric FastICA

One of the most recent variants of FastICA is the squared symmetric FastICA esti-
mator (Miettinen et al. 2017). The idea of this estimator is to replace the absolute
values in the objective function of the symmetric FastICA with squared values.

Definition 7 The squared symmetric FastICA estimator
WS2F = U�

S2FCOV(x)−1/2 obtains US2F as the maximizer of

p∑
j=1

(E[G(u�
j xst )])2

under the orthogonality constraint U�
S2FUS2F = Ip.

The steps of the resulting algorithm are

uk ← E[G(u�
k xst )](E[g(u�

k xst )xst ] − E[g′(u�
k xst )]uk), k = 1, . . . , p,

U�
S2F ← (U�

S2FUS2F)
−1/2U�

S2F.

Thus, the first step of the algorithm equals the first step in the symmetric algorithm
with an additional multiplication by E[G(u�

k xst )]. Hence, the squared symmetric
variant puts more weight on components that are “more” non-Gaussian, which most
often, but not always, is advantageous. The properties of the squared symmetric
FastICA estimator as well as comparisons to the deflation-based and symmetric
FastICA methods are given in Miettinen et al. (2017). In Miettinen et al. (2017), it
is also shown that if the non-linearity pow3 is used, symmetric squared FastICA is
asymptotically equivalent to JADE.

Besides assumptions (A1)–(A3), deflation-based, symmetric, and squared sym-
metric FastICA need further assumptions based on G to ensure consistency. Assum-
ing the order of the components is fixed as |E[G(z1)]| ≥ · · · ≥ |E[G(z p)]|, then it is
required that for any z = (z1, . . . , z p)� with independent and standardized compo-
nents and for any orthogonal matrix U = (u1, . . . , up), the following holds.
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For deflation-based FastICA:

(A6) For all k = 1, . . . , p, |E[G(u�
k z)]| ≤ |E[G(zk)]|, when u�

k e j = 0 for all j =
1, . . . , k − 1, where ei is a p-vector with i th element one and others zero,

for symmetric FastICA

(A7) |E[G(uT
1 z)]| + · · · + |E[G(uT

p z)]| ≤ |E[G(z1)]| + · · · + |E[G(z p)]|,
and for squared symmetric FastICA

(A8) (E[G(uT
1 z)])2 + · · · + (E[G(uT

p z)])2 ≤ (E[G(z1)])2 + · · · + (E[G(z p)])2.
It was proven, for example, in Miettinen et al. (2015), that all three conditions are

fulfilled with pow3. On the other hand, in the case of non-linearities like tanh and
gauss some of these conditions might be violated for certain source distributions.

From a computational point of view, the advantage of both symmetric versions
is that the initial value of U is not important when the sample size is large, as the
algorithms converge usually to the global maxima.

To conclude this section we can point out that FOBI, JADE, k-JADE, symmetric
FastICA, and squared symmetric FastICA are affine equivariant ICAmethods which
means that their performance does not depend on the mixing matrix. So, from this
point of view, only deflation-based FastICA differs, which can be overcomewhen the
reloaded version or adaptive version is used. Affine equivariance will be of relevance
later when applying the ICA methods to compositional data.

3 Compositional Data and Its Real Space Representation

A specific family of d-dimensional vectors is present when each entry (part) of a
vector is positive and carries information about its contribution to the whole. In
the following, such multivariate observations are called (vector) compositional data,
whose specifics were already described, utilized, and analyzed in a wide range of
applications (Pawlowsky-Glahn and Buccianti 2011). The main property of com-
positional data is its relative nature, when the relevant information is contained in
the ratios between parts rather than in the absolute values of the parts. Consider,
e.g. a vector describing a geochemical structure of soil, where each part represents
the quantity of the given element in the sample. The quantity can be given either
in absolute scale, like in mg of the component contained in the sample, or some of
its relative alternatives, typically ppm. While the mg representation depends on the
overall size of the sample, the ppm one does not, despite the ratios between parts
remaining unchanged. Both representations are therefore from the compositional
point of view equivalent.

Due to the relative nature of compositional data, the sample space of representa-
tions of a d-part compositional vector x forms a d-part simplex
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Sd =
{

x = (x1, . . . , xd)
�,

d∑
i=1

xi = κ, κ > 0

}
,

where the Aitchison geometry holds. The whole sample space is formed by equiv-
alence classes of proportional vectors (Pawlowsky-Glahn et al. 2015, Chaps. 2, 3).
Since most of the standard statistical methods are designed for real-valued data
following the usual Euclidean geometrical structure, it is favorable to express com-
positional data in real coordinates prior to their analysis. One of the possible repre-
sentations is the centered log-ratio (clr) transformation from Sd to Rd given by

clr(x)i = ln
xi

gm(x)
= 1

d

d∑
j=1

ln
xi
x j

, for i = 1, . . . , d,

where gm(x) denotes the geometrical mean of all parts. The parts of the resulting
clr vector can be interpreted in terms of the dominance of the compositional part in
the numerator within the whole composition or equivalently as its mean dominance
over each part of the whole composition. The use of logarithm symmetrizes this
relationship. Let us stress here that the clr values depend on the set of compositional
parts used for its computation and therefore the above interpretation holds true only
when the whole composition is considered. Within the whole manuscript, the clr
transformation based on all compositional parts will be of interest. On the other hand,
from its construction, the clr coefficients/variables are not linearly independent, as
they sum up to zero and, therefore, the whole clr vector falls in a (d − 1)-dimensional
subspace of Rd . This feature prevents direct use of the clr representation within
methods that require full rank data, like robust PCA (Filzmoser et al. 2009) or the
above stated ICA methods.

One possible workaround is the isometric log-ratio (ilr) transformation, which
represents the compositional vector x in a system of d − 1 orthonormal real coordi-
nates. This system can be obtained directly from the clr vector as

ilr(x) = V�clr(x),

where the columns of the d × d − 1 log-contrast matrix V are given as vi = clr(ξi )
and the vectors ξi , i = 1, . . . , d − 1 constitute an orthonormal basis in Sd . See
Pawlowsky-Glahn and Buccianti (2011), Ch. 11 for details.

The system of basis vectors {ξ1, . . . , ξd−1} is not uniquely given and can be chosen
according to the purpose of further analysis. Since each system of ilr coordinates can
be obtained as an orthogonal rotation of the others, its specific choice does not affect
the results of their analysis, like predictions of the regression model with a composi-
tional regressor or scores of the robust PCAmodel (Filzmoser et al. 2009; Hron et al.
2012). When it is required, a specific coordinate system can be selected by some
data-driven method, like hierarchical clustering of the compositional parts, or using
expert knowledge. In both cases, the main aim is to obtain such an interpretation of
the coordinates at hand, which is favorable according to the given problem (Egozcue
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and Pawlowsky-Glahn 2005). Since a specific interpretation of the ilr coordinates
is not the main purpose here, the same system as in Nordhausen et al. (2015) is
used. The basis vectors ξi have the value exp

(√
1/ i(i + 1)

)
at the first i positions,

exp
(−√

i/(i + 1)
)
at the position i + 1, and 1 at the remaining ones. Consequently,

the columns of the log-contrast matrix are

vi =
√

i

i + 1

(
1

i
, . . . ,

1

i
,−1, 0, . . . , 0

)�
, i = 1, . . . , d − 1 .

The ilr coordinates have the form of balances between the i th part of the composition
and all parts with lower indices

ilr(x)i =
√

i

i + 1
ln

(
(x1 · · · xi )1/ i

xi+1

)
, for i = 1, . . . , d − 1.

Finally, the clr and ilr representations are mutually transferable through the contrast
matrix V

clr(x) = Vilr(x)

and also the back-transformation to the simplex is possible by using

x = exp(clr(x)) = exp(Vilr(x)).

4 ICA for Compositional Data

As described above, ICA is not reasonable for data following the Aitchison geometry
in its raw form. Therefore, it is natural to transform the data first into the Euclidean
space. As ICA methods start with whitening and therefore require full rank data, the
ilr space is the most natural representation. Due to the affine equivariance property
of the discussed ICA methods, the particular used basis for the ilr transformation at
most affects the order and signs of the estimated independent components. Hence,
for compositional ICA we have the following model assumption:

ilr(x) = Ailrz + b,

where Ailr is a (d − 1) × (d − 1) full rank mixing matrix specific for a chosen ilr
basis, b a d − 1-dimensional location vector, and z = (z1, . . . , zd−1)

� a random
vector with independent components, which are standardized so that E(z) = 0 and
COV(z) = Id−1. When the unmixing matrix Wilr is estimated using one of the ICA
methods described in Sect. 2, the system of independent components is given by

z = Wilr(ilr(x) − b) = Wilr(V�clr(x) − b).
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As ilr coordinates are not directly related to the dominance of the original parts
within the considered composition, the relationship between ilr and clr spaces can
be exploited yielding a (d − 1) × d “clr” loading matrix Wclr = WilrV�, allowing
interpretation of the independent components in the clr space. In the context of
principal component analysis performed in the clr space, principal components lead
to a new system of ilr coordinates (Pawlowsky-Glahn et al. 2011). This is not the
case for ICA, as the unmixing matrix Wilr (and consequently also Wclr) is generally
not restricted to be orthogonal. Even if the independent component model does not
hold, ICA transformations remain affine equivariant which means that z can be seen
as an intrinsic data representation with a coordinate system, whose components are
as independent as possible.

After performing ICA, one is usually interested in either using z itself for further
analysis, such as classification and outlier identification, with possible interpretation
in ilr or clr space using the former defined loading matrices Wilr or Wclr, or, using
ICA for noise or artifact removal. For that purpose, the components of z are divided
into a signal part zs and a noise/artifact part zn . This defines also the partition of
the unmixing matrix Wilr into Ws

ilr and Wn
ilr and the mixing matrix Ailr = (Wilr)

−1

into As
ilr and An

ilr . As
ilr is formed only by those columns of Ailr that correspond to the

signal components zs . The pure signal can then be restored in the ilr, clr, and original
space by using

ilr(x)s = As
ilrzs + b, clr(x)s = V

(
As

ilrzs + b
)
, and xs = exp

[
V

(
As

ilrzs + b
)]

,

respectively.

5 A Case Study in Metabolomics

In order to demonstrate the above-describedmethods, the data fromaneonatal screen-
ing program in the Czech Republic was analyzed. Anonymous data were obtained
from a retrospective study approved by the Ethics Committee of the University Hos-
pital Olomouc which was part of a larger international study described in Fleischman
et al. (2013). Newborn screening is a preventive program that allows for early detec-
tion of a selected spectrum of inborn metabolic diseases. At an age of 48–72 hours
after birth, several drops of blood from the heel of the child were sampled on a special
paper and sent for analysis to the screening laboratory. The data at hand were consti-
tuted by the metabolite profile of over 10 000 healthy newborns. For each neonate,
the values of 48 metabolites were measured. Moreover, information about sex and
birth weight was available. More specifically, the birth weight ranged from 300 to
5 570 grams and for newborns with very low birth weight (less than 1500 grams) a
different metabolite structure can be expected, due to their prematurity and the arti-
ficial nutrition they receive. One of the main goals of metabolomics is to investigate
interactions between metabolites, their dynamic changes, and responses to stimuli.
Biofluids, e.g. blood or urine, and also tissues are used for the analysis. On the one
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Fig. 1 Scatterplots of the first three principal components resulting from the compositional PCA
(left) and scree plot of the respectively explained variability (right)

hand, the most frequently used approach for the data analysis is done through com-
parison of absolute values of biomarkers and reference ranges (data from the healthy
population). On the other hand, the new trend of data evaluation is based on the use of
ratios of metabolite data. Relative changes are more relevant/informative than abso-
lute values in diagnostics based on profiling. Therefore, metabolomic data can be
considered as observations carrying relative information, i.e. as compositional data
(Kalivodová et al. 2018), and as such the above-discussed methods can be applied.

The following analysis was carried out in R 3.6.1 (R Core Team 2019) with the
help of the packages JADE (Miettinen et al. 2017), fICA (Miettinen et al. 2018), com-
positions (van den Boogaart et al. 2019), and robCompositions (Templ et al. 2011).
As the first step, standard principal component analysis (PCA) was performed on the
clr transformed data. There were no significant patterns visible within the first three
principal components; see Fig. 1, left. The whole dataset forms one quite compact
cluster with no outliers. Moreover, the variance explained by the first components
is low (around 20 % for the first PC) (Fig. 1, right), and therefore PCA does not
seem to deal well with the issue of outlier detection, grouping, as well as dimension
reduction in that case.

As PCA seems not to reveal any clear structure, we applied FOBI, k-JADE, with
k = 5, and adaptive deflation-based FastICA to the ilr representation of the data
(the dimension p = 47 was already too large for JADE). For easier comparison,
the components from all three ICAmethods were ordered according to their kurtosis
values. As all three ICAmethods showed similar results, we focus on our presentation
and discussion of the components on those from adaptive deflation-based FastICA.

Due to the kurtosis ordering, the first components show heavy-tailed distributions,
and they are expected to find outliers or small groupings, while the last components
show light-tailed distributions and hencemight findmore balanced groupings. Scores
of the first and last three independent components are plotted in Fig. 2, and the chosen
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Fig. 2 Scatterplots of the first (left) and last (right) three independent components resulting from
the compositional FastICA, using adaptive deflation-based FastICA

non-linearities are given in Table 2 for all independent components. According to the
left plot of Fig. 2, one outlier is clearly detected due to its high negative value in the
third component (IC.3). According to its loadings, which are collected in Table 3,
IC.3 mostly reflects the relative dominance (with respect to concentrations of all 48
measuredmetabolites) of phenylalanine (Phe), hexadecanoylcarnitine (C16), octade-
cenoylcarnitine (C18:1), valine (Val), and hexadecenoyl- and octadecanoylcarnitines
in the form of C16:1 and C18, respectively, when the higher dominance of the first
three metabolites results in a decrease of IC.3 and vice versa for the last three stated
metabolites. The high loadings of the clr coefficients of these six metabolites imply
that IC.3 reflectsmostly (but not solely) the balance between subcompositions formed
by Phe, C16, C18:1, andVal, C16:1, C18. The value of this balancewas for the outlier
significantly lower than that within the rest of the sample. After a deeper investiga-
tion of the outlying sample, it turned out that it belongs to a newborn suffering from
Phenylketonuria, a metabolic disease which is typically followed by distinctly high
absolute blood concentrations of phenylalanine. The measured value was 1 014.7
μmol/ l, which significantly exceeds the upper norm value set on 120 μmol/ l (van
Wegberg et al. 2017) and which is represented with the respective high clr value 6.76.
The levels of the remaining metabolites were comparable with the other samples,
but particularly the atypical high dominance of Phe over all measured metabolites,
which for the rest of samples ranged from 5.72 to 3.58 for their clr values, resulted
in the high negative value of the third component, and therefore clear identification
of this non-standard observation.

The next interesting feature is presented by IC.1. According to Fig. 2, the values
of this component are not very homogeneous across the whole dataset and therefore
some specific groups of neonates might be identified. A deeper graphical analysis
of the first component (presented in Fig. 3) shows that for newborns with a birth
weight smaller than 1500 grams, higher values of IC.1 are typical. The independent
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Table 2 Chosen non-linearities gi for each independent component computed with the adaptive
deflation-based FastICA algorithm. Non-linearities are ordered according to kurtosis values of the
corresponding ICs. In the original ordering, IC.44 was the last component, thus no non-linearity is
given. See Table 1 for the definitions of the functions gi
IC gi IC gi IC gi IC gi IC gi

IC.1 g2 IC.11 g2 IC.21 g5 IC.31 g1 IC.41 g5
IC.2 g2 IC.12 g9 IC.22 g6 IC.32 g5 IC.42 g4
IC.3 g6 IC.13 g9 IC.23 g9 IC.33 g14 IC.43 g4
IC.4 g2 IC.14 g8 IC.24 g1 IC.34 g5 IC.44 –

IC.5 g6 IC.15 g6 IC.25 g1 IC.35 g5 IC.45 g5
IC.6 g8 IC.16 g10 IC.26 g4 IC.36 g5 IC.46 g3
IC.7 g8 IC.17 g5 IC.27 g14 IC.37 g12 IC.47 g6
IC.8 g8 IC.18 g6 IC.28 g5 IC.38 g14
IC.9 g9 IC.19 g10 IC.29 g10 IC.39 g4
IC.10 g8 IC.20 g6 IC.30 g8 IC.40 g11

0.0
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0.4

0.6

−5 0 5 10
IC.1
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Birth Weight
less than 1500 grams

between 1500 and 2500 grams

between 2500 and 4200 grams

more than 4200 grams

Fig. 3 Scatterplots of IC.1 and IC.3 (left) and the kernel density plot of IC.3 (right) with the groups
defined according to the birth weight

component IC.1 is mostly formed by clr values of acylcarnitines dodecanoylcar-
nitine (C12), C16, and C18:1, whose high relative dominance over all measured
metabolites results in low values of the component and, e.g. clr values of acylcar-
nitines isovalerylcarnitine/methylbutyrylcarnitineC5, and linoleoylcarnitine (C18:2)
increase the IC.1 values. Even though there are also other metabolites contributing
with a high weight to the values of IC.1 (all clr loadings are collected in Table 3), the
clr values of the selected ones systematically differ for the group of the newborns
with low birth weight, and therefore these acylcarnitines seem to be responsible for
their separation from the remaining neonates. The differences in the selectedmetabo-
lites are clearly visible in Fig. 4. Let us stress here that the immature neonates tend
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to have different diet supplementation, therefore the metabolic profile can substan-
tially differ within this group, but despite the proposed ICA method being able to
find some similar patterns, detect the important metabolites, and separate the low
birth weight newborns from the remaining ones. More specifically, artificial nutri-
tion consists of amino acids, lipids, sugars, vitamins, etc. Essential unsaturated fatty
acids including linoleic acid may be responsible for increased C18:2. The increased
blood concentration of the long-chain acylcarnitines (C12, 16, C18:1) as well as of
the short-chain C5 carnitine, which then results in high respective clr values, cor-
responds with previous studies. In Gucciardi et al. (2015), the significantly lower
amounts of acylcarnitines except the branched-chain acylcarnitines (e.g. C5), which
were significantly higher in preterm infants, were described. The latter mentioned
are direct products of branched-chain amino acid (BCAA) catabolism, therefore its
elevated levels may be related to BCAA overfeeding (Gucciardi et al. 2015; Wil-
son et al. 2014). The difference of several amino acids measured for the premature
newborns compared to the others agrees with findings in Wilson et al. (2014), where
increased levels of several amino acids (arginine, leucine, Orn, Phe, and Val) in the
blood spots of premature infants were described. This observation may be related to
the catabolic state of organisms in these children, amino acid supplementation, and
immaturity of preterm infants (hepatic maturation, renal insufficiency, etc.) (Wil-
son et al. 2014; te Braake et al. 2005). The raw concentrations of valine (Val) and
leucine/isoleucine (Xle) are known to be highly positively correlated, therefore the
opposite signs of the respective loadings of IC.1 seem to be counter-intuitive at the
first glance. However, the values of the loadings suggest that the resulting value of
IC.1 is affected by the difference of clr values of the respective metabolites, or equiv-
alently by the log-ratio of their measured concentrations, when the higher relative
dominance of Val over Xle results in a higher value of IC.1. These findings agree with
the data, since slightly higher values of the Val-Xle log-ratio are typical for newborns
with a low birth weight (see Fig. 4). Finally, an even more complex interpretation
can be based on the ilr loading matrix Wilr . According to the values of this matrix,
IC.1 is mainly influenced by the balance between C18 and subcompositions C18:1,
C18:OH, C18:2, and C18:2OH. This balance corresponds to the highest positive
loading, and its values are systematically higher for the group of newborns with low
birth weight than for the rest of the samples.

An even better visible pattern is formed by the last independent component IC.47,
which clearly divides thewhole dataset into two groups as seen in Fig. 5.According to
the loadings (collected in Table 3), the most contributing are clr values of metabolites
Xle, ornithine (Orn), and lysine (Lys) with a negative effect and methionine (Met),
proline (Pro), andvaline (Val)with a positive one.This suggests that the value of IC.47
is highly affected by the balance between subcompositions Met, Pro, Val and Xle,
Orn, Lys. The dataset is roughly separated into twogroups of observationswith values
of IC.47 higher and lower than −0.34; this value was chosen as the corresponding
value of IC.47 at the local minimum in the middle of the density presented in Fig. 5
(this density was computed with Gaussian kernels and a bandwidth selection with
Silverman’s rule of thumb). The relative dominance of the six above-mentioned
metabolites itself over all measured concentrations does not significantly differ in its
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Fig. 4 Boxplots of clr as well as log-ratio values of the selected metabolites, which significantly
differ for newborns with very low (< 1500g) and normal (>= 1500g) weight at birth

Fig. 5 Density plot of
IC.47, the bimodal shape
shows a clear grouping
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values between the two groups. Therefore, the grouping effect of IC.47 is hidden in
some of their more complex combinations, e.g. the suggested balance between Met,
Pro, Val and Xle, Orn, Lys, which is distinctly higher by cases with IC.47 higher
than −0.34.
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Table 3 The list of loadings for IC.1, IC.3, and IC.47 computed with the adaptive deflation-based
FastICA algorithm regarding clr transformed data

IC.1 IC.3 IC.47 IC.1 IC.3 IC.47

Ala 0.02 0.24 0.41 C5DC/C6OH –0.08 0.14 0.04

Arg 0.13 –0.33 0.04 C5:1 –0.05 0.11 0.13

ArgSucc 0.00 –0.09 –0.01 C6 –0.22 0.22 0.07

Cit –0.05 0.38 0.01 C8 0.84 –0.05 0.21

Glu –0.16 0.70 0.20 C8:1 –0.05 –0.16 0.09

Gly 0.08 1.33 –0.16 C10 0.25 –0.21 –0.09

His –0.56 0.44 0.55 C10:1 –1.05 –0.01 –0.21

Lys 0.20 0.38 –0.46 C10:2 0.28 0.20 0.06

Met 0.53 1.03 1.01 C12 –1.27 –0.01 –0.13

Orn 0.48 0.40 –0.78 C12:1 –0.09 0.10 –0.09

Phe 1.02 –7.30 –0.40 C14 –0.39 0.45 –0.38

Pro –1.15 –0.66 0.65 C14:1 0.88 –0.46 0.04

Thr –0.17 –1.71 –0.01 C14:2 0.15 –0.01 0.17

Trp –1.33 –0.77 0.14 C14OH 0.03 0.27 0.08

Tyr –0.28 1.25 –0.02 C16 –2.00 –1.49 –0.02

Val 3.09 3.86 0.59 C16:1 0.97 1.60 0.09

Xle –1.73 –0.15 –1.03 C16OH 0.24 0.09 0.01

C0 0.51 0.60 0.17 C16:1OH 0.05 0.01 0.24

C2 0.08 –0.30 –0.25 C18 2.38 1.72 0.12

C3 –0.57 –0.34 –0.01 C18:1 –3.46 –2.64 0.00

C3DC/C4OH 0.29 –0.23 0.34 C18:2 1.80 0.41 0.16

C4 0.05 0.14 0.01 C18:1OH –0.00 0.27 –0.15

C4DC/C5OH 0.07 0.49 –1.42 C18:2OH 0.19 0.23 –0.05

C5 0.35 –0.32 –0.08 C18OH –0.33 0.20 0.09

6 Discussion

In this paper, we reviewed some classical independent component analysis meth-
ods and showed how these can be applied to compositional data. The key finding
here is that when the ICA methods are affine equivariant it is most natural to use an
ilr transformation, as the choice of the basis constituting the ilr coordinate system
does not matter. For interpretability, the link between ilr coordinates and clr coeffi-
cients/variables can be easily exploited, which allows interpreting the results either
in terms of the dominance of single compositional parts with respect to the whole
composition, or, e.g. based on values of balances between subcompositions formed
according to values of clr loadings. Finally, since the clr loadings are derived from
the ilr ones, it is also possible to provide the interpretation directly in terms of the
ilr coordinates. The proposed technique is demonstrated on a metabolomics dataset



Independent Component Analysis for Compositional Data 543

where PCA, which is probably the most used multivariate transformation, reveals
no specific feature on the first few components while ICA reveals several interesting
features visible when exploiting the higher order moments information. Independent
component analysis belongs to the larger class of blind source separation methods
where for the separation of the latent components often also temporal or spatial
information is used. In the context of compositional data such blind source separa-
tion methods are, for example, discussed in Nordhausen et al. (2015), Nordhausen
et al. (2020). But these methods would not be applicable to the metabolomics dataset
fromSect. 5 as there is no temporal or spatial information present. The current results,
which were discussed mostly in terms of the relative dominance of a single com-
positional part respective to the highest loading of an IC, open new challenges for
further research. An alternative interpretation can be reached, e.g. by adaptation the
approach based on principal balances (Pawlowsky-Glahn et al. 2011). However, the
loadings of ICs are in general not orthonormal and therefore the principal balances
approach is not as straightforward as in the case of PCA. Finally, an extension of
the dataset with a group of blood samples collected from neonates with a diagnosed
disease can further prove the usefulness of the method.
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Diet Quality and Food Sources
in Vietnam: First Evidence Using
Compositional Data Analysis

Michel Simioni, Huong Thi Trinh, Tuyen Thi Thanh Huynh,
and Thao-Vy Vuong

Abstract Food environments have been evolving rapidly in lower-middle-income
countries.Nevertheless, little is known about the impact of these changes on diet qual-
ity. Thanks to the availability of detailed data onVietnamese household consumption,
this chapter presents a set of first results on the association between food sources and
diet quality. These results highlight the contrasts between three Vietnamese districts
located on an urban to rural gradient. We used recent advances in compositional data
analysis to take into account the compositional nature of the share data describing
the different food sources: principal balances as a tool for summarizing information
carried by share data and techniques to deal with observed zero-valued shares.

1 Introduction

In the face of economic development, urbanization, and tighter global connections,
food systems in lower-middle-income countries have evolved (HLPE: Nutrition and
food systems 2017). Food supply sources have changed and diversified. In more
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populous urban areas, wholesalers and retailers have larger markets, and with a
greater population density they can reach more consumers at a lower cost per unit. In
many lower-middle-income countries, supermarkets now provide an additional food
source to traditional grocery outlets, and the number of supermarkets continues to
increase. This rapid change has been referred to as “food system revolution” (Reardon
and Timmer 2012).

The impact of specific food sources on nutrition is not well-known. A brief
overview of the literature looking at the impact of food supply on nutrition and public
health indicators, such as obesity, has been provided in Qaim (2017). Existing work
mainly focuses on the consequences of food purchases in supermarkets on nutritional
diets in developed countries. Most of this work shows that shopping in supermarkets
is associated with higher consumption of processed foods and lower consumption
of unprocessed foods, including fruits and vegetables. High consumption of ultra-
processed foods appears to be one of themajor drivers of obesity epidemics (Monteiro
et al. 2013). Research on the impact of supermarkets on consumer nutritional status
in developing countries is rare (Demmler et al. 2018; Wertheim-Heck and Raneri
2019; Trinh et al. 2021).

This chapter aims to contribute to the existing literature on the impact of food
sources on nutrition in Vietnam, a lower-middle-income country. Detailed data on
dietary patterns of households in three Vietnamese districts makes it possible to
investigate this impact according to a gradient ranging from urban to rural, in three
very different food environments. The healthiness of the overall diet is assessed
using the Diet Quality Index International (DQI-I) with modifications to adapt to the
Vietnamese Dietary Guidelines (Kim et al. 2021). This index was chosen because
it has been tested in a range of cultural contexts and validated for use in a range of
countries with different dietary patterns.1 Supply sources of the various foods eaten
by households were identified during data collection. The relative importance of food
sources is evaluated using their shares in total calorie intake, which are comparable
across households.

The chapter first presents an exploratory analysis of food sources, highlighting
differences between the three districts. Then, associations between food sources and
quality of diet are investigated.

The methodological contribution of the chapter is to treat food sources as compo-
sitional data. By definition, compositional data describe parts of a whole and, con-
sequently, convey only relative information (Pawlowsky-Glahn et al. 2015). They
are usually recorded in closed forms such as proportions or percentages. Conse-
quently, their particular numerical properties hamper the use of standard statistical
methods designed for unconstrained variables. A methodology based on log-ratios
has been proposed to deal with compositional data. The basic idea is to focus on the
ratios between components, specifically on their log-ratios to leverage mathematical
properties. Following the pioneering work of Aitchison (1986), a general framework
has been proposed based on the characterization of the simplex—the sample space

1See https://inddex.nutrition.tufts.edu/data4diets/indicator/diet-quality-index-international-dqi-i?
back=/data4diets/indicators.

https://inddex.nutrition.tufts.edu/data4diets/indicator/diet-quality-index-international-dqi-i?back=/data4diets/indicators
https://inddex.nutrition.tufts.edu/data4diets/indicator/diet-quality-index-international-dqi-i?back=/data4diets/indicators
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of compositions—and other subsets of the real space, as genuine Euclidean vector
spaces equipped with their own geometry. This allows compositional data to be iso-
metrically mapped into a space of real coordinates with respect to an orthonormal
basis, where standard statistical methods such as principal component analysis and
ordinary least squares can be used.

Compositional data analysis has only recently been applied to nutrition studies.
In these studies, the associations between macronutrient balances and diseases were
analyzed (Corrêa Leite 2016, 2019; Corrêa Leite and Prinelli 2017). They show how
classical logistic regressions can be used when assessing the impact of macronutrient
shares on metabolic syndromes. This approach can be extended by considering not
only these shares but also total calorie intake as explanatory variables in regressions
of obesity indicators (Beal et al. 2018), and by using recent results on the computation
of elasticities in compositional regression models (Morais et al. 2018). Trinh et al.
(2019) propose a measure of diet quality using a vector of macronutrient shares and
their association to the socio-demographic characteristics of households. Moreover,
balances—a central tool in compositional data analysis—has been shown to be a
powerful exploratory tool when analyzing individual diets (Solans et al. 2019).

Recent advances of two important issues in compositional data analysis support
the empirical analysis presented in this chapter. First, as mentioned above, composi-
tions provide information about relative rather than absolute values. This observation
has led to the development of particular methods based on the logarithms of ratios
between parts (or groups of parts), which are a suitable means of transforming com-
positional data to allow for the use of standard statistical methods. There has been
focused attention on the isometric log-ratio transformation, due to its properties doc-
umented in Egozcue et al. (2003). This transformation leads to the definition of new
variables representing groups of parts and their relationships. The construction of iso-
metric log-ratios ismost often investigator-driven. Groups of components are defined
based on external information, and comparisons are conducted using their geomet-
ric means. For example, it is usual to first compare fats with other macronutrients
(carbohydrates and proteins), and then to compare carbohydrates and proteins, when
dealing with the potential association of diet components with obesity indicators
(Beal et al. 2018). In the absence of any external information, or in the presence of
a large number of components, it is possible to extend the use of data-driven Princi-
pal Component Analysis (PCA) to compositional data (Aitchinson 1983). Principal
components, referred to as principal component coordinates, with decreasing vari-
ances, are extracted from this method. Each principal component coordinate can be
written as a log-ratio where absolute values of PCA loadings are the exponents of
parts, with a loading sign defining the presence of the corresponding part, either in
the numerator (if positive) or in the denominator (if negative). Principal component
coordinates can be proven to fulfill all conditions for being isometric log-ratio coor-
dinates. Nevertheless, principal component coordinates can be difficult to interpret
as their numerators and denominators do not possess a clear interpretation in terms
of geometric means. An intermediate approach which keeps the main properties
of principal component coordinates and provides easy-to-interpret coordinates has
been proposed: the principal balances approach (Pawlowsky-Glahn et al. 2011). This
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data-driven approach will allow us to reveal contrasts in the sources of food supply
chosen by households in the three districts. Principal balances identified during the
exploratory analysis of food sources will then be used when measuring associations
between food sources and diet quality.

Moreover, the log-ratio approach proposed for the statistical analysis of compo-
sitional data presents a serious limitation when certain components are zero. Zero
values can be present for various reasons, as comprehensively described in Martín-
Fernández et al. (2011). For instance, rounded zeros represent a prominent zero type
in compositional data analysis. They occur frequently in environmental and chemical
data, when either small values of components are rounded to zero, or a measurement
device has a detection limit that sets values below the limit to zero. Rounded zeros
cannot be considered as “true” or “essential” zeros due to the data generating pro-
cess (like corner solutions in economic modeling), but rather as a result of precision
issues. In other words, it is more meaningful to impute them with a reasonably small
value and process the complete data set (Martín-Fernández et al. 2012). Here, dietary
data has been collected using a 24-h recall period, which may not precisely repre-
sent the long-term dietary habits of the participants. Episodically consumed food is
relatively likely to be misrepresented. For this reason, we propose to treat the zero
values observed for these food sources as rounded zeros, and accordingly implement
the imputation algorithm (Palarea-Albaladejo and Martín-Fernández 2015).

The chapter is organized as follows. Section2 details algorithms used to compute
principal balances and to deal with zero component values. Section3 presents the
framework of the study, the procedure followed to collect data, and the construction
of diet quality indicator and food sources shares. Exploratory and regression analysis
results are presented in Sect. 4. Concluding remarks are provided in Sect. 5.

2 Methodology

2.1 Principal Balances

Let a composition x be a positive vector in D-dimensional real space, or

x = (x1, x2, . . . , xD) , with x j > 0 for all j = 1, 2, . . . , D, (1)

where D is the number of components, in our case, food sources. In order to focus
on the relative importance of the components, the closure of x is commonly used:

y = C(x) ≡
(

x1∑D
l=1 xl

,
x2∑D
l=1 xl

, . . . ,
xD∑D
l=1 xl

)
. (2)
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Let y j = x j/
∑D

l=1 xl , j = 1, 2, . . . , D. By construction, y is such that
∑D

l=1 yl = 1.
The vector y resides in a subspace of RD+ which is constrained by positivity and a
fixed sum, called the simplex, with operations, angles and distances different from
those in the real space. For this reason, most statistical tools such as correlation or
variance are meaningless when applied to y.

As emphasized in the introduction of this chapter, a methodology based on log-
ratios has been proposed to deal with compositional data. The general expression of
a log-ratio is a log-contrast (Martín-Fernández et al. 2018):

D∑
i=1

ai ln xi = ln

(
D∏
i=1

xaii

)
, with

D∑
i=1

ai = 0. (3)

It is obvious that a log-contrast is a log-ratio of components because for ai > 0, the
corresponding component xi appears in the numerator with the exponent ai , but if
ai < 0 it appears in the denominatorwith the exponent−ai , while for the components
that do not contribute to the log-ratio ai = 0 holds.

The overarching idea is to focus on the log-ratios of components and then defining
mathematical properties that they must fulfill in order to define a one-to-one rela-
tionship between the simplex and the real space. It can be shown that log-ratios must
satisfy the following requirements to capture all information in the compositional
data set (Egozcue et al. 2003):

• They must define an orthonormal (D − 1)-dimensional basis of the simplex,
• The sum of exponents in the numerator of the log-ratio must equal the sum of
exponents in the denominator, and

• The sum of all squared exponents must be equal to one.

Such log-ratios are called isometric log-ratios. Results obtained by applying classical
statistical techniques to isometric log-ratios can then be transferred onto composi-
tions.

Principal balances are a particular class of isometric log-ratios. They are defined
as follows (Martín-Fernández et al. 2018): principal balances are log-linear functions
zk = ∑D

i=1 aki ln xi , k = 1, . . . , D − 1, such that the vectors ak = (ak1, . . . , akD) are
constant and maximize the variance:

var(
D∑
i=1

aki ln xi ), (4)

under three conditions:

1. (balance condition) For k = 1, . . . , D − 1, the coefficients aki take one of the
three values (−c1, 0, c2), for some strictly positive c1 and c2,

2. (zero sumandunit normconditions) for k = 1, . . . , D − 1,ak satisfies
∑D

i=1 aki =
0 and

∑D
i=1 a

2
ki = 1, and
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3. (orthogonality condition) for k = 1, . . . , D − 1, ak is orthogonal to previous
ak−1, . . . , a2, a1, i.e.

D∑
i=1

akia(k−l)i = 0, l = 1, . . . , k − 1. (5)

Each principal balance can be written as the following log-ratio:

zk =
rk∏
i=1

x
c∗
2k

i /

sk∏
j=1

x
c∗
1k

i (6)

where c∗
1k and c∗

2k are the solutions of the previous maximization program, and rk
(resp. sk) is the number of components to which a positive (resp. negative) coefficient
is associated. Thus principal balances compare groups of components using their
geometric means. Moreover, given a sample of D-component random composition,
it can be shown that, just like for principal component analysis, the total variance
of the sample2 can be decomposed into the sum of the variances associated with
the principal balances. The first principal balance has maximum sample variance,
and the kth principal balance has the maximum variance conditional to its balancing
element, being orthogonal to the previous (k − 1) balancing elements.

An algorithm to build principal balances has been proposed Martín-Fernández
et al. (2018), and its implementation can be found in the balance package of the R
computing language (Quinn 2018).

Hereafter, principal balances calculated from data on food sources will be used
as diet quality predictors. Associations between diet quality and food sources will
be assessed using the OLS estimation technique.3

2.2 Zeros

The presence of zero components in compositional data precludes log-ratio calcu-
lations because the logarithm of zero is undefined. Hereafter, we consider the case
where some components of a composition are believed to be present, but are not
observed due to randomness or limitations of measurement.4 More precisely, we
consider rounded zeros which are defined as follows: for each component x j in a

2Total variance in a compositional data set is defined as the sum of variances of all centered log-
ratios, i.e. the log-ratios of components to their geometric mean.
3See Pawlowsky-Glahn et al. (2015) for an introduction to linear regression models with composi-
tional data.
4For instance, rounded zeros are often observed when data are collected using a retrospective food
frequency questionnaire expressed in daily or weekly portions. This kind of questionnaire is known
to fail to record food groups that are consumed infrequently.
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composition x = (x1, . . . , xD), there is a threshold t j such that observations with
x jn < t j are rounded to zero.5

Rounded zeros can be considered as missing values. Thus, imputation techniques
can be used to replace these missing values with imputed values. The Expectation-
Maximization (EM) algorithm proposed by Dempster et al. (2021) provides a reli-
able parametric method for missing data in real space. This algorithm was adapted
to compositional data by Palarea-Albaladejo et al. (2007); Palarea-Albaladejo and
Martín-Fernández (2008).

The log-ratio EM algorithm proceeds as follows when facing rounded zeros.
Compositional data are first transformed into real data using an additive log-ratio
(alr ) transformation6:

q j = ln

(
x j

xD

)
, j = 1, . . . , D − 1, (7)

where, for ease of presentation, we assume that the last component does not exhibit
any rounded zeros.7 Indeed, direct application of the EM algorithm to composi-
tional data has been shown to generate serious distortions in imputed data (Martín-
Fernández et al. 2003): zeros can be replaced by negative values or by values larger
than specified thresholds, and the constant-sum constraint is not respected.

Observation of rounded zeros then corresponds to a censoring pattern with
observed, qobs, and unobserved components, qnon. The log-ratio EM algorithm
is an iterative procedure where two steps are involved at each iteration t :

• Expectation-step or E-step: given the estimated parameters θ̂ (t), compute

q̂non = E
[
qnon|qobs,qnon < ψ; θ̂ (t)

]
, and

• Maximization-step or M-step: find a new estimate θ̂ (t+1) based on the completed
data set

[̂
qnon,qobs

]
,

where ψ denotes the vector of censoring points, i.e. ψ j = ln
(
t j/xD

)
when compo-

nent j exhibits rounded zeros. More precisely, assuming multivariate normality of
alr -transformed data, the expected value of qnon is computed at the t th iteration in
the E-step as

q̂(t)
non = qobsβ̂

(t) − σ̂ (t) φ
(
(ψ − qobsβ̂

(t))/σ̂ (t)
)

�
(
(ψ − qobsβ̂

(t))/σ̂ (t)
) , (8)

5In practice, threshold values are usually set below the smallest values that have been observed for
the different components.
6An isometric log-ratio (ilr ) transformation can also be used, both transformations producing same
results. We focus here on the alr formulation to simplify the presentation.
7It can be shown that imputation results do not depend on the component used as an alr divi-
sor (Palarea-Albaladejo and Martín-Fernández 2008). Algorithm implementation only needs one
component with no rounded zeros to be able to compute alr -ratios.



554 M. Simioni et al.

where β̂(t) and σ̂ (t) aremaximum-likelihood estimates of the regression parameters at
the t − 1th iteration in theM-step. φ(.) and �(.) denote the density and distribution
functions of the standard normal distribution, respectively. The ratio on the right-
hand side of Eq. (8)—the inverse Mills ratio (Amemiya 1985)—which is evaluated
at

(
(ψ − qobsβ̂

(t))/σ̂ (t)
)
, represents the censoring threshold required for Eq. (8) to

consistently produce values below the ratio, as expected.
The log-ratio EM algorithm is iteratively repeated until convergence, i.e. the algo-

rithm stops when the distance between θ̂ (t) and θ̂ (t+1) is lower than a fixed tolerance
level. Once the convergence has been reached, the last completed data set obtained at
the E-step is transformed back to the simplex using the inverse alr transformation,
resulting in a completed compositional data set without zeros.

The log-ratio EM algorithm has been shown to produce only minimal distortion
(Palarea-Albaladejo et al. 2007; Palarea-Albaladejo and Martín-Fernández 2008).
This algorithm does not alter the log-ratios of non-zero components. The relative
information conveyed by these components is fully preserved. Absolute values are
modified to accommodate the closure, but the compositional information stays the
same after imputation.

The log-ratioEM algorithmhas been implemented in the zCompositionspackage
of the R computing language (Palarea-Albaladejo and Martín-Fernández 2015).

3 Data

3.1 Data Collection

Datawas collected under theConsortiumof InternationalAgricultural ResearchCen-
ters (CGIAR)Research Program on theAgriculture for Nutrition andHealth (A4NH)
project (Huynh et al. 2021). The aim of the project was to elucidate specific features
of local Vietnamese food systems along a rural to urban gradient, focusing on (i) diets
and nutrition, (ii) consumer behavior, and (iii) food flows (food sources).8 ThreeViet-
namese districts were selected to capture the rural to urban gradient. Figure1 gives
their geographical locations. Their main characteristics are as follows:

• Moc Chau District, a rural site, located in Son La Province—This district is char-
acterized by its high diversity of ethnic groups, and a large volume of agricultural
production for both home consumption and income generation.

• Dong Anh District, a peri-urban site, located in Hanoi Province—This district is
characterized by rapid urbanization, intensive crop-livestock production, and food
transformation next to the urban area, and a typical peri-urban population with a
high percentage of migrants and a commuting labor force.

8The study protocol was approved by the Medical Research Ethics Committee of the National
Institute of Nutrition of Vietnam (Number 223/VDD-QLKH).
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Fig. 1 Geographical location of the three districts in Vietnam. Credit: Phan Van Trong

• Cau Giay District, an urban site, located also in Hanoi Province—This district
represents a typical urban space with mixed retail outlets ranging from street
markets, formal wet markets to supermarkets.

Households were sampled in the three districts as follows:

• First, within the rural district (MocChau), the twomain urban agglomerationswere
excluded to guarantee that the sampling target was, in fact, the rural population.
In the two other districts (Dong Anh and Cau Giay), neighborhoods with high-
income households were excluded to only sample primarily middle- and low-
income households who were the targeted population of the project. In spite of
these exclusions, the target population includes the majority of the population
within the three districts.

• Thirty communes were randomly selected as Primary Sampling Units (PSUs)
using a probability proportional to size (PPS) procedure where higher population
villages had a greater probability of being selected, to meet the general purpose
of the survey.9 For consumer behavior and dietary assessment, 10 PSUs were
then randomly selected from the 30 previously selected ones. Once a PSU was

9For instance, the nutrition status (anthropometric) component was also collected but is not used in
this chapter.
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selected, a rapid enumeration of households was conducted and information about
household composition (to identify parents with children up to the age of 5) was
obtained from district health centers.

• Households were then selected at random from the lists collected at the previous
step. Participation in the survey was completely voluntary, selected participants
being asked to give their consent to participate in the survey. Substitutes for house-
holds that were originally chosen but those that did not want to participate in the
survey were randomly drawn from the same lists.

For the consumer behavior component of the study, the interviewee was the per-
son who was mainly responsible for household food purchases and/or preparation,
hereafter defined as the household representative.

The wider project that this study is a part of is aimed at evaluating childhood
malnutrition. This project focuses on children under the age of 5 becausemalnutrition
is among the main causes of death for this group (nearly half of deaths), and is one of
the most common factors threatening the lives and health of children in developing
countries like Vietnam. To assess their dietary conditions, 24-h recall interviews10

were conducted with three individuals in each household: a child under 5 years old,
their father, and their mother. Each survey participant was interviewed on 2 days.
The first recall was conducted on a weekday and the second recall was done on
either a weekday or a weekend. In addition, the source of each ingredient used when
preparing meals was identified.

3.2 Sample Characteristics

Data on household characteristics: gender, age, and education level of household
representative, with household size and income level, were also collected. Table1
reports descriptive statistics for the three districts. As expected, the urban district
is characterized by household representatives with higher education levels and by
wealthier households relative to the other two districts.

3.3 Nutrition Knowledge

As emphasized byWertheim-Heck andRaneri (2019), understanding food safety risk
perceptions and trust in food safety as well as nutrition knowledge and attitudes are
useful for gaining insight into peoples’ personal determinants of their food shopping

10This method provides comprehensive, quantitative information on individual diets by querying
respondents about the type and quantity of all food and beverages consumed during the previous
24-h period (Gibson et al. 2017).
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and dietary habits. Food safety risk perceptions have been demonstrated to impact
trust in food safety and ultimately shopping practices, what and when products are
being purchased, and from whom or where.

The nutrition knowledge score was measured through a series of 30 questions
about diet and nutrition. Questions about the following topics were addressed:
micronutrient attitudes, diet diversity knowledge, diet diversity attitudes, undernutri-
tion knowledge, undernutrition attitudes, overnutrition knowledge, and overnutrition
attitudes. The questions were in line with the Nutrition Knowledge, Attitudes, and
Practices (KAP) manual published by FAO (Marias and Glasauer 2014). Each cor-
rect response was worth 1 point and an incorrect one was worth 0. The final score
was the sum of these scores, which was then converted to a scale from 0 to 1, with
1 as the maximum total score.

Table1 reports descriptive statistics on nutritional knowledge scores for the three
districts. Sensitivity to nutrition-related problems, as measured by the KAP score,

Table 1 Description of the sample

Variable Urban Peri-Urban Rural

Age of household
representative

33.3 (5.8) 30.6 (6.0) 29.6 (6.8)

Gender of household representative

Male (%) 49.08 50.00 49.77

Female (%) 50.92 50.00 50.23

Education of household representative

Primary school or no
formal education (%)

1.40 9.25 35.32

Secondary school (%) 4.67 21.39 35.32

High school (%) 11.21 32.37 24.31

University and college
(%)

82.71 36.99 5.05

Household size 4.88 (1.49) 5.54 (1.35) 4.90 (1.22)

Income (millions of VND)

Less than 7 (%) 7.34 26.63 72.4

From 7 to 11 (%) 22.48 32.07 22.62

From 11 to 20 (%) 31.65 22.28 3.62

Greater than 20 (%) 38.53 19.02 1.36

Nutrition knowledge
score

0.7 (0.2) 0.6 (0.2) 0.5 (0.2)

Number of
observations

214 184 221

Means and standard deviation (in parentheses) are reported for age, household size, and nutrition
knowledge score



558 M. Simioni et al.

decreased along the urban to rural gradient.One-way analysis of variance andTukey’s
range test show significant differences in nutritional knowledge scores between the
three districts.11

3.4 Food Sources

In addition to the specific food items and their quantities, the 24-h recall also docu-
mented the sources of food consumed, which include “supermarket,” “convenience
shop,” “specialized shop,” “wet market,” “own production,” and “other” sources
(detailed description in Table2). These food sources can be categorized in differ-
ent ways, either between formal-licensed food retail business versus informal-self-
organized unlicensed food retail business, or betweenmodern, hybrid, and traditional
outlets (Wertheim-Heck and Raneri 2019). Many low- and middle-income countries
such as Vietnam are experiencing the development of a dual system, with supermar-
kets taking a larger share of household expenditures on non-staple and processed
goods, while meat and fruits are mainly bought in traditional, smaller grocery stores
and fresh markets (Food and Agriculture Organization of the United Nations 2013).

Although the collecteddata does not breakdown the share of foodgoods purchased
by households from each food source, the share of each food source in household
total calorie intake can be computed as an approximation.

Some households exhibit zero shares for some food sources, and the presence of
zeros for food sources varies from district to district. Hence, zero shares are observed
for most food sources with the exception of “wet market” in urban and peri-urban
districts and “own production” in rural ones. The following question then arises: how
should the observed zeros be interpreted? By construction, the zero shares capture
the fact that no food coming from the corresponding food source has been eaten
during the period covered by the 24-h recall survey. A food source share equal to
zero does not indicate that the household never makes its purchases there, especially
since the food source is present in the household food environment (for instance,
there are even two supermarkets in the rural district) and since small, but non-zero,
shares for the considered food source are also observed for many households in the
same district. It therefore does not seem realistic to consider observed zero values as
“true” zeros, reflecting either no potential access to the food source (food deserts)
or a corner solution in the household’s choice of food sources. Instead, we treat
observed zeros as “rounded” zeros, and using the log-ratio EM algorithm proposed
by Palarea-Albaladejo et al. (2007), we replaced values of zero with imputed values.

Table3 reports the main characteristics of the distributions of food source shares
after imputation. “Wet market” appears to be the most important food source in
the urban district, followed by “specialized shop.” While “wet market” is still the
predominant food source in peri-urban districts, “own production” is now the second
food source followed by “convenience shop.” “Own production” is the main food

11Results are available from the authors upon request.
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Table 2 Food sources and their characteristics

Food source Characteristics Main food items provided by this
source

Supermarket Licensed food retail business Processed foods and beverages

Large variety of branded products Imported and frozen food

Fruits and vegetables

Convenience shop Small grocery store Processed foods and beverages

Independently owned Rice, noodles, flour

and operated Eggs, cakes

Specialized shop Small modern store Fresh and/or organic produce

Clear price tag and promotion Fruits and vegetables

Employees run the store Meat and imported foods

Wet market Managed by local authorities Variety of fresh food products

Rental of a tiny space (1-5m2)

No need of a business license

Own production
(including gifts)

Own plot or garden Mainly rice, maize, potatoes

Own farm Fruits and vegetables

Pig, chicken, eggs

Other sources Direct farm supply Mainly vegetables, rice, meat

Online shopping Cakes

Wild food

source in the rural district, followed by “convenience shop.” “Supermarket” only
appears as a marginal food source in the peri-urban and rural districts, while this
food source is more present in the urban district.

3.5 Diet Quality

Diet quality is an important measure for the understanding of food security because
of the synergistic nature of micro- and macronutrients and the association of healthy
diet patterns with reduced risk of diet-related disease and illness. Diet quality can
be measured using the Diet Quality Index International (DQI-I) (Kim et al. 2021).
Their aim was to capture the fact that food intake patterns are likely to be more het-
erogeneous globally than nutrient intake patterns. Therefore, they proposed an index
which incorporates both nutrient and food perspectives of the diet in the assessment,
providing a means to better describe the diversity of consumption from country to
country.

The DQI-I focuses on four major aspects of a high-quality, healthy diet: variety,
adequacy, moderation, and overall balance, covering nutritional concerns of both
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Table 3 Description of food source shares (percentage) after imputation

District Mininum Median Mean Maximum

Urban district

Supermarket 0.10 2.30 1.60 92.80

Convenience
shop

≤0.01 0.25 0.81 79.20

Specialized shop 0.10 10.70 4.47 93.10

Wet market 0.40 44.80 35.80 100

Own Production 0.03 0.10 0.64 87.90

Others ≤0.01 4.65 2.25 50.70

Peri-urban district

Supermarket ≤0.01 ≤0.01 ≤ 0.01 77.50

Convenience
shop

0.10 5.60 4.04 80.60

Specialized shop 0.02 2.30 1.09 94.40

Wet market 1.30 332.25 29.96 99.20

Own Production 0.10 32.00 10.17 88.30

Others ≤0.01 2.25 0.54 45.60

Rural district

Supermarket ≤0.01 ≤0.01 ≤0.01 34.10

Convenience
shop

0.10 10.20 6.41 99.50

Specialized shop ≤0.01 0.13 0.26 88.70

Wet market ≤0.01 2.50 1.34 93.30

Own Production 0.20 73.50 54.34 100

Others ≤0.01 ≤0.01 ≤0.01 24.10

Reported means are geometric ones

developed and developing countries. Specific components are assessed and scored for
each aspect, as summarized in Table4. The total DQI-I is the sum of these component
scores, producing a total score between 0 and 100. A higher score indicates a higher
quality diet. Macronutrient and micronutrient intakes required for the computation
DQI-I were computed using the 2017 Vietnamese Food Composition Table (Viet
Nam National Institute of Nutrition 2017) and scoring procedures were adapted to
the Vietnamese context using Vietnamese dietary guidelines (Ministry of Health
2013).

Quality of diet appears to be better in the peri-urban district, where the mean DQI-
I score was 55.5% of the maximum possible score (with a standard deviation of 7.9)
than in the urban and rural districts, withmean scores equal to 53.9% (9.7) and 53.2%
(9.0), respectively. By way of comparison, the mean DQI-I score was approximately
60% of the maximum score in both China and in the US in the mid-1990s (Kim et al.
2021).
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Table 4 DQI-I component definitions

DQI-I
component

Grouping of diet quality Scoring criteria Score

component

Variety-food
groups

5 food groups:
meat/poultry/ fish/egg,
dairy/beans, grains, fruits,
and vegetables

Each food group awarded 0
or 3 pts. 3 points awarded if
at least 1 item from that
group was consumed

0–15

Variety-protein
sources

6 sources: meat, poultry,
fish, dairy, beans, eggs

≥3 sources consumed: 5 pts
2 sources consumed: 3 pts
1 source consumed: 1 pts
0 sources consumed: 0 pts

0–5

Adequacy 8 groups: vegetables, fruit,
grain, fiber, protein, iron,
calcium, vitamin C

Between 0 and 5 points
awarded for each of the 8
adequacy groups,
depending on percentage of
or Recommended Daily
Allowances (RDA) met

0–40

Moderation 6 groups: total fat, saturated
fat, cholesterol, sodium,
empty calorie foods

Between 0 and 6 points
awarded for each of the 5
moderation groups,
depending on percentage of
RDA met

0–30

Balance 2 groups: macronutrient
ratio, fatty acid ratio

Between 0 and 6 points
awarded, depending on
ratio of macronutrients and
between 0 and 4 points
awarded depending on ratio
of fatty acids

0–10

DQI-I Grand total = 0–100

Mean scores for components of DQI-I by district are reported in Fig. 2, expressed
as a percentage of the maximum values they can reach. Urban and peri-urban dis-
tricts have similar profiles in terms of variety, adequacy, and moderation, with mean
variety scores of 80% and 83%, mean adequacy scores of 66% and 67%, and mean
moderation scores of 30% and 31%, of the corresponding maximum scores, respec-
tively. Mean variety and adequacy scores of the rural district are lower: 71% and
62%, respectively, while higher in the case of moderation (40%). Balance is better
fulfilled in the peri-urban district with a mean score of 29% (26% and 22% in urban
and rural districts, respectively).
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Fig. 2 Average DQI-I
components by district

4 Results

4.1 Exploratory Analysis

Principal balances have emerged as a relevant tool for extracting compositional infor-
mation to use in the statistical modeling of compositional data (Solans et al. 2019).
The technique is used here to summarize the information provided by the data on
food sources in the three districts (after imputation of zero values). Table5 shows
the total variance and percentages of explained variance by principal balances for
each district. The structure of principal balances and their distributions are shown
in Fig. 3. Two figures are thus reported for each district. The first figure on the left
shows how some food sources are contrasted against others for each principal bal-
ance. Food sources appearing in the numerator (resp. denominator) of a principal
balance are represented with points (resp. triangles). For instance, the first principal
balance (z1) shows how the “supermarket” and “other” sources are contrasted against
the remaining food sources, for the rural district. The figure on the right shows the
sample distributions of the principal balances, using boxplots. Note, for instance,
that sample values of the first principal balance are always positive for the rural
district, meaning that households living in that district always consume, on average,
more calories from “wet market,” “specialized shop,” “convenience shop,” and “own
production” sources than from “supermarket” and “other” sources.

The results show significant contrasts between the districts. Consider first the
peri-urban district (panel (b) of Fig. 3). The first principal balance, which captures
86.77% of the total variance, compares “supermarket” with all other food sources.
This result could be expected as “supermarket” appears to be the most marginal food
source in this district. The importance of the contribution of the first principal balance
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Table 5 Percentage of total variance explained by each principal balance

Principal balance Urban Peri-urban Rural

z1 31.78 86.77 67.91

z2 22.23 7.84 18.72

z3 18.42 3.20 6.84

z4 17.08 1.35 3.80

z5 10.49 0.84 2.73

Total variance 28.05 252.95 94.68

to total variance becomes clear whenwe consider the extent of its distribution. Values
of the first principal balance are negative, with a few rare exceptions, and very large
in absolute value, reflecting how small the “supermarket” share is when compared to
the geometricmean of other food source shares. The second principal balance, whose
contribution to total variance is 7.84%, compares “other” sources to the remaining
four food sources: “specialized shop,” “own production,” “convenience shop,” and
“wetmarket.” Its interpretation is similar to that of the first principal balance. “Other”
food sources are marginal in the peri-urban district, but the contrast between this
share and the geometric mean of the four food sources is less pronounced than
the one for the first balance. The three remaining principal balances capture only
small percentages of total variance, respectively. Their distributions are less and less
sparse, while exhibiting mainly negative values. Food sources in the numerators of
the considered principal balances are always smaller than the geometric mean of
those in the denominators. For instance, the share of “wet market” is always greater
than those of “convenience shop,” but their ratio is not very variable among peri-urban
district households.

The first principal balance found for rural district compares the four food sources:
“wet market,” “specialized shop,” “convenience shop,” and “own production,” with
the marginal ones: “supermarket” and “other,” whose shares are negligible (panel (c)
of Fig. 3). This principal balance captures a large part, 67.91%, of the total variance.
As expected, the geometric mean of the four food sources is always larger than the
geometric mean of the last two, and the distribution of their ratio is spread over the
positive part of the real line. The second principal balance, which captures 18.72%
of the total variance, compares “supermarket” with “other.” While negligible, the
“other” share is always larger than the “supermarket” one, with few exceptions. The
third, fourth, and fifth principal balances summarize the comparison between “wet
market,” “specialized shop,” “convenience shop,” and “own production.” The “wet
market” share appears to always be smaller than the geometric mean of the “spe-
cialized shop,” “convenience shop,” and “own production” shares. The “specialized
shop” share is always smaller than the geometric mean of the “convenience shop”
and “own production” shares. And, finally, the “convenience shop” share is always
smaller than the “own production” share. As expected, the distributions of these three
principal balances vary less and less, meaning that the ratios become nearly constant
when moving from the third principal balance to the fifth one.
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The construction of principal balances in the urban district case does not exhibit
one or two balances capturing a large percentage of total variation as observed with
other districts (panel (a) of Fig. 3). The first principal balance for the urban dis-
trict compares food sources for which many negligible shares are observed, mainly
“convenience shop” and “other sources,” with “own production,” “specialized shop,”
“wet market,” and “supermarket.” This principal balance captures only 31.78% of
the total variance, and its distribution clearly indicates that the geometric mean of
“convenience shop” and “other sources” shares is always smaller than the geometric
mean of the remaining food sources. The second principal balance, which captures
22.23% of the total variance, compares “own production” with “specialized shop,”
“wet market,” and “supermarket.” “Own production” share appears to always be
smaller than the geometric mean of the three other food sources. The third balance
shows the contrast between “convenience shop” and “other sources.” Most values
of this principal balance are negative, meaning that the “other sources” share is
larger than the “convenience shop” share for most households. The fourth principal
balance compares “specialized shop” with “wet market” and “supermarket.” The
distribution of this principal balance exhibits mainly positive values. The geometric
mean of the “wet market” and “supermarket” shares are generally larger than the
“specialized shop” share. Finally, the fifth principal balance contrasts “wet market”
and “supermarket.” Here too, the principal balance takes mainly positive values.
The “supermarket” share appears to be larger than the “wet market” one for most
households.

4.2 Regression Analysis

The purpose of this section is to analyze associations between diet quality and food
sources. Associations are assessed by regressing diet quality indicators, DQI-I or
its components, on the previously built principal balances, and household socio-
demographic characteristics as control variables. The main regression results are
summarized in Table6.

The empirical results give a contrasting picture of the associations within the three
districts. We first consider the peri-urban district. Only a few associations are high-
lighted. The synthetic measure of diet quality, DQI-I, is positively associated with a
relative increase of “own production” share when compared to the geometric mean
of the “convenient shop” and “wet market” shares (z4). Balance, which examines
the overall balance of the diet in terms of the proportionality of energy sources and
fatty acid composition, is positively associated with a relative increase in the ratio
between “convenience shop” and “wet market” shares (z5).

In the rural district, balance is positively associated with a relative increase in
“wet market” share when compared to the geometric mean of “specialized shop,”
“convenience shop,” and “own production” shares (z3). Moderation is positively
associated with a relative increase in the “specialized shop” share when compared
to the geometric mean of the “convenience shop” and “own production” shares
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Table 6 Summary of regression results by district

Principal balance Variety Adequacy Moderation Balance DQI-I

Urban district

z1: {Con, Oth} vs
{Own, Spec,Wet, Sup}

0.177 0.196 −0.953** −1.394*** −0.311

z2: {Own} vs
{Spec,Wet, Sup}

1.251** 1.38*** 0.218 0.885 0.956***

z3: {Con} vs
{Oth}

−0.387 0.882* −1.642*** −1.279** −0.345

z4: {Spec} vs
{Wet, Sup}

−1.025 −0.732 0.655 −0.174 −0.319

z5: {Wet} vs
{Sup}

−1.435* −1.828*** 2.626*** 0.154 −0.215

Peri-urban district

z1: {Sup} vs
{Oth, Spec, Own,Con,Wet}

−0.044 −0.001 −0.09 −0.08 −0.044

z2: {Oth} vs
{Spec, Own,Con,Wet}

0.255 −0.005 0.053 −0.479 0.017

z3: {Spec} vs
{Own,Con,Wet}

−0.145 −0.233 0.033 −1.05 −0.217

z4: {Own} vs
{Con,Wet}

0.392 0.798 1.082 −0.327 0.690*

z5: {Con} vs
{Wet}

0.287 −0.007 0.134 2.775** 0.372

Rural district

z1: {Wet, Spec,Con, Own} vs
{Sup, Oth}

0.214 −0.02 0.148 −0.183 0.061

z2: {Sup} vs
{Oth}

−0.097 −0.109 −0.231 −0.144 −0.146

z3: {Wet} vs
{Spec,Con, Own}

0.641 −0.022 −0.386 1.199* 0.123

z4: {Spec} vs
{Con, Own}

−0.641 −0.15 0.923* −0.375 0.051

z5: {Con} vs
{Own}

−2.310*** −1.299* 0.203 0.870 −0.834**

Notes (1) DQI-I and its components are expressed as percentages of the maximum attainable scores.
(2) In addition to the constant term and principal balances, regressions include gender, age, and
education level of household head, with household income level and size, and nutrition knowledge,
as control variables. (3) ***, ** and *: significant at 1%, 5%, and 10%, respectively. (4) Sup:
Supermarket; Con: Convenience shop; Spec: Specialized shop; Own: Own production; Wet : Wet
market; Oth: Others



Diet Quality and Food Sources in Vietnam: First Evidence … 567

(z4). Negative associations are found between variety, which assesses whether intake
comes from diverse sources both across and within food groups, adequacy, which
evaluates the intake of dietary elements thatmust be supplied sufficiently to guarantee
a healthy diet, and overall diet quality and a relative increase in “convenience shop”
share relative to “wet market” share (z5).

Results from the urban district highlight three important insights. First, modera-
tion and balance are negatively associated with a relative increase in the geometric
mean of “convenience shop” and “other sources” shares compared to the geometric
mean of “own production,” “specialized shop,” “wet market,” and “supermarket”
shares (z1). A similar association arises with a relative increase in the “convenience
shop” share compared to “other sources” share (z3). Eating more food from a “con-
venience” shop than from other food sources appears to have a negative effect on diet
quality in its dimensions linked to risk of chronic diseases or obesity. Second, variety,
adequacy, and overall diet quality, as measured by the DQI-I score, are positively
associated with a relative increase in relative “own production” share when com-
pared to the average share of “supermarket,” “wet market,” and “specialized shop”
(z2). Thus, a household’s diet becomes less diverse and healthy when the relative
“own production” share decreases in the urban site. Third, variety and adequacy are
negatively associated with an increase in the ratio between “wet market” and “super-
market” shares, while it exhibits a positive association with moderation (z5). Eating
more food from supermarkets than fromwetmarkets appears to have a negative effect
on diet quality, which is linked to a higher risk of chronic diseases, despite being
positively associated with a greater diversity in diet and better adequacy. This result
is in line with those of the literature on the impact of supermarkets, and therefore
of increased accessibility to highly processed food, on the quality of diet (Demmler
et al. 2018).

5 Concluding Remarks

The aim of this chapter is to provide some initial evidence on the association between
diet quality and its components (variety, adequacy, moderation, and balance) with
food sources in lower-middle-income countries. By explicitly considering the com-
positional nature of food source data, this chapter shows the contribution of com-
positional data analysis to the treatment of this question, through the use of recent
developments on principal balances and rounded zeros. Empirical implementation
using a detailed survey on three Vietnamese districts highlights the contrast in the
profiles of food sources of different areas and their association with diet quality.

The work presented in this chapter faces some limitations. First, due to dietary
data limitations, this study focuses on Vietnamese households with children under 5
years of age. A more in-depth investigation is therefore necessary to see if the results
obtained are also valid for households with children above the age of 5. Second, as
this study is the first time the DQI-I was applied to assess diet quality in Vietnam, we
were not able to evaluate its validity and credibility. Having said that, we customized
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this international indicator to adapt to the Vietnamese Dietary Guidelines to improve
its validity. Third, the application of compositional data analysis raises two important
issues: interpretation of covariate impacts in compositional models, and the lack of
consideration of total calorie intake in addition to its decomposition according to food
sources as another explanatory variable in regression models. These two issues are
the subject of numerous current works (Beal et al. 2018; Morais et al. 2018; Thomas-
Agnan and Morais 2019). Their application to the empirical question treated in this
chapter is left for future research.
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Bastien Bernela, Liliane Bonnal, and Pascal Favard

Abstract This chapter serves to elucidate the empirical reality of the phenomenon
of geographical mobility among students and young graduates, based on data taken
from five generational surveys conducted byCéreq. Our study shows that the degree
of mobility among students’ region of origin, region of education, and region of
employment is relatively low: less than one in three high school graduates move
to another region for their university studies, and less than one in three university
graduates move to another region to find employment. The children of senior exec-
utives/Master’s degrees are more likely to move to another region to pursue further
education or find employment. Furthermore, more than half of such interregional
movements correspond to people returning home. These results appear to demon-
strate that individuals remain strongly geographically rooted: relatively few people
move, and some of those movements correspond to people returning home.

1 Introduction

Geographical mobility has become a skill that students are encouraged to develop
throughout their time in higher education. It is touted as essential for both high school
graduates embarking on a newcourse of study and students considering post-graduate
work.Thismobility often corresponds to youngpeople leavinghome for thefirst time,
and many will move residence several times during their time in higher education.
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The reasons behind such movements are many and varied: they may be a result of
students moving to enroll on courses of study not available in the immediate vicinity
of their family home, particularly for longer courses, and subsequently entering the
workforce. As such, the geographical distribution of students depends primarily on
the distribution of higher education options and their relative attractiveness.

Although the issue of student mobility has been a central concern of university
policy since the expansion of access to higher education in the late 1990s, actual
student mobility remains limited: each year around 6 students in every 100 move
to a new town or region to pursue their studies, a phenomenon which has remained
stable over the past decade (Perret 2007; Baron and Perret 2008). There is no obvious
upward trend in this mobility, as one might have expected. The phenomenon is partly
connected to the territorial distribution of educational options, which determines the
geographical and social distances betweenhigh school graduates/students and centres
of education.

The first priority of higher education institutions, and universities in particular, is
to train the young people of today whowill make up the workforce of tomorrow. This
is amission close to the hearts of local government, with a keen interest in developing
a pool of qualified manpower with the potential to satisfy the labour requirements of
the local economy; hence why local authorities (regions, in particular) are so closely
involved with higher education policy within their territory. With the emergence of
the knowledge economy, attracting students is now a development priority for local
territories. Young graduates are considered to be an indispensable resource for the
dynamic development of the local and regional job markets and are thus held to be a
source of comparative advantage for the regions to which they move. The idea that
territories influence the spatial allocation of resources for competitive considerations
has been studied in some detail by fellow researchers, seeking to define the winners
and losers of mobility dynamics at a macro-economic level (Baron 2009; Hoare and
Corver 2010; Coquard 2019). Why are students and graduates so mobile? According
to the standard economic theories of job hunting, this migration is the fruit of an
individual, rational process of cost–benefit analysis. Put simply, young graduates
looking for employment are prepared to move in order to hunt occupations that are
not available locally or find jobs that offer more attractive salaries than those in
the near vicinity. The academic literature on human capital (Sjaastad 1962) holds
that the potential impact of such migration mirrors the level of qualifications of
those concerned, i.e. university graduates are particularly concerned. Non-economic
factors only came to be included in mobility analysis at a much later date. Factors
such as the psychological burden of being separated from loved ones (Schwartz 1973;
Dahl and Sorenson 2010) can help to explain the rate of non-mobility and the major
influence of geographical proximity on thosewho domove.A better understanding of
the mechanisms of mobility among students and recent graduates would enable local
authorities (at the municipal and regional levels) to implement policies designed to
attract and retain these groups. Indeed, local elected officials are frequently worried
that graduates will move elsewhere after their studies, compromising the “return on
investment” of funds invested in education.
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The aim of this chapter is to examine the geographical trajectories of university
graduates, specifically their movements in relation to their studies and first jobs.
These two moments correspond to the first occasions on which young people make
individual decisions about their geographical location which are not (or at least not
entirely) dependent upon their family. On average, howmany students pursue further
studies (and then enter the labour market) in their region of origin, or else in another
region? What are the defining characteristics of those who move?

We also propose to look at movements corresponding to students returning to
their regions of origin upon completing their higher education. This phenomenon
has received relatively little attention in the existing literature, although empirical
studies have highlighted its importance in other geographical contexts (Niedomysl
and Amcoff 2011; Rérat 2014).

Taken together, these geographical indications offer some empirical perspective
on the true room for manoeuvre of territories seeking to boost their attractiveness.

This chapter utilizes data from five generational surveys conducted by Céreq
(1998, 2001, 2004, 2007, and 2010). Section2 is devoted to a brief explanation of
these data. Section3 presents a number of descriptive statistics and our empirical
strategy. Section4 is given over to the principal results of our econometric models.

2 The Data

Since the early 1990s, the Céreq1 has been running a series of longitudinal studies
focusing on graduates’ first few years of professional life. These surveys examine the
professional integration and progress of graduates leaving education, over a period
of three years (or 5, for certain generations). One of the objectives of these surveys
is to produce integration indicators (employment rate, unemployment rate, rate of
graduates employed on permanent contracts, etc.) for different levels of education,
sectors, etc. The surveys thus yield information that helps to improve our understand-
ing of the different integration processes and paths experienced by graduates at the
outset of their careers.

In order to be included in the survey for a given “generation”X (whereX represents
the year inwhich the subjects left education), subjectsmust satisfy all of the following
criteria:

• must have been enrolled in an educational institution for the academic year corre-
sponding to the year group X,

• must have left education in this same academic year,
• must not have returned to education after a spell away in this academic year,
• must not have returned to education in the academic year X+1,
• must be less than 35years old in the year the survey is conducted,

1Centre for research on employment and qualifications. http://www.cereq.fr/articles/Enquete-
Generation/Presentation-detaillee-de-Generation.

http://www.cereq.fr/articles/Enquete-Generation/Presentation-detaillee-de-Generation
http://www.cereq.fr/articles/Enquete-Generation/Presentation-detaillee-de-Generation
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• must be resident in France in the yearX. This condition excludes thosewho studied
in France but are working overseas when the study is conducted, i.e. in the year
X+3.

The sample strategy for generational surveys is based on random sampling across
all courses and across the country as a whole. The data can thus be considered
representative for different categories of qualification at the regional level.

The generational surveys employ the same set of questions, methodology, and
analytical framework for all individuals surveyed, regardless of their academic back-
ground, level of qualification, and field or path of study. This makes it possible to
compare and evaluate the impact of these different characteristics on the variations
observed during the first post-graduation years, looking at parameters such as success
in finding employment, type of job, salary, etc. Furthermore, the generational surveys
are constructed with reference to the date at which respondents leave education, not
their date of birth. As such, and regardless of their level of qualification, the young
graduates surveyed enter a labour market which may be more or less favourable but
which will at least be identical for all. It is of course possible that the effect of the
general economic outlook on success in navigating the job market may be different
for different types and levels of qualification, but in theory, it is still easier to make
comparisons.

Thanks to their detailed questionnaire and substantial sample size (cf. Tables1
and 6 in the appendix), these surveys contain, in addition to details of respondents’
academic careers and qualifications, information regarding their gender, social back-
ground, nationality, place of residence, geographical mobility, family status, etc. Sur-
veys are conducted, retrospectively, three years after respondents leave the education
system. The questionnaire allows young graduates to describe systematically, month
by month, the different situations they have encountered since leaving education.
It is therefore possible to reconstruct their professional trajectories (employment,
unemployment, inactivity, and return to education) and define different categories of
integrationwhich correspond to these trajectories (rapid employment, stable employ-
ment, stalling, downgrading, etc.).

The data used are taken from five generational surveys (1998, 2001, 2004, 2007,
and 2010).We use abbreviations to indicate the successive generational surveys, with
G1998 for those leaving higher education in 1998, G2001 for those leaving in 2001,
and so on. A representative sample of French graduates are surveyed three years after
completing their studies: for example, the Class of 2010 was surveyed in 2013. This
systemwas established in order to better understand the educational and professional
trajectories of young people. For this chapter, the data from these five generational
surveys encompassing the whole population of university graduates were aggregated
to distinguish between four different levels of qualification: BTS/DUTand equivalent
(two years of higher education), Bachelor’s degrees and equivalent (three years),
Master’s degrees and equivalent (five years), and Doctoral degrees (cf. Tables1 and
6 in the appendix for weighted figures).

For each generation, the data include spatial variables which enable us to recon-
struct individual geographical trajectories. We know where respondents started mid-
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Table 1 Numbers in each generation and level of qualification

Generation
class

Year of
survey

BTS/DUT Bachelor’s
degree

Master’s
degree

Doctorate Total

G1998 2001 9 720
(46.2%)

5 710
(27.1%)

4 112
(19.5%)

1499
(7.1%)

21 041
(32.2%)

G2001 2004 3 262
(45.9%)

1 681
(23.6%)

975
(13.7%)

1 195
(16.8%)

7 113
(10.9%)

G2004 2007 5 999
(44.5%)

1 854
(13.7%)

4 167
(30.9%)

1 473
(10.9%)

13 493
(20.6%)

G2007 2010 4 789
(44.0%)

2 498
(22.9%)

2 627
(24.1%)

981
(9.0%)

10 895
(16.7%)

G2010 2013 3 114
(24.2%)

4 507
(35.1%)

3 539
(27.5%)

1 686
(13.1%)

12 846
(19.6%)

Total 26 885
(42.11%)

16 250
(24.9%)

15 420
(23.6%)

6 834
(10.4%)

65 389
(100%)

SourceCéreq data (generational surveys G1998, G2001, G2004, G2007 andG2010). The numbers
shown in this table are unweighted.

dle school,2 the location of the higher education institution where they obtained their
final qualification, and their location three years after graduating.3 This information
allows us to analyze the interregional mobility of students, between their region of
origin and the region in which they pursue further studies—we call this “educa-
tional mobility”—and between the region of study and the region in which they are
employed three years later—we call this “employment mobility”. From a geograph-
ical perspective, the data derived from the generational surveys are representative on
a regional scale, which is why we have decided to situate our analysis of mobility
among students and young graduates at the regional level.4

Before analyzing the data in depth, it is important to highlight the heterogeneity
within the student population with regard to mobility. Figure1 illustrates the sizable
variation in the mobility rates of students and graduates with different levels of qual-
ification. On average, 18.8% of young people finish their studies in a region other

2The region in which respondents took the Baccalaureate is not available for one of the generations,
which prevents us from making systematic use of this variable. Nonetheless, in the three other
generations for which figures are available, it appears that more than 95% of high school graduates
received their Baccalaureate in the same region in which they started middle school. This rate
is so high that the location variables for middle school and school leaving can be used almost
interchangeably. For the rest of this section, we will thus use the term “region of origin”.
3We focused on individuals in employment three years after graduating. The data therefore excludes
graduates who are not in employment, registered unemployed, or who have taken up further studies.
Table8 in the appendix indicates that around 90% are employed. For those who are not, long high
school graduates are unemployed while short high school graduates are returned to school.
4For this study, we used the old regional divisions. Metropolitan France was until recently divided
into 22 regions and 26 educational academies: the Ile-de-France region is split into three academies
(Créteil, Paris, and Versailles), the Rhône-Alpes, and Provence-Alpes-Côte d’Azur region each
have two academies (Grenoble and Lyon; Marseille and Nice). Following the redrawing of the
administrative map, France now has just 13 regions.
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than their region of origin, and, three years after graduating, 19.7% of graduates are
working in a region other than the region in which they gained their degree. The
corresponding figures are 9.4% and 11.3% respectively for those with qualifications
equivalent to the Baccalaureate or lower (≤Baccalaureate: individuals that did not
take the baccalaureate or that took it and failed it, or passed it and then left educa-
tion, or passed it and embarked upon further studies which they did not complete),
and 26.6% and 26.8% for those with qualifications higher than the Baccalaureate
(>Baccalaureate: individuals that passed the baccalaureate, continued with further
studies, and graduated from an institute of higher education, whatever the grade
or the level of qualification attained). There is therefore a clear disparity between
the mobility behaviours of young people who do not pursue higher education and
those who do, both during their studies and when it comes to finding work. This clear
difference can be largely attributed to the geographical location of educational institu-
tions and qualified jobs, with opportunities in the immediate local vicinity becoming
scarcer, the higher one climbs on the qualification ladder. Zooming in on young peo-
ple who do continue their studies after the Baccalaureate, once again we can observe
a high degree of heterogeneity. 18.2% of those who undertake short courses of study
(BTS/DUT, two years of study after the baccalaureate) complete their studies in a dif-
ferent region, with 22.0% changing region to find a job. These levels are close to the
mean figures for the population as a whole. The rate of educational mobility rises to
27.4% for those with Bachelor’s degrees or similar (baccalaureate plus three years),
49.0% for those withMaster’s degrees (baccalaureate plus five years), and 47.5% for
doctoral graduates (baccalaureate plus eight years). The rate of employment mobility
is 27.6% for those with Bachelor’s degrees or similar, 45.3% for those with Master’s
degrees, and 33.2% for doctoral graduates. Master’s graduates are therefore the most
mobile. It is interesting to note that for both Master’s and doctoral graduates, the rate
of educational mobility is higher than the rate of employment mobility: those with
superior qualifications are thus more likely to move to another region to complete
their studies than they are to find a job in a new region once their studies are over.

3 The Micro-Economic Approach: Identifying the Factors
that Determine Mobility Behaviour

In this chapter, wewant to examine the determinants of migration patterns: migration
to study and migration to work. More precisely we analyze the personal character-
istics that impact educational and employment mobility decisions, but also return
mobility.
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Fig. 1 Rate of mobility by level of qualification. Source: Céreq (generational studies G1998,
G2001, G2004, G2007, and G2010).

3.1 Constructing Mobility Variables

We propose to examine three types of mobility: (1) educational mobility, corre-
sponding to a change of region between the student’s region of origin (i.e. where
they started middle school) and the region where they obtained their final qualifi-
cation, (2) employment mobility, corresponding to a change of region between the
region where students obtained their final qualification and the region in which they
were employed three years later, and (3) return mobility, which corresponds to those
who return to their region of origin to find work after completing their higher edu-
cation elsewhere. These mobility rates are detailed in Tables2 and 3. Specifically,
Table2 shows the proportion of students who move regions for each level of quali-
fication, generation, and type of studies. One in three students will change regions
either for their studies or to find work. Among the third of students who do experi-
ence educational mobility, almost one in three will then return to their home region
to enter the labour market. Educational mobility is more common among those who
undertake longer courses of study (almost half of all Master’s and doctoral students,
and just one in five for those who undertake two-year programmes). These students,
and particularly those with Master’s degrees, are much more mobile (almost half)
when they enter the labour market. Educational mobility has grown significantly,
reaching 40% for the 2010 generation. The 2004 generation saw a sharp increase in
employment mobility, which rose from 25.1% (2001 generation) to 34.4% before
stabilizing at around 40% from the 2007 generation onwards. While barely one in
five students from the 1998 and 2001 generations returned home after their studies,
the rate of return doubled for the ensuing generations. Return mobility is most com-
mon among those students who enroll in short courses (over 40% for graduates of
two-year programmes and over 35% for holders of Bachelor’s degrees).
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Table 2 Observed mobility rates

Mobility

Population % Education
(Ed)

Employment
(Em)

Return (R)

Overall 65389 100 30.3 32.1 31.8

Qualification BTSDUT 26885 41.1 20.1 24.4 42.1

Bachelor’s 16250 24.9 25.6 29.1 35.2

Master’s 15420 23.6 46.6 46.8 29.8

Doctorate 6834 10.4 44.4 36.1 13.6

Generation 1998 21041 32.2 19.7 24.5 18.9

2001 7114 10.9 25.7 25.1 20.0

2004 13493 20.6 33.9 34.4 38.1

2007 10895 16.7 37.7 40.9 39.5

2010 12846 19.6 39.9 38.3 34.8

Discipline Law,
Economics
& Manage-
ment
(LEM)

15928 24.4 25.6 29.7 31.1

Languages
& Literature
(L&L)

3672 5.6 29.9 27.3 24.2

Humanities
& Social
Sciences
(HSS)

8933 13.7 28.0 27.0 31.2

Basic &
Applied
Sciences
(BAS)

27025 41.3 34.6 36.9 30.5

Health 9831 15.0 27.8 28.9 41.0

Key: 41.1% of those leaving education graduated with a two-year diploma. Among this sub-
population, 20.1% moved for their studies and 24.4% moved to find employment. Many of these
individuals moved for both their studies and to find employment, with graduates returning to their
native regions accounting for 42.1% of the total mobility. The numbers shown in this table are
unweighted.

Table3 presents the frequencies of the various possible combinations of such
movements. Of the subjects in the sample, 56.6% did not move at all. This rate
decreases as the level of qualification increases (68.1% for students on two-year
courses but just 40% for Master’s and doctoral students) and with successive gen-
erations (65% for the 1998 generation and 49% for the generations since 2007)
but remains relatively stable within the different disciplines (around 60% for short
courses, and just over 51% for science students). The proportion of young people
concerned by employment mobility alone is stable across all of the sub-samples
(between 11% and 15%) while 11.5% of students move only for their studies. This
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Table 3 Descriptive statistics for different types of mobility

Return (R) NO NO NO NO YES

Mobility Education
(Ed)

NO NO NO YES YES

Employment
(Em)

NO YES NO YES YES

Overall 56.5 13.3 11.5 9.1 9.6

Degree BAC+2 68.1 11.8 7.5 4.1 8.5

Bachelor’s 60.5 14.0 10.4 6.2 9.0

Master’s 39.0 14.4 14.3 18.4 13.9

Doctorate 40.4 15.2 23.5 14.9 6.1

Generation 1998 64.6 15.7 10.9 5.1 3.7

2001 60.5 13.9 14.4 6.1 5.1

2004 55.0 11.1 10.6 10.4 12.9

2007 49.1 13.2 10.0 12.9 14.9

2010 48.7 11.5 13.0 13.0 13.9

Discipline LEM 60.9 13.4 9.4 8.3 8.0

L&L 56.7 13.4 15.9 6.7 7.2

HSS 60.0 11.9 13.0 6.3 8.8

BAS 51.2 14.2 11.9 12.2 10.6

Health 60.4 11.8 10.8 5.6 11.4

General remarks: YES or NO answers for the three kinds of mobility (Ed,Em,R). For the first
line: 56.5% of students did not move at all (NO,NO,NO); 13.3% moved only to find employment
(NO,YES,NO); 11.5% moved only for educational purposes (YES,NO,NO); 9.1% moved for their
studies and moved to find employment mobility but did not move back home (YES,YES,NO); and,
finally, 9.6% moved for all three reasons (YES,YES,YES). The sum of each line is 100%.

rate is higher among those undertaking longer courses (Master’s degrees, and even
more so for doctorates) and for students of languages and literature or the arts.
Almost 20% of students move twice. For half of them, the second move corresponds
to a return to their home region (where they started middle school). The principal
independent variables taken into consideration to account for these different types of
mobility are educational variables (degree, discipline, and age), socio-economic vari-
ables (professional status and origin of parents, gender, family status, and whether or
not they worked during their studies), and geographical variables (area of residence,
region, and previous moves). Themain descriptive statistics associated with all of the
variables used in our empirical econometric analysis of the data are given in Table7
in the appendix.
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3.2 Factors Determining Mobility

3.2.1 Educational Factors

On the one hand, educational options are not the same in all regions (particularly
for two-year courses and Master’s degrees) and, on the other hand, the nature and
number of jobs available vary from region to region. It is therefore important to take
into account not only the highest qualification attained upon leaving education, but
also the characteristics of those qualifications using indicators which reflect the level
and discipline of studies.

3.2.2 Socio-Economic Factors

We begin by examining the impact of gender, bearing in mind that the results pre-
sented in the existing literature are not always convergent on this point. For example,
Faggian et al. (2007b) shows that in the United Kingdom women are more likely
than men to move for educational or employment reasons, whereas Kazakis and
Faggian (2017) for the USA and Ciriaci (2014) for Italy find the opposite. Haussen
and Uebelmesser (2018), meanwhile, do not consider gender to have any effect on
employment mobility.

We then construct a variable for students required to resit school years (which
serves as a proxy for age). For educational mobility, resitting is measured by an
indicator identifying those students who were at least one year behind by the time
they entered higher education. For employment mobility, we distinguish between
individuals whose academic progress was slightly delayed (one or two years) and
those who fall behind by three years or more. Age differences on this scale may
correspond to changes of course or a decision to return to education. Late graduation
(i.e. individuals completing their studies at a greater age) may be associated with
a stronger sense of attachment to their home region, and thus with lower mobility
rates. Once again, the existing literature diverges on this topic. While age appears
to have a negative effect on educational mobility, it has no effect on employment
mobility in Italy (Ciriaci 2014) or Germany (Haussen and Uebelmesser 2018); it has
a positive influence on all types of mobility (educational, employment, and return)
in the USA (Kazakis and Faggian 2017); and no significant effect in South Korea
(Ma et al. 2017).

In terms of personal characteristics, we also include the social background and
geographical location of students’ parents. We might expect students from more
modest backgrounds to have a lower rate of educational mobility than others. It is
easier i) for students from privileged backgrounds to imagine themselves undertak-
ing lengthy courses of study away from home and ii) for their families to bear the
costs of studying in another region. Furthermore, since higher education is largely
concentrated in big towns and cities, the probability of educational mobility should
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be higher among students whose parents live in rural areas. An indicator for this
information was taken into consideration.

Finally, conjugal status is an important factor in geographical mobility and we
can safely assume that being in a relationship and having children will reinforce
a respondent’s sense of territorial and relational attachment, thus decreasing the
likelihood that they will move.

3.2.3 Geographical Factors

Regional indicators were introduced to serve as control variables. In order to explain
why individuals move to study or choose to return to their home regions, we took into
account their region of origin (the place their parents were resident when they started
middle school), and in order to account for employment mobility, we considered the
region in which they completed their studies. The existing economic literature shows
that probability of moving is higher among those who have previously moved for
educational reasons (Faggian et al. 2007a; Ciriaci 2014; Ma et al. 2017; Haussen
and Uebelmesser 2018) or moved internationally (Haussen and Uebelmesser 2018),
hinting at the importance of prior experience with mobility. We thus include two
indicators representing these two types of mobility and assume that they have a
positive effect on employment mobility.

3.3 Empirical Strategy

Our primary objective is to analyze the determinant factors in educational and
employment mobility decisions, as well as return mobility in those cases where
individuals move both for their studies and to find work. With this goal in mind,
we developed two models, both based on the simultaneous calculation of two Pro-
bit equations. The first equation in both models is designed to reflect educational
mobility. In Model 1, the second equation covers employment mobility, while that in
Model 2 covers return mobility for those individuals already affected by educational
mobility.

The equation for educational mobility hinges on the dichotomous variable Ed,
which assumes the value 1 if the student has experienced educational mobility and 0
if not.5 Specifically, educational mobility (Ed=1) is determined by the latent variable
Ed∗ = XEdβEd + uEd which is positive. This variable depends on the observed and
exogeneous individual characteristics XEd , the vector of the parameters associated
with these characteristics βEd , and the random measurement error uEd , which is
assumed to follow a standard normal distribution.

Employment mobility, meanwhile, is represented by the dichotomous variable
Em, which is 1 if the student has experienced employment mobility and 0 if not. For

5The index assigned to each student is omitted here to make the notations easier to read.
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Model 1 in particular, students can be said to have experienced employment mobility
if the associated latent variable Em∗ = Edγ + XEmβEm + uEm is positive, while
if it is negative, the student did not move at the end of their studies. This latent
variable depends on having previously experienced educational mobility (Ed), a
variable that is potentially endogenous (γ is the parameter associated with this form
of mobility), along with a set of exogenous individual characteristics XEm (βEm is
the vector for the parameters to be calculated) and a random error term uEm that is
assumed to follow a standard normal distribution. Both measurement error terms are
supposed to be correlated (σEdEm). The vector (uEd , uEm) thus follows a bivariate

normal distribution N

((
0
0

)
, �EdEm

)
where �EdEm =

(
1 σEdEm

σEdEm 1

)
. The set

of variables XEm includes the majority of the variables in XEd . There are thus four
contributions to likelihood:

P(Ed = 1, Em = 1) = �2(XEdβEd , γ + XEmβEm, σEdEm)

P(Ed = 1, Em = 0) = �2(XEdβEd ,−γ − XEmβEm,−σEdEm)

P(Ed = 0, Em = 1) = �2(−XEdβEd , XEmβEm,−σEdEm)

P(Ed = 0, Em = 0) = �2(−XEdβEd ,−XEmβEm, σEdEm)

where�2(., ., ρ) is the distribution function of the bivariate normal distribution with
mean 0, variance 1, and covariance ρ.

For Model 2, return mobility concerns students who have previously experienced
educational mobility (Ed = 1). If a student did not attend an institution of higher
education in the same region that she started middle school, she is considered an
example of return mobility (i.e. R = 1) if the corresponding latent variable R∗ is
positive so that R∗ = X ′

RβR + uR . This underlying variable is dependent upon a set
of explanatory variables XR , the vector of the associated parameters βR , and an error
term uR which is assumed to follow standard normal distribution. We also assume
that the error terms associated with educational and return mobilities are correlated,
noting their covariance σEdR . The vector (uEd , uR) thus follows a bivariate nor-

mal distribution N

((
0
0

)
, �EdR

)
where �EdR =

(
1 σEdR

σEdR 1

)
. XR includes all

explanatory variables of XEd , to which we add information concerning the conjugal
situation of students. This model has three contributions to likelihood:

P(Ed = 0) = �(−XEdβEd)

P(Ed = 1, R = 0) = �2(XEdβEd ,−XRβR,−σEdR)

P(Ed = 1, R = 1) = �2(XEdβEd , XRβR, σEdR)

4 Results

The estimating coefficients associated with the probability of experiencing educa-
tional, employment, and return mobility are given in Table4. These estimates are
calculated for all graduates in employment three years after the end of their studies.
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Our analysis of these results assumes all other factors to be equal. Before going into
further detail regarding the coefficients associatedwith the explanatory variables, it is
worth looking at the correlations between the error terms of the two equations. These
coefficients are negative and statistically significant. As regards the coefficient con-
necting the equations for educational and employment mobility, it appears that those
students who are highly likely to experience educational mobility are also unlikely
to experience employment mobility: non-observable characteristics thus appear to
have contrasting effects on educational and employment mobilities. We might, for
example, invoke factors such as home town size or the properties of educational
institutions. Ciriaci (2014) demonstrates that the quality of educational institutions
(measured using ranking tables) and their size have opposing effects: they increase
the probability of educational mobility and decrease the probability of employment
mobility. Institution size may be considered a proxy for the local labour market,
since the major universities are generally found in the largest cities, where the jobs
on offer for young graduates are most numerous.

Nevertheless, whenwe introduce educational mobility in order to explain employ-
mentmobility, the coefficient associatedwith this variable is positive, significant, and
relatively high. This result, which at first sight may appear to contradict those set
out in the preceding paragraph, in fact, explains a certain dynamic of mobility, since
students who have already moved once in order to pursue higher education are more
likely to move again to find employment.

4.1 Educational Mobility

Theprobability of educationalmobility is comparable formen andwomen.This prob-
ability increases significantly in successive generations. The duration and discipline
of studies also have a significant impact on the probability of educational mobility.
Students choosing short courses of study (two or three years post-Baccalaureate)
show a below-average proclivity for educational mobility. With regard to different
disciplines of study, those students with the lowest and highest probabilities of edu-
cational mobility are students of Law—Economics—Management and fundamental
sciences, respectively.

Children of workers and salaried employees (professionals but not executives)
have a below-average probability of educational mobility. This result is consistent
with the existing literature, suggesting that students from lower-income households
have lower mobility rates than others, essentially for financial reasons. Children of
immigrants (at least one parent born overseas) have a higher rate of educational
mobility.

Students whose parents live in rural areas are also more concerned about educa-
tional mobility. Region of origin also plays a role: growing up in one of France’s
larger regions, and particularly the Paris region, reduces the probability of students



586 B. Bernela et al.

Table 4 Estimating the probability of different mobilities

Mobility

Education Employment Return

coef s.d coef s.d coef s.d

Intercept −1.481∗∗∗ 0.03 −1.262∗∗∗ 0.11 1.168∗∗∗ 0.12

Gender Male −0.003 0.01 0.036∗∗∗ 0.01 0.005 0.01

Degree BTS/DUT ref. ref. ref.

Bachelor 0.200∗∗∗ 0.02 0.152∗∗∗ 0.02 −0.212∗∗∗ 0.02

Master 0.779∗∗∗ 0.02 0.368∗∗∗ 0.02 −0.744∗∗∗ 0.02

Doctorate 0.653∗∗∗ 0.02 0.144∗∗∗ 0.03 −0.924∗∗∗ 0.04

Discipline LEM ref. ref. ref.

L&L 0.143∗∗∗ 0.03 −0.052∗ 0.03 −0.186∗∗∗ 0.03

HSS 0.132∗∗∗ 0.02 −0.051∗∗ 0.02 −0.099∗∗∗ 0.02

BAS 0.161∗∗∗ 0.02 0.086∗∗∗ 0.02 −0.139∗∗∗ 0.02

Health 0.293∗∗∗ 0.02 0.093∗∗∗ 0.02 −0.129∗∗∗ 0.03

Generation 1998 ref. ref. ref.

2001 0.182∗∗∗ 0.02 −0.068∗∗∗ 0.02 −0.082∗∗∗ 0.03

2004 0.394∗∗∗ 0.02 0.051∗∗ 0.02 0.022 0.06

2007 0.465∗∗∗ 0.02 0.106∗∗∗ 0.02 −0.036 0.06

2010 0.530∗∗∗ 0.02 0.065∗∗ 0.02 −0.104∗ 0.06

Mother Born
elsewhere

0.099∗∗∗ 0.03 0.005 0.03 −0.082∗∗ 0.03

Prof./exec ref. ref. ref.

Prof./non
exec

−0.127∗∗∗ 0.01 −0.039∗∗∗ 0.01 0.133∗∗∗ 0.02

Other −0.030 0.02 −0.079∗∗∗ 0.02 0.018 0.03

Father Born
elsewhere

0.103∗∗∗ 0.03 0.029 0.03 −0.111∗∗∗ 0.03

Prof./exec ref. ref. ref.

Prof./non
exec

−0.184∗∗∗ 0.03 −0.041∗∗∗ 0.01 0.223∗∗∗ 0.01

Other −0.094∗∗∗ 0.02 −0.094∗∗∗ 0.02 0.122∗∗∗ 0.03

Parents’
residence

Rural area 0.063∗∗∗ 0.01 −0.011 0.02

Years
behind
(middle
school)

Yes −0.025 0.03

Years
behind
(higher
education)

1 or
2years

0.011 0.01 −0.036∗∗∗ 0.01

3years or
more

−0.125∗∗∗ 0.02 −0.095∗∗∗ 0.02

(continued)



Mobility for Study and Professional Integration: An Empirical Overview … 587

Table 4 (continued)

Mobility

Education Employment Return

coef s.d coef s.d coef s.d

In a relationship Yes 0.003 0.01 −0.058∗∗∗ 0.01

Children Yes −0.285∗∗∗ 0.02 0.021 0.02

Employment
during studies

No ref. ref.

Occasionally 0.007 0.01 −0.017 0.01

Regularly −0.117∗∗∗ 0.02 −0.073∗∗∗ 0.02

Regions yes yes yes

housing
rental costs

0.002 0.00 −0.007 0.01

International
mobility
during studies

Yes 0.125∗∗∗ 0.02 −0.032∗∗ 0.02

Education
mobility

Yes 1.324∗∗∗ 0.07

Correlation
coefficient
between

Employment −0.123∗∗∗ 0.04

education
mobility and

Return −0.941∗∗∗ 0.03

Key: For each type of mobility, the first column shows the estimated coefficient, the second column
indicates significance, and the third gives the standard deviation of the coefficient. The coefficient is
significant if over: * 10%, ** 5%, and *** 1%. The coefficients associated with the various regions
can be provided by the authors if required.

moving to another region for their higher education.6 The effects of these two vari-
ables illustrate the importance of considering the density of education options on
offer locally as a factor determining student mobility.

4.2 Employment Mobility

Unlike educational mobility, employment mobility is indeed influenced by gender.
The probability is significantly higher for men than it is for women.

Generally speaking, graduates with a bachelor’s degree or higher are more likely
to move to find employment than those who graduate from shorter courses (two-
year programmes). Master’s graduates are the most mobile category. Graduates in
the fields of healthcare and fundamental sciences are the most likely to move for

6The coefficients associated with the various regions can be provided by the authors if required.
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employment reasons, whereas humanities graduates have the lowest probability of
employment mobility.

As with educational mobility, children of workers and salaried employees are less
likely to experience employment mobility. This probability is even smaller among
children of families where the mother does not work or the father is not present.

Falling more than two years behind (i.e. being older than average when leaving
education), having worked regularly during the period of study, and having children
all reduce the probability of employment mobility. As discussed above, mobility
breeds mobility: having travelled abroad during one’s studies increases the probabil-
ity of moving regions after graduation. Finally, with regard to geographical variables,
completing one’s higher education in the Paris region strongly reduces the proba-
bility of seeking work elsewhere: this is the only region with a significant negative
effect, which may be attributed to the nature of the labour market in Paris where the
concentration of executive-level jobs is much greater than that found elsewhere in
the country.

4.3 Return Mobility

The probability of return mobility is not dependent upon either gender or generation.
Students who choose short courses of higher education (two years) aremore likely

than others to return to their home region, which seems to suggest that these students
are more attached to their native regions and/or are more likely to find employment
there.

The social background of students also has an impact on return mobility, since
children of executives are less likely to return home. The country of origin of parents
does not have a significant effect on the probability of this kind of mobility.

On average, falling behind in terms of academic years reduces the probability of
return, and this probability decreases as the age gap rises.

While having a partner reduces the probability of return, having a child does
not have a significant impact on this probability. Finally, regular employment and
spending a spell abroad both have a slightly negative impact on the probability of
returning home.

It also appears that those regions with the lowest probability of educational mobil-
ity are also the regions where the probability of return mobility is highest: to put it
simply, students hailing from regions where few people move for their studies are
more likely to return to those regions if they do indeed leave for a spell.

Building upon these results, the impact of spatial mobility is measured at the
individual level. Following Faggian et al. (2007a, 2007b), it is possible to classify
graduates on the basis of their discrete migratory choices: the initial migration of
students moving to enter higher education and the subsequent migration of graduates
entering the labour market, while also considering whether or not these movements
involve a return to their region of origin. We can thus observe five categories:
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Table 5 Relationship between migration and job quality

Employment
conditions

Executive
contract

Yes Yes No No All
contracts

Permanent
contract

Yes No Yes No

Mobility
behaviour

Non-
Migrant

(1) 34.7 6.1 47.2 11.9 100.0

(2) 1 904.1 1703.9 1 622.3 1 479.0 1 748.9

University
stayer

(1) 42.6 7.3 40.4 9.8 100

(2) 2012.0∗∗∗ 1829.6∗∗∗ 1 645.7 1531.4∗∗∗ 1843.2∗∗∗

Late
migrant

(1) 41.9 7.1 40.2 10.8 100

(2) 1954.2∗ 1818.6∗∗∗ 1 636.9 1520.1∗∗ 1803.9∗∗∗

Repeat
migrant

(1) 42.5 7.3 38.6 11.7 100

(2) 2091.8∗∗∗ 1844.1∗∗∗ 1699.1∗∗ 1567.8∗∗∗ 1902.8∗∗∗

Return
migrant

(1) 32.7 6.4 45.7 15.3 100

(2) 2042.6∗∗∗ 1827.9∗∗∗ 1656.3∗ 1537.2∗∗ 1822.4∗∗∗

All (1) 37.4 6.6 44.3 11.7 100

(2) 1 958.4 1 764.8 1 633.9 1 504.8 1 794.1

(1) % of the column total; (2) mean wage. Significantly different from non-migrants? mean wage at
* 10%; ** 5%; *** 1%.

• repeat migrants: moving for education and employment,
• returning migrants: moving for education and employment, returning to the region
of origin to enter the job market,

• university stayers: moving for education only,
• late migrants: moving for employment only,
• non-migrants: no mobility.

One way of measuring the impact of mobility is to cross-compare employment
conditions with these migration profiles (Table5). We use three variables: type of
contract (permanent versus fixed-term), job status (executive versus non-executive),
and wages (including bonuses). Non-migrants and returning migrants are less likely
than the other categories to be on executive contracts, but there is no real difference
when it comes to permanent contracts. It appears that all of the other categories are
significantly better off than non-migrants in terms of salary.



590 B. Bernela et al.

Table 6 Numbers in each generation and level of qualification

Generation
class

Year of
survey

BTS/DUT Licence Master Doctorate Total

G1998 2001 124 921
(50.7%)

63 959
(25.9%)

49 352
(20.0%)

8 370
(3.4%)

246 602
(20.0%)

G2001 2004 119 624
(48.1%)

63 797
(25.7%)

52 645
(21.2%)

12 499
(5.0%)

248 565
(20.1%)

G2004 2007 117 393
(44.1%)

43 564
(16.4%)

92 909
(34.9%)

12 208
(4.6%)

266 074
(21.5%)

G2007 2010 94 930
(38.5%)

70 139
(28.5%)

67 422
(27.4%)

13 841
(5.6%)

246 312
(19.9%)

G2010 2013 67 918
(29.7%)

62 547
(27.4%)

83 196
(36.4%)

14 756
(6.5%)

228 417
(18.5%)

Total 524 787
(42.4%)

304 006
(24.6%)

345 524
(28.0%)

61 654
(5.0%)

1 235 970
(100%)

Source: Céreq data (generational surveys G1998, G2001, G2004, G2007, and G2010). The num-
bers shown in this table are weighted. The weighting variables ensure that the data are represen-
tative at the regional and qualification levels. Percentages for each level and generation are given
in parentheses.

5 Conclusion

The geographical mobility of students and graduates is a significant issue for regional
governments, influencing the policies they adopt with a view to attracting and retain-
ing talent. Our research casts new light upon the empirical reality of this phenomenon
with the help of data taken from the Céreq generational surveys.

Based on data from five generational surveys (1998, 2001, 2004, 2007, and 2010),
we propose an empirical analysis of the movements of students in higher education
and recent graduates. Our study shows that mobility between the region of origin,
region of study, and region of employment is relatively low: fewer than one in three
high school graduates moves to a different region to pursue their studies, and fewer
than one in three university graduatesmoves to a different region to find employment.
Nevertheless, mobility has followed a strong upward trajectory during the period we
observed: (1) educationalmobility doubled between the 1998generation and the 2010
generation, increasing from 20 to 40%, (2) employment mobility increased from 25
to almost 40% between these two generations, and (3) return mobility rose from 19
to 35%. The increase in educational and employment mobilities, primarily among
children of executives and graduates of Master’s programmes, in fact, conceals a
higher proportion of students returning to their home regions. This serves to illustrate
the strong sense of geographical attachment felt by many people, even those who are
highly qualified.

The low rate of mobility observed among students and graduates nonetheless con-
ceals considerable heterogeneity in individual experiences, determined by different
socio-demographic backgrounds, regions, choice of studies, etc. The fact that the
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Table 7 Descriptive statistics
Mobility

Overall Education Employment Return

no yes no yes no yes

Overall 65389 45607 19782 44422 20967 13483 6299

% 100 69.7 30.3 67.9 32.1 68.2 31.8

Generation 1998 32.2 37.0 21.0 35.8 24.6 25.0 12.5

2001 10.9 11.6 9.2 12.0 8.5 10.8 5.8

2004 20.6 19.6 23.1 19.9 22.1 21.0 27.6

2007 16.7 14.9 20.8 14.5 21.3 18.4 25.7

2010 19.6 16.9 25.9 17.8 23.5 24.7 28.3

Degree BTS/DUT 41.1 47.1 27.3 45.8 31.2 23.2 36.1

Bachelor 24.9 26.5 21.0 25.9 22.6 20.0 23.3

Master 23.6 18.1 36.3 18.5 34.4 37.4 34.0

Doctorate 10.4 8.3 15.4 9.8 11.8 19.5 6.6

Discipline LEM 24.4 26.0 20.6 25.2 22.6 20.9 20.2

L&L 5.6 5.6 5.5 14.7 11.5 12.8 12.4

HSS 13.7 14.1 12.7 38.4 47.6 48.2 45.4

BAS 41.3 38.7 47.3 6.0 4.8 6.2 4.2

Health 15.0 15.6 13.8 15.7 13.5 12.0 17.8

Gender Male 43.2 42.2 45.5 41.7 46.4 46.8 42.6

Female 56.8 57.8 54.5 58.3 53.6 53.2 57.4

Mother Born in France 92.2 91.3 94.2 91.3 93.9 94.5 93.5

Born elsewhere 7.8 8.7 5.8 8.7 6.1 5.5 6.5

Prof./exec 22.3 20.4 26.5 21.4 24.0 28.7 21.9

Prof./non exec 53.1 56.3 45.7 55.4 48.2 45.2 46.9

Other 24.6 23.3 27.7 23.1 27.8 26.1 31.3

Father Born in France 91.2 90.2 93.4 90.2 93.2 93.7 92.6

Born elsewhere 8.8 9.8 6.6 9.8 6.8 6.3 7.4

Prof./exec 42.4 39.0 50.3 40.2 47.0 53.1 44.1

Prof./non exec 51.3 54.7 43.4 53.2 47.3 40.5 49.8

Other 6.3 6.3 6.3 6.6 5.7 6.4 6.2

Parents’ residence Rural area 19.9 18.7 22.7 18.8 22.3 21.5 25.2

(middle school) Urban area 80.1 81.3 77.3 81.2 77.7 78.5 74.8

Years behind Yes 4.2 4.7 3.1 4.7 3.2 2.9 3.4

(middle school) No 95.8 95.3 96.9 95.3 96.8 97.1 96.6

Years behind No 55.3 55.9 54.0 53.9 58.3 52.7 56.7

(higher education) Yes, 1 or 2years 30.7 30.5 31.1 30.8 30.4 31.4 30.4

Yes, 3years or more 14.0 13.6 14.9 15.3 11.2 15.8 12.8

In a relationship Yes 52.5 51.2 55.6 52.6 52.4 57.5 51.5

No 47.5 48.8 44.4 47.4 47.6 42.5 48.5

Children Yes 11.6 11.3 12.2 13.1 8.3 13.7 9.0

No 88.4 88.7 87.8 86.9 91.7 86.3 91.0

(continued)
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Table 7 (continued)
Mobility

Overall Education Employment Return

no yes no yes no yes

Employment during
studies

No 38.0 38.6 36.5 36.9 40.3 35.5 38.8

Occasionally 47.9 46.7 50.8 47.5 48.8 50.4 51.5

Regularly 14.1 14.7 12.7 15.6 10.8 14.1 9.7

International mobil-
ity during studies

Yes 11.4 8.8 17.5 9.3 15.8 18.0 16.4

No 88.6 91.2 82.5 90.7 84.2 82.0 83.6

Key: 41.1% of those leaving higher education have completed two-year programmes. Among those
students who have (and have not) experienced educational mobility, 47.1% (27.3%) have two-year
qualifications. The percentages are 31.2 (45.8%) for employment mobility (or the absence thereof).
For those who have experienced educational mobility, the percentages of those returning and not
returning are 36.1% and 23.2%, respectively, for those with two-year qualifications.

Table 8 Status three years after leaving school by diploma

G1998 G2001 G2004 G2007 G2010

Short higher education cycle (BTS/IUT—Bachelor)

Employment 90.0 90.7 89.1 86.8 83.2

Unemployment 5.0 5.3 5.2 6.9 8.9

Out-of-labour force 2.0 1.2 1.5 1.8 1.9

Return to school 3.0 2.8 4.1 4.5 6.0

Long higher education cycle (Master—Doctorate)

Employment 92.2 88.3 88.8 88.7 87.1

Unemployment 4.7 9.8 7.0 8.3 9.4

Out-of-labour force 1.8 0.7 1.6 1.5 1.4

Return to school 1.3 1.2 2.6 1.5 2.1

Source:Céreq data (generational surveysG1998,G2001,G2004,G2007, andG2010). The numbers
shown in this table are unweighted.

mobility rate is relatively low, combined with the importance of proximity effects
and return mobility, strongly limits the room for manoeuvre available to local author-
ities when it comes to attracting students and recent graduates. In our opinion, there
are two major contradictions between the positions adopted and the actions taken by
territorial decision-makers with regard to geographical mobility. First and foremost,
there appears to be a clear consensus emerging in favour of greater geographical
mobility; the European Union has provided the framework for this ambition, with
a view to creating a pan-European community for research, higher education, and
the circulation of knowledge, an ambition which has been widely adopted at the
territorial level. But at the same time, local decision-makers are concerned about
“brain drain” or the loss of graduates, reducing the return on investment of funds
allocated to education. The maxim which holds that “mobility is to be encouraged”
thus runs up against the injunction that “we don’t want to see the best talent leaving
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our region”, as if the (desirable) goal of mobility could somehow leave the region of
origin unaffected. The second contradiction arises from the disconnect between the
idea that mobility is too low (aggravating unemployment by preventing the smooth
alignment of demand for and supply of labour) and the development policies imple-
mented in the 1990s and 2000s to expand access to higher education in the regions.
The creation of new universities, university outposts in medium-sized towns, and a
large number of technical training institutes and BTS vocational programmes has
paved the way for a genuine democratization of higher education, expanding access
for students from modest backgrounds who are geographically isolated from the
major seats of learning.

6 Appendix

See Tables 6, 7, 8
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Toward a FAIR Reproducible Research

Christophe Bontemps and Valérie Orozco

Abstract Two major movements are actively at work to change the way research is
done, shared, and reproduced. The first is the reproducible research (RR) approach,
which has never been easier to implement given the current availability of tools and
DIY manuals. The second is the FAIR (Findable, Accessible, Interoperable, and
Reusable) approach, which aims to support the availability and sharing of research
materials. We show here that despite the efforts made by researchers to improve the
reproducibility of their research, the initial goals of RR remain mostly unmet. There
is great demand, both within the scientific community and from the general public,
for greater transparency and for trusted published results. As a scientific community,
we need to reorganize the diffusion of all materials used in a study and to rethink
the publication process. Researchers and journal reviewers should be able to easily
use research materials for reproducibility, replicability, or reusability purposes or
for exploration of new research paths. Here we present how the research process,
from data collection to paper publication, could be reorganized and introduce some
already available tools and initiatives. We show that even in cases in which data
are confidential, journals and institutions can organize and promote “FAIR-like RR”
solutions where not only the published paper but also all related materials can be
used by any researcher.

1 The Need for Reproducible Research

During the last decade, a great number of papers have been published on the problem
of irreproducibility of research (Nature 2013) and on the crisis in science due to errors
(Reinhart and Rogoff 2010) or fraud (Ioannidis 2005), leading to a lack of trust in
published results. One response to this credibility crisis has been a renewal of interest
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in the “reproducible research” (RR) approach, as defined initially by geologist John
Claerbout as the possibility of the “replication [of a paper] by other scientists”
(Claerbout 1990).

However, despite an apparent consensus on the general problem, the publication
of papers exhorting the scientific community to publish reproducible results, and the
dissemination of tools, good practices, and courses, we still observe considerable
weaknesses in both researcher and journal practices, leading to the scarce dissemi-
nation of raw scientific materials.1 Many journals do not have a replication or data
and code availability policy, and others have implemented a simple supplementary
materials section on their website. Thus, a clear organization and precise guidelines
on how to achieve the initial goals of reproducibility in science are still lacking.

Science needs verification and thus several conditions have to be fulfilled: First, the
research has to be done in such a manner that it can easily be reproduced. Second,
the materials used to produce the results have to be available to others. Finally,
somebody, i.e., a referee for a journal or another researcher, has to reproduce and
validate the published results using the materials available. These conditions may
seem very strong, but we argue that they are necessary to prove the validity of any
research. Ourmessage here is that even in empirical workwherewe use data and code
to produce a result, we have to prove our findings. We follow the idea of LeVeque
(2009) that “constructing a computer program isn’t so different from constructing a
formal proof ” and claim that reproducing a result issued from a computer program
should not be different from reproducing a formal proof.

This paper is devoted to two practical problems that have received little attention
in economics and statistics so far: How, in practice, can we ensure that the results
published in a paper have been reproduced and verified? How are all the materials
used to produce the results of that paper shared with the community? These are very
complex questions that can be even more complex when materials are confidential.
Our goal here is thus to question the overall organization of research leading to the
publication of a paper.

The paper is organized as follows. In the next section, we identify and illustrate the
current problems that limit the reproducibility of research and survey some important
initiatives that havebeenproposed. InSect. 3,we introduce some recent initiatives and
propose new schemes involving researchers, journals, and the research community.
We illustrate the problem of sharing research materials when they are confidential
in Sect. 4. Section 5 lists the incentives and impediments related to the proposed
approach and concludes the paper.

1We consider here that the research process starts once the data are collected and in possession of the
researcher. We do not address here the issue of reproducibility for data collection in experimental
economics or field experiments (Bowers et al. 2017).
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2 Reproducible Research in Practice

The notion of reproducibility has been discussed lengthily in the literature, some-
times with conflicting terminologies (Benureau and Rougier 2018).We follow Barba
(2018) who summarizes it by the equation “same data + same method = same
results”.2

For Gentleman and Temple Lang (2007), this idea means that the “data+code”
compendium used in a paper is made available to the readers so that they can first
verify (reproduce) the results and second conduct alternative analyses of the work.
The notion of reproducibility is thus related to the similar notion of verification or
scientific proof.

In complement to RR, the Open Science movement emerged 10 years ago and
aims at sharing data used in research as a patrimonial and cumulative goal. This
movement has seen the involvement of many stakeholders, communities, and insti-
tutions (e.g., the Open Government Partnership, the Center for Open Science, and
the Research Data Alliance).3 These initiatives have focused primarily on the big
questions behind open science implementation such as the FAIR principles (find-
able, accessible, interoperable, and reusable) proposed by Wilkinson et al. (2016).
FAIR does not mean open but, in brief, requires some accessibility to findable ele-
ments (most often datasets or at least metadata). The principles call for materials to
be shared in a format that others can use and reuse.

These two movements are very active and influence the way institutions, research
centers, and national statistical offices (NSOs) construct their infrastructures and
data centers. To illustrate how these movements may affect the research publication
landscape, we propose to reduce all the materials needed to produce a paper to only
three key elements: the data, the code, and the workflow, even if elements such as
the documentation and the computing environment are also of great importance for
some papers.We use the pictograms presented in Fig. 1 throughout the paper. In view

Fig. 1 Pictograms of inputs
and outputs and of main
actors (simplified)

2We will not discuss here the question of the precise meaning of “same results”.
3At the European level, one should mention OpenAIRE and in France the “Plan national pour la
science ouverte” (https://www.ouvrirlascience.fr/).

https://www.ouvrirlascience.fr/
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of the RR approach as defined by Claerbout (1990), all these elements, not only the
research paper, should be shared with the scientific community.

We also illustrate the process leading to the publication of a paper by focusing
on 3 major actors: the researcher(s), the journal that handles the publication process,
and the scientific community that should benefit from a new publication. Later in
the paper, we will see that other actors, such as research institutions, data providers,
and funding agencies, may play an important role in the publication process and its
outcome.

Since the publication of the seminal paper by Claerbout (1990), several authors
have pointed out weaknesses in researchers’ day-to-day practices and have proposed
tools, solutions, and advice. Many of these proposals underline existing ways of
improving our practices toward RR, focusing on technical solutions. Applied statis-
ticians and econometricians can now enjoy tools developed in R, Python, Stata, SAS,
and MATLAB (Orozco et al. 2020). Others (Baiocchi 2007) have identified possible
organizational improvements at the researcher level and proposed principles to link
a paper to its raw components, data and code through a clear workflow, following the
original idea of reproducible research documents proposed by Knuth (1984, 1992)
and his literate programming approach. Other principles include a clear organization
of work and files, greater attention to versioning, good documentation of the research
workflow, good writing practices for code using layouts, and naming conventions.
Automating the whole workflow is also recommended and encouraged.

We have also seen the emergence of companion websites and “executable” papers
allowing online code editing and execution (Hurlin et al. 2014; Gorp and Mazanek
2011). Platforms (e.g., Code Ocean, Exec&Share, and SHARE) have been created
to allow code to be run online using materials stored by other researchers. With
this technology, researchers from around the world are able to rerun the exact same
code as the author, change parameter values to see the impact on the results, or even
replicate the code with another dataset.

However, despite the efforts observed and all the tools and methods mentioned
above, implementing RR has often been a challenge in practice. In a recent survey,
Chang and Li (2017) attempted to update the seminal work of Dewald et al. (1988)
and successfully replicated only 33% of 67 papers published in economics journals.
Other examples in other disciplines exhibit similar features (Miyakawa 2020). This
current situation, whereby journals do not ask for or check the raw materials used to
produce a research paper, is represented in Fig. 2.4

There are many reasons for the overall “irreproducibility” (Nature 2013) of
research. It is true that crafting reproducible papers may require more time and effort
than that needed for papers with code that will be used only once. However, when
researchers, especially young ones, invest in RR practices and tools, they generally
become more efficient in their day-to-day practices. They are able to reuse their own
materials, reproduce their own results, answer referees’ questions more quickly, and
test various specifications of their models with little effect on the time spent reporting

4See also Table2 in Appendix 1, for a synthesis of the cases presented throughout the paper.
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Fig. 2 The researcher (left) uses code and data following a (written) workflow and submits a
(reproducible) paper to a journal (middle) that neither asks for nor checks the raw materials. The
researcher then decides to share (or not) some materials (e.g., the code) with the community (right)

new results in a paper (McCullough 2009). There is also some evidence that papers
that share their researchmaterials aremore likely to be cited (Christensen et al. 2019).

The way researchers apply RR methods and share their research materials may
be another important reason for the prevalence of irreproducibility. When they share
their materials, researchers do it in an unstructured manner, and many do not link
the materials to each other or to the associated publication (Baker 2016). Even if
available, the data may not be easily accessible. In their book, Christensen et al.
(2019) remark that when shared, submitted data were also frequently an “unlabeled
and undocumentedmess”.Most of the time, researchers decide on their own initiative
to share (or not) their materials, on their website, on GitHub, or “upon request”.

Data availability and data accessibility are thus ubiquitous problems.5 These prob-
lems are not the sole responsibility of researchers. Many scientists currently do share
code and data, but this takes time and effort. We have to acknowledge that even if
some researchers do share their research materials, others simply do not want to. In
other disciplines, data collection represents a substantial effort. Researchers may not
want to loose their investment and do not want to share this rent with others after a
first publication. The lack of incentives to share and the lack of sharing solutions are
thus two barriers to reproducibility. They exist either because no clear data and code-
sharing policies are defined by journals or because the technical solutions proposed
are not good ones.

In Figs. 2 and 3, we illustrate different unsatisfactory yet frequently observed
situations inwhich the research community has no access to the original rawmaterials
even when the paper was originally designed by the researcher to be reproducible.
In Fig. 3, only the code is finally shared with the research community, even if the
journal has access to all thematerials. Thematerialsmay be “available upon request”,
allowing the author the freedom to decide what to share. It is not guaranteed in either
case that the paper was crafted to be reproducible nor that the referees were able to
reproduce the results when reviewing and then accepting the paper for publication.
Several examples of errors, such as the famous one in Reinhart and Rogoff (2010),

5Other issues that we do not address directly here include the digital preservation of research data
(Akers and Doty 2013) or the preservation of software (Di Cosmo and Zacchiroli 2017).



600 C. Bontemps and V. Orozco

Fig. 3 The researcher (left) sends all materials to the journal (middle) but in the end shares some
material (e.g. code) directly online (e.g. GitHub)

cast doubt on the role of referees and their ability or willingness to ask for and use
submitted materials to reproduce results during the referee process.

This issue is not limited to applied research: Even theoretical mathematics papers
display the same types of problems, with some analyses failing to be reproduced
during the referee process (Gouëzel et al. 2019).

For journals, reproducing a submitted paper requires many combined conditions
that are still rarely met. First, the journal’s policy must require that all materials
be sent before or during the referee process. This implies that the submitted paper
must have been done in a reproducible manner by the researchers in the first place.
Second, the referees must have the skills, willingness, and incentives to check the
empirical proofs. Finally, the paper has to be reproduced, which implies some tech-
nical requirements, time, and resources. Even if a journal is willing to reproduce
a paper, it may not be able to do so and such conditions are still rarely fulfilled.
In fact, the situations depicted in Fig. 3 in which the researchers are the sole party
responsible for the quality and reproducibility of the files shared and no one checks
what is stored are still the most commonly observed.

In Figs. 4 and 5, we illustrate different types of observed situations where the
community has access to a verified paper.6 These solutions assume that journals
have a clear data and code availability policy that is enforced. This requires that
the raw materials provided by the researchers closely follow the RR principles. The
whole workflow, including the curation of the original (raw) dataset collected either
by the researcher or through a data provider, should be written in a readable form
for humans and computers, following the literate programming ideas proposed by
Knuth (1992).

If these mandatory conditions are fulfilled by researchers, journals may imple-
ment two different strategies. They could try to reproduce the results and then signal
or certify that the results are correct (Figs. 4 and 5). This is what is expected from any
scientific journal willing to maintain a reputation as a trusted publication. Alterna-
tively, if a journal lacks sufficient human or financial resources to achieve this task,
it should at least organize the diffusion of the materials and leave the verification

6In these figures, for clarity reasons, we do not illustrate the fact that researchers may share their
materials themselves.
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Fig. 4 The researcher (left) sends all materials to the journal (middle). The journal shares only the
code online for the community (right) and signals that the code has been carefully checked, either
internally or by a trusted third-party agency

Fig. 5 The researcher (left) sends all materials to the journal (middle). The journal or a trusted
third party certifies that the materials used in the paper actually reproduce the results. The journal
also shares all the materials (code—data—workflow) online for the community (right), which can
also check, reproduce, and reuse the materials

process to the community.7 The best solution is illustrated in Fig. 5, where the journal
or a trusted third party reproduces and checks the paper’s results and then organizes
the sharing of the materials they have used for the benefit of the community. Such a
transparent organization may seem difficult to establish in practice, but it is in fact
already implemented by some journals.

3 Implementing FAIR and RR Principles in Practice

In an empirical study examining 346 journals in economics and business studies,
Vlaeminck and Herrmann (2015) showed that only 20% of the journals have a data
policy. In Table1, we compile the data and code availability policies for statistics

7In 2003,H. Pesaran announced the creation of a new section of the Journal ofAppliedEconometrics
dedicated to the replication of published empirical papers (Pesaran 2003). Since then, some journals
have followed this idea leading to an increase in the number of replication papers in economics
(Mueller-Langer et al. 2019). The site PubPeer (https://pubpeer.com/) is also a way to allow users
to discuss and review scientific research.

https://pubpeer.com/
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Table 1 Overview of statistics and economics journal policies in 2020

Journal Policy Platform used

(In bold mandatory policies, in plain sharing is encouraged)

Statistics journals

Annals of Statistics – –

Annals of Applied Statistics (data+code) sharing – (Supplementary materials
archive)

Biometrics (data+code) sharing multiple (OSF, Dataverse)

Biometrika – –

Comput Stat & Data Analysis (data+code) sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode, ...)

Electronic Journal of Statistics code sharing Statlib

J of Business & Econ. Stat. (data+code) sharing Figshare

J of Comp. and Graph. Stat. (data+code) sharing Figshare

J of Multivariate Analysis data citation –

JASA (data+code sharing) JASA Dataverse, JASA
GitHub

J of the Royal Statistical
Society

(data+code) sharing –

J of Statistical Software (data+code) sharing – (Supplementary materials
archive)

Stat. Methods in Medical
Research

(data+code) sharing – (Supplementary materials
online)

Statistics & Probability Letters data citation –

Statistics and Computing data sharing multiple (Figshare, Dryad,
openICPSR, Dataverse)

Stoch. Proc. & their
Applications

data citation –

CSBIG data sharing –

Economics journals

Am Econ Review (data + code) sharing OpenICPSR (AEA Data and
code repository)

J Finance code, data sharing –

Q J Economics (data + code) sharing data repository (Dataverse)
linked to
the QJE website

https://imstat.org/journals-and-publications/annals-of-statistics/
https://imstat.org/journals-and-publications/annals-of-applied-statistics/
https://onlinelibrary.wiley.com/page/journal/15410420/homepage/forauthors.html
https://academic.oup.com/biomet/pages/General_Instructions
https://www.elsevier.com/journals/computational-statistics-and-data-analysis/0167-9473/guide-for-authors
https://imstat.org/journals-and-publications/electronic-journal-of-statistics/electronic-journal-of-statistics-manuscript-submission/
https://amstat.tandfonline.com/action/authorSubmission?show=instructions&journalCode=ubes20
https://amstat.tandfonline.com/loi/ucgs20
https://www.elsevier.com/journals/journal-of-multivariate-analysis/0047-259x/guide-for-authors
https://www.tandfonline.com/action/authorSubmission?show=instructions&journalCode=uasa20
https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/author-guidelines
https://www.jstatsoft.org/pages/view/authors#review-process
https://journals.sagepub.com/author-instructions/SMM
https://www.elsevier.com/journals/statistics-and-probability-letters/0167-7152/guide-for-authors
https://www.springer.com/journal/11222/submission-guidelines#Instructions%20for%20Authors_Electronic%20Supplementary%20Material
https://www.elsevier.com/journals/stochastic-processes-and-their-applications/0304-4149/guide-for-authors
http://csbigs.fr/about/submissions
https://www.aeaweb.org/journals/policies/data-availability-policy
https://afajof.org/wp-content/uploads/files/policies-and-guidelines/CodePolicy.pdf
https://academic.oup.com/qje/pages/Data_Policy
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Table 1 (continued)

Econometrica (data + code) sharing – (Supplementary materials
webpage)

J Financial Econ data + code sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode)

J Political Econ (data + code) sharing – (JPE website)

Rev Financial Stud – –

J Econ Theory (data + code) sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode)

Rev Econ Studies (data + code) sharing Oxford Journals Review
Archive

J Econometrics (data + code) sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode)

J Econ Literature (data + code) sharingAEA OpenICPSRAEA

J Monetary Econ (data + code) sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode)

J Econ Perspectives (data + code) sharingAEA OpenICPSRAEA

Rev Econ & Stat (data + code) sharing –

Eur Econ Review (data + code) sharing – (EER website)

Int Econ Review – –

J Int Econ data, code sharing Mendeley repository

Economic Journal – –

J Public Econ (data + code) sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode)

Game Econ Behav (data + code) sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode)

RAND J Economics – –

J Money Credit Bank (data + code) sharing web data archives

Economic Theory data sharing multiple repositories

J Bus & Econ Stat (data + code) sharing - (Supplementary online
materials)

Economics Letters data, code sharing multiple (Mendeley, DRYAD,
ICPSR, RunMyCode, …)

J Appl Econometrics data, code sharing JAE data archive

A J Political Science (data+code) sharing AJPS Dataverse
AEAindicates that the journal follows the strict AEAData and Code Availability Policy. We use here
a nonexhaustive list of journals. In statistics, we select the most important ones according to the
Web of Science index. In economics, we use the journals listed in McCullough (2009). We choose
to eliminate some specialized journals or journals publishing mainly theoretical work.
(see https://www.aeaweb.org/journals/policies/data-code/)

https://www.econometricsociety.org/publications/ecoNometrica/information-authors/instructions-submitting-articles#replication
https://www.elsevier.com/journals/journal-of-financial-ecoNomics/0304-405x/guide-for-authors#87001
http://www.journals.uchicago.edu/journals/jpe/datapolicy
https://academic.oup.com/rfs/pages/Instructions_To_Authors
https://www.elsevier.com/journals/journal-of-economic-theory/0022-0531/guide-for-authors#86700
http://www.restud.com/submissions/
https://www.elsevier.com/journals/journal-of-econometrics/0304-4076/guide-for-authors
https://www.aeaweb.org/journals/policies/data-availability-policy
https://www.elsevier.com/journals/journal-of-monetary-ecoNomics/0304-3932/guide-for-authors
https://www.aeaweb.org/journals/policies/data-availability-policy
http://www.mitpressjournals.org/journals/rest/sub
https://www.elsevier.com/journals/european-ecoNomic-review/0014-2921?generatepdf=true
https://onlinelibrary.wiley.com/page/journal/14682354/homepage/forauthors.html
https://www.elsevier.com/journals/journal-of-international-ecoNomics/0022-1996?generatepdf=true
https://onlinelibrary.wiley.com/journal/14680297
https://www.elsevier.com/journals/journal-of-public-ecoNomics/0047-2727?generatepdf=true
https://www.elsevier.com/journals/games-and-ecoNomic-behavior/0899-8256?generatepdf=true
https://www.rje.org/submissions.html
https://jmcb.osu.edu/archive
http://www.springer.com/ecoNomics/ecoNomic+theory/journal/199
http://amstat.tandfonline.com/action/authorSubmission?show=instructions&journalCode=ubes20
https://www.elsevier.com/journals/ecoNomics-letters/0165-1765?generatepdf=true
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1255/homepage/ForAuthors.html
https://ajps.org/guidelines-for-manuscripts/manuscript-preparation/
https://www.aeaweb.org/journals/policies/data-code/
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and economics journals as published on their websites in 2020. We can observe a
great heterogeneity of practices. From this nonexhaustive list, we confirm that many
journals still do not publish any policy at all. Even if the publication of erroneous
results has probably helped journals improve their referee process, the vast majority
only “encourage” authors to share their materials, sometimes without any guidance
on how or where to put the materials. Until very recently, very few (e.g., JSS and
AJPS) checked that the code runs and reproduces the key results (Christian et al.
2018). Moreover, Duvendack et al. (2017) showed that less than 10% of economic
journals (28 out of 333) have a majority of their empirical papers supplying data
and code. This suggests that even when data and code policies are written, their
enforcement is lax.

Nevertheless, there are some very good examples that should be inspiring. The
JASA, for example, has an “associate editor for reproducibility”, responsible for the
technical review of manuscripts before, during, or after the usual review process
(Fuentes 2016). The Journal of Statistical Software (JSS) follows the scheme of
Fig. 5 and asks for a standalone replication script that must enable reproducibility.
Since 2019, all journals published by the American Economic Association require
that authors share their data and code, which are systematically checked “within
reasonable limits of time and computing resources”.8 These verifications can be
costly for journals, but we may expect that the costs should decrease over time with
the improvement of researchers’ and reviewers’ practices.9 This process can also be
outsourced to specialists. An example is given by the American Journal of Political
Science (AJPS), which contracted the Odum Institute for Research in Social Science
to systematically check that research materials confirm the results of submissions
(Crabtree 2011).

To succeed in organizing the way materials are shared while preserving the link
with the results included in the paper, journals could extend the FAIR principles,
developed primarily for datasets, to all the research materials. In practice, sharing
data and other materials together can be quite complicated. Moreover, we believe
that researchers should not organize the sharing themselves and that journals should
align a strict mandatory policy with a clear organization and resources. In this regard,
the Journal of Applied Econometrics (JAE) was a sort of pioneer, implementing
its own data archive from the late 1980s. One satisfying technical solution is now
offered by the Dataverse Network, developed at Harvard University. The network
hosts collections of studies, embedding all materials for a paper in a single object,
called a dataverse (King 2007; Leeper 2014). This solution is recommended by some
journals (e.g., JASA, AJPS, QJE, PLOS, and Nature). Other journals, following

8Some useful resources facilitate the process (see https://social-science-data-editors.github.io/
guidance/Verification_guidance.html). The Transparency andOpenness Promotion (TOP) proposes
also varying levels of replication policies for journals (Nosek et al. 2015).
9JacobyWilliam (2017) analyzed the AJPS verification policy and reported an average of 8 person-
hours per manuscript to curate and replicate the analyses. The publication workflow, involvingmore
rounds and resubmissions, is also much longer.

https://social-science-data-editors.github.io/guidance/Verification_guidance.html
https://social-science-data-editors.github.io/guidance/Verification_guidance.html
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the recommendations of research institutions (NSF, ERC), use Figshare, Zenodo,
Mendeley, or ICPSR (see Table1).10

Following the FAIR principles implies not only that thematerials should be shared
or accessible, but also that they should be interoperable and findable. The interoper-
ability principle can be interpreted here as the ability for any reader to have access
to materials stored in a readable format.11 It should also be easy to find the materials
without any ambiguity.We agree with the American Sociological Review that “citing
datasets used in published research is just as important as citing journal articles,
books, and other sources that contributed to the research”. This means that the data
and other materials should be identified in a consistent way. To precisely identify
datasets and code, journals or institutions may request that a digital object identifier
(DOI) be attached to each element described in the paper. DOIs are the backbones
of the findable component of the FAIR principles. Even for data with constrained
access (e.g., proprietary or confidential data), aDOI should provide enough elements,
at least the metadata, to retrieve enough information describing the data (or other
materials) used (Fenner et al. 2017).12

In the context of big data or machine learning analysis, sharing the materials and
the analysis are important issues that can be challenging (Crosas et al. 2015). The R
package Zelig automatically creates a workflow embedding all the procedures and
algorithms used in the analysis into a single object that may then be exported and
shared. The NSF-funded Whole Tale (https://wholetale.org/) may also be a scalable
solution enabling the creation, publication, and execution of “tales” or executable
objects embedding data (potentially big data), code, and the complete software envi-
ronment used to produce research findings.

Another difficulty may be due to the length of the publication process, which can
be quite extensive. The reviewing process often requires additional tests or modifica-
tions. Thus, the code as well as the datasets and even the workflow may change with
the evolution of the paper under review. Researchers following the RR approach and
writing RR papers are already familiar with version control tools such as GitHub for
their code. They should easily integrate their data and workflow in the same spirit.

Another large step would be to question the access policies of publications, which
are often paywalled, and to promote open-access publications such as PLOS (https://
plos.org/) or arXiv (https://arxiv.org/) in our fields.

10A complete list of solutions is detailed in The Registry of Research Data Repositories (http://
re3data.org) a service of DataCite. In addition, CoreTrustSeal provides certification to repositories
and lists the certified ones.
11For datasets, the FAIR interoperability principle suggests the use of open formats such as CSV
files instead of proprietary formats (.xls). For code, open-source software should be preferred to
avoid exclusive access (Vilhuber 2019). The metadata should also follow standards (Dublin core or
DDI). References and links to related data should also be provided (Jones and Grootveld 2017).
12The DataCite project (Brase 2009) is a popular resource to locate and precisely identify data
through a unique DOI.

https://wholetale.org/
https://plos.org/
https://plos.org/
https://arxiv.org/
http://re3data.org
http://re3data.org
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4 Confidential Data

Confidential or proprietary data are often cited as an obstacle to reproducibility,
mainly because of data accessibility restrictions such as those imposed by the Euro-
pean GDPR.13 In economics, Christensen andMiguel (2018) observed that there has
been a small increase in empirical papers (using data) published coinciding with a
significant increase in data exemptions. They found that nearly half of the papers
using data are not reproducible because the data are not available. These exemp-
tions may be due to the use of confidential data or to other restrictions limiting data
availability.

Restrictions may also come from data providers’ preservation policies or national
statistical offices (NSOs) data management conditions allowing only remote and
strictly controlled access to data through secure virtual terminals.14 Journals and
reviewers are then unable to access the data and cannot check the results, having
access to the paper and the code only.15 According to Lagoze and Vilhuber (2017),
50% of confidential data used in papers are from NSOs, and each NSO has its own
data-sharing restriction and regulation. To handle the complexity of security-level
restrictions and to allow third parties or reviewers to access confidential materials,
Sweeney et al. (2015) proposed a system of datatag repositories. Each datatag repos-
itory documents the way data and other sensitive materials can be shared, reducing
the complexity of the situation to a small number of tags.

Some authors propose altering original rawdata into “safe data”, potentially acces-
sible by anybody, using blurring or aggregation techniques to remove sensitive details
such as individual information (Alter and Gonzalez 2018). Other methods include
adding random noise or swapping individual responses between otherwise similar
respondentswhilemaintaining the same likelihood distribution (Boker et al. 2015). In
our view, these methods do not seem compatible with the principles of transparency
used in the RR approach.

Nonetheless, solutions exist to preserve privacy while allowing other researchers
to access and replicate results. One principle is based on a trusted third party having
a secure access to confidential data and on an interactive platform for queries and
answers (Dwork et al. 2009). The curator model (Crosas et al. 2015), depicted in
Fig. 6, could be implemented using secured-sharing platforms such as dataverses or
datatags.16 Referees could have access tomaterials securely and reproduce and check
the validity of the results, even with confidential data. A reproducibility certification

13 There are many sources of confidential and nonshareable data (Christensen and Miguel 2018;
Lagoze and Vilhuber 2017).
14InFrance, theCASD(https://www.casd.eu/) is a single-access portal tomanypublic data providers
(INSEE, ministries, etc.). Researchers are not allowed to copy all the materials locally on their
machine, and only some type of outputs can be extracted.
15The code may also contain some confidential elements. In particular, the code used for the initial
data curation may contain, e.g., brand or city names and addresses.
16Some data providers, in particular NSOs, already perform RR on their confidential data, control-
ling output files and code, to check for confidentiality restrictions (Lagoze and Vilhuber 2017).

https://www.casd.eu/
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Fig. 6 The researcher (left) shares all materials (code—data—workflow) privately with the trusted
third party. Access may be contracted with the journal (middle). A certification of reproducibility
is sent to the journal together with the paper. The paper is published with the reproducibility
certification, but only nonconfidential elements, such as code, are available to the community (right)

could be emitted during or even before the submission process to attest to the full
reproducibility of the results.

The recent and promising Certification Agency for Scientific Code and Data
(CASCAD), supported by the French National Science Foundation (CNRS), pro-
poses the solution of prepublication reproducibility certification (Pérignon et al.
2019). Authors can ask CASCAD to review their materials, even when confidential
data are used, and to certify the reproducibility of their paper’s results (Fig. 6). The
replication process can be performed before publication, which facilitates the journal
review process. Alternatively, journals may outsource this task to the certification
agency during the referee process. Ex ante contracts between the trusted third party,
the data provider, and the journal may facilitate the process. The code used and the
certification report may then be hosted on an open-access repository, such as Zenodo,
and be accessible by the research community.

It is possible to attest that a paper using confidential data has been reproduced
so that no doubt remains over the validity of the results. However, only a few peo-
ple, namely, the third-party agency or some reviewers, had access to the research
materials, as only the certified code may be finally shared with the community.

Thus, working with confidential data does not necessarily mean having access
to the dataset. Technical solutions, such as the one illustrated in Fig. 7 and based
on the idea of “data enclaves”, exist. The Inter-university Consortium for Political
and Social Research (ICPSR) has developed virtual and physical “data enclaves”,
allowing online data analysis with strict restrictions on queries, data access, and
downloads (Dunn and Austin 1998). At the time of its creation long ago, physical
access to ICPSR resources and all the outputs created were humanly controlled.
Currently, an online data analysis tool is used to evaluate output for disclosure risk
prior to displaying for the end user. This is again a curator model accepting queries
from any researcher and providing only approved analysis output, including the
elements (estimations, tables, and figures) published in the paper.
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Fig. 7 The researcher (left) shares all materials (code—data—workflow), preferably as a package
or tale that is securely accessible by the journal’s reviewers (middle) within a secured platform.
The paper is published with access to a secured platform (“data enclave”, such as the ICPSR). The
community (right) has access to the secured query platform and can use the materials (e.g., code)
without having access to the confidential elements

5 Conclusion

To many, the path toward findable, accessible, interoperable, and reproducible
research may seem paved with obstacles. We argue here that this is the path to
the future, considering the great challenges that we, as a scientific community,
should overcome. Erroneous publications, unavailable research materials, and long
and sometimes archaic publication processes have generated a research crisis within
the research community and within society itself. Some publications (Science 2011)
advocate for a great change in the individual and collective practices of scientists,
journals, funders, institutions, and societies, acknowledging Claerbout’s principles
that “an article (· · · ) in a scientific publication is not the scholarship itself, (· · · ) the
actual scholarship is the complete set of instructions which generated the figures”
(de Leeuw 2001). We argue that our community and the public at large will greatly
benefit from a change toward greater transparency and better-organized research.

This change will only occur if all research actors agree to adhere to FAIR and
reproducible research principles. Most of these principles can be gradually imple-
mented as a growing process toward more reproducible practices.

Researchers should initiate these changes. They now have all the resources needed
to improve their individual practices to create more reproducible papers by embed-
ding code and data in a documented and written workflow understandable by others,
including researchers’ own “future selves” (Gentzkow and Shapiro 2013). They are
probably in the process of changing their habits already under the pressure of certain
journals and research institutions such as the ERC and NSF.

Researchers are also reviewers, some of them even journal editors, and thus can
promote many valuable actions. First, journals should reorganize the review process
and the way the results of submitted papers are checked, including when some mate-
rials are confidential. This is probably one of the most challenging issues, requiring
new skills for reviewers, additional resources, and a clear internal setup for sharing
the submitted paper’s materials. Certified trusted third parties already exist if that
process has to be outsourced. Having an “associate editor for reproducibility”, as the
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JASA does, could also be a good idea to solve many practical questions such as when
to check the validity of the submitted materials (before, during, or after the classi-
cal review) or to organize the verification and the relations with the author. Second,
journals should have a clear data and code availability policy with a proper check of
materials by reviewers. Journals should also organize the way research materials are
shared.17 Contractingwith public repositories such asZenodo,Mendeley, orFigshare
would reduce the constellation of individual and self-maintained repositories and the
fragmentation of arbitrarily different, incompatible standards (Sansone et al. 2019).
These platforms also guarantee perennial access to the core materials of science.
Finally, if implemented, this process will provide strong incentives for researchers to
only produceRRpapers. Some journals (e.g., AJPS andBiostatistics) propose badges
tagging reproducible research. Such a practice seems to increase the proportion of
papers using open practices and to improve the preservation of research materials
(Rowhani-Farid and Barnett 2018). Other challenges concern the free access to arti-
cles published in paywalled journals and the recognition of open-journals such as
PLOS and ArXiv.

Data providers, whether they are private or public, could also facilitate the changes
that we call for. Quite often, they are aware of these problems and have implemented
some processes for their internal publications that could be inspiring (Lagoze and
Vilhuber 2017). In the near future, they may pay increasing attention to the use of
the data they provide, checking published results either to publicize their activity or
to criticize a misuse.18 In the case of confidential data, providers and, in particular,
NSOs may also find some interest in promoting and organizing the way their data are
findable and accessible (Pérignon et al. 2019). Thus, data providers should encourage
researchers, institutions, and journals to produce more reproducible and reproduced
papers. It is therefore likely that partnerships among journals, data providers, and
private or public third parties will increase in the future.

Research institutions have already started to impose some conditions on funded
projects or grants by requiring researchers to follow a strict RR approach, by pro-
moting the dissemination of the FAIR and RR approaches, and by financing public
infrastructures hosting FAIR research materials repositories.19

If “science is organized knowledge” (Spencer 1854), then we should all work
for better organization for better science. We believe that the FAIR and reproducible
research movements are there to jointly provide organized resources, tools, and prac-
tices. Changing the publication workflow and our habits may be a long and probably
costly journey. Not changing could be even more costly.

17Alter and Gonzalez (2018) suggested that to “protect” researchers who want to use their data first
(before sharing), journals can propose an “embargo”.
18A recent lawsuit involving the popular training program CrossFit showed that a paper by Smith
et al. (2013) erroneously showed an increased risk for injuries for its users. Although the paper
was retracted later, the impacts on the researcher’s career were severe (for details, see https://
retractionwatch.com/).
19The EuropeanResearchCouncil (ERC) recommends “to all its funded researchers that they follow
best practice by retaining files of all the research data they have used during the course of their
work and that they be prepared to share this data with other researchers”.

https://retractionwatch.com/
https://retractionwatch.com/
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Appendix 1: Synthesis of All Situations Illustrated on
Figs. 2–7

Table 2 Comparison of the various situations presented in the paper

Who shares? and What?

Researcher Journal

Shares to journal Shares to
community

Shares to
community

Verification &
signal

(Fig. 2)
– Some materials

(e.g. the code)
– –

(Fig. 3)
All materials Some materials

(e.g. the code)
– –

(Fig. 4)
All materials (maybe) Code RR verification &

signaling code
check

(Fig. 5)
All materials (maybe) All materials RR verification &

RR certification

(Fig. 6)
All materials
(to a third party)

– Nonconfidential
materials
(such as code)

RR verification &
RR certification

(Fig. 7)
All materials
(to a secured
platform)

– All materials (use
only)
(on a secured
query platform)
(no access to
confidential
elements)

(maybe)
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“One Man, One Vote” Part 2:
Measurement of Malapportionment and
Disproportionality and the Lorenz Curve
A: Introduction and Measurement Tools

Olivier de Mouzon, Thibault Laurent, and Michel Le Breton

Abstract The main objective of this paper is to explore and estimate the departure
from the “One Man, One Vote” principle in the context of political representation
and its consequences for distributive politics. To proceed to the measurement of the
inequalities in the representation of territories (geographical under/over represen-
tation) or opinions/parties (ideological under/over representation), we import (with
some important qualifications and adjustments) the Lorenz curve which is an impor-
tant tool in the economics of income distribution. We consider subsequently some
malapportionment and disproportionality indices. We provide several applications
of these concepts in Chap.32.

1 Introduction

This paper is in the continuation of our earlier paper (deMouzon et al. 2020) dedicated
to an analysis of the “one man, one vote” principle in the specific context of the U.S.
Electoral College.

In that paper, the focus was on the degree of violation of the “one man, one vote”
principle in the context of voting. It was postulated that the variable of interest that we
wanted ideally to be the same for all voters was the probability of being decisive in
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an election. It was demonstrated that the “one man, one vote” principle was violated
and that the identity of the beneficiaries was dependent upon the a priori probability
model which was considered. However, for the three probability models which were
investigated, the ratio between the most advantaged citizens and the less advantaged
ones was always around 3.

In this second paper, we want to examine the “one man, one vote” principle when,
instead of a binary ideological issue, the public decision consists in the distribution of
resources among several territories like districts, counties, states or countries depend-
ing upon the context. It will be postulated that the actual distribution of resources
among these territories is highly dependent upon how these territories are represented
in the public body in charge of deciding the distribution of these resources.

The objective is to contrast the actual distributionwith the distribution of resources
that would arise as the solution of a social choice or welfare optimization prob-
lem postulating an equal treatment of individuals. We are interested in compar-
ing the positive solution (which depends upon political representation of territo-
ries) and the normative solution (which only depends upon the population of the
territories) as theory (in particular bargaining theory) suggests that any deviation
from equality/proportionality in representation leads to a deviation from equal-
ity/proportionality in the sharing of resources.

This primary objective leads us to revisit an important issue in politics: how
to measure malapportionment? Malapportionment1 defines a situation where the
allocation of seats/representatives across districts deviates from the allocation that
would result from a strict application of population proportionality.2

This methodological issue spans a number of diverse and important situations
including, in addition to legislative districting, the presidential Electoral College in
the U.S. and the European Council of Ministers. For each of these situations, we can
make an instantaneous photograph of how apportionment looks like. The photograph
can consist of a single measure or a set of measures or even a curve as we will see.
Collecting photographs at several points in time and/or for different territories paves
the way for a study of the evolution of malapportionment along a time dimension
(time series) or a spatial dimension (cross-section data).

With such measurement tools, we will be in a position to answer questions like:
What has been the evolution of malapportionment in France over the last parlia-
mentary elections? Could we say that, in the process of electing their “conseillers
départementaux”, malapportionment is more severe in the Département “Morbihan”
than it is in the Département “Creuse”?We could also, using the same tools, evaluate
the impact on malapportionment of a particular redistricting plan like for instance
the one which has been implemented in France in March 2015 for the election of

1In this paper, we will be mostly interested in malapportionment in the context of districting. We
assume that the partition of a territory (a union of countries, a country, a region or “départements”
in France here, etc.) is given into districts (countries, states, congressional districts, “cantons” in the
case of the French “Départements”, etc.). Each district is identified by its population size. The data
on which measurement is based consists of the vector of seats and the vector of population sizes.
2Of course, the concepts introduced for the measurement of malapportionment can be (and in fact
are) extensively applied also in the context of party representation.
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local representatives: this plan included, among other things, a division by two of
the number of “cantons”.

Malapportionment remains one of the key issues in political science. The “one
man, one vote” principle is considered a pillar of any democratic system, and any
violation of that principle is perceived as going against the democratic ideal. The
adoption of the universal suffrage was certainly an important move towards this
principle but it is well documented and recognized that in reality, the voice of some
citizens may count more than the voice of others.

The books of Ansolabehere and Snyder (2008) and Balinski (2004) contain a
lot of evidence indicating that this issue is not a secondary one. At that stage, it is
important to say that this is not only a question of equality in political rights but, as
we argued above, it is also a question of allocation of the resources/budgets which
are under the control of the elected representatives.

As demonstrated forcefully by Ansolabehere and Snyder (2008),3 districts which
are over (respectively under) represented tend to catch a larger (respectively smaller)
share of the cake. Their cross-sectional analysis shows that counties with relatively
more legislative seats per person prior to redistricting receive relativelymore transfers
from the state per person. They calculated that population equalization significantly
altered the flow of state transfers to counties, diverting approximately $7 billions
annually from formerly over-represented to formerly under-represented counties.
Clearly “the American experience provides clear evidence of the political conse-
quences of unequal representation”.

Maaser and Stratmann (2016) reach a similar conclusion for Germany: they find
that districtswith a greater number of representatives receivemore government funds.
Kauppi andWidgrén (2004, 2007) andGarcía-Valiñas et al. (2016) have also demon-
strated that political representation within the E.U. council is a key driver of the
distribution of the E.U. budgets.

In this paper, we import from economics some tools which have been developed
to evaluate the intensity of inequality in income/wealth/health (or other continuous
variable impacting the well being of individuals) distribution.4

In contrast to economics, here the variable under scrutiny is seats. We argue that
the tools of economists, on top of which the Lorenz curve and theGini Index are very
much appropriate to handle the measurement of malapportionment once the right
variables have been introduced. In doing so, we follow the steps of Van Puyenbroeck
(2006) who already suggested the fruitfulness of that connection in his pioneering
must-read paper.5

As forcefully demonstrated by Van Puyenbroeck (2006), it is important to be
careful in importing these tools as measuring departures from the equality principle
in politics calls for some important adjustments.

3See their documented Chap. 6 as well as their (2002) paper.
4See e.g. Lambert (2001) for a nice presentation of the main ideas and results in that area.
5It is also important to point out that concepts from the theory of majorization (Marshall et al.
2011) have also been used to compare different apportionment methods (Lauwers and Puyenbroeck
2006b, a; Marshall et al. 2002).
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The paper is organized as follows. In the first section, we introduce the main
concepts and notations together with a general framework to evaluate the distance
between ideal and real public decisions. We then move to distributive politics and
define the Lorenz curve and some important indices. A supplementary material
divided into 5 parts contains additional material on malapportionment and voting,
majorization with weights and other technical developments.

2 Descriptive Statistics and Measurement
of Malapportionment/Disproportionality

The framework developed in this paper can accommodate two differentmeasurement
issues.

For both of them, we want to examine and compute the “distance” from the “one
man, one vote” principle. In the first subsection, we present the two settings. Then, in
the second subsection, we develop a framework explaining the connection between
representation and public decision. The third subsection is the key subsection. It
explains how to construct the Lorenz curve in our setting and argues against some
alternative constructions of this Lorenz curve. The last subsection introduces some
of the main indices and in particular the two main ones which are used in Chap.32.

2.1 Two Settings

In the first set of applications, we consider a territory (a country, a region, a local
government, etc.) divided into K electoral sub-territories (states, counties, electoral
districts, etc.).

The representatives of the territory are all elected at the district level. Hereafter,
we will denote by Nk the population size of district k and by Rk the number of
representatives apportioned to district k for all k = 1, 2, . . . , K . The territory can be
a local/regional territory (like a “département” or a region in France or a State in the
U.S.) and the assembly of representatives a council in charge of the policies decided
and implemented at the level of this territory.

The inputs of the measurement issue addressed in this first case consist of two
vectors: the vector of populations N = (N1, N2, . . . , NK ) and the vector of repre-
sentatives R = (R1, R2, . . . , RK ).6

Such a pair (N,R)will be called a geographical pattern/situation. In many appli-
cations, we will assume that R = (1, 1, . . . , 1). Let us finally denote by n and r the
vectors of shares n = ( N1

N , N2
N , . . . , NK

N ) and r = ( R1
R , R2

R , . . . , RK
R ).

6Hereafter, N and R denote, respectively, the total number of voters and the total number of repre-
sentatives.

https://doi.org/_32
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While our notations seem to privilege the time series analysis of a pattern, we
would like to point out that the same tools allow for a cross-sectional analysis (for
instance, we can use the tools to compare different territories, at any given point
in time, as done for instance in Ansolabehere and Snyder 2008) or a comparison
between a pre-reform and a post-reform situation.

In the second type of application, the focus is on an election involving V voters,
K parties and S seats. In this case, we will denote by Vk the number of people voting
for party k7 and by Sk the number of seats won by party k for all k = 1, 2, . . . , K .

The inputs of the measurement issue addressed in this case consist of two
vectors: the vector of votes V = (V1, V2, . . . , VK ) and the vector of representa-
tives S = (S1, S2, . . . , SK ). Such a pair (V,S) will be called an ideological pat-
tern/situation. We will denote by v and s the vectors of shares v = ( V1

V , V2
V , . . . , VK

V )

and s = ( S1
S , S2

S , . . . , SK
S ).

Given either a geographical pattern/situation (N,R) (or (n, r)) or an ideological
pattern/situation (V,S) (or (v, s)), we want to measure how far we are from the “one
man, one vote” reference norm.

2.2 Mapping Representation into Public Decisions

To compare two different situations (N,R) and (N,R′), we introduce a set of feasible
public decisions D.

We assume that each citizen i = 1, . . . , N has a utility function Ui onD. Before
exploring the influence of (N,R) in the positive decision making process, we define
a normative reference that will be used as a benchmark in subsequent comparisons.
Hereafter, we will focus on the utilitarian norm. From that perspective, the welfare
attached to decision d is:

N∑

i=1

Ui (d).

Let us denote by d∗ (N,U) the decisionwhichmaximizes utilitarianwelfarewhere
U denotes the profile (U1, . . . ,Un) of utility function. Given the decision d(U,N,R)

undertaken by the council of representatives, wemay evaluate the “distance” between
the two in several ways. For instance, we could consider:

N∑

i=1

Ui (d
∗ (N,U)) −

N∑

i=1

Ui (d(U,N,R)),

7Of course, the expression “number of people voting for party k” is possibly ambiguous if the
electoralmechanism is complicated and/or if it involves several rounds. This framework only applies
to elections where the ballots consist of lists of candidates (possibly one) with a party affiliation. In
the case of several rounds, we retain the first-round votes.
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or we could consider the departure from the perspective of each individual, i.e. :

(
U1(d

∗ (N,U)) −U1(d(U,N,R)
)
, . . . ,UN (d∗ (N,U)) −UN (d(U,N,R))).

Since these measures depend upon the particular profile U that is considered, we
may prefer to consider ex ante evaluations where U is drawn randomly from a setU
of admissible profiles according to a specific8 probability model λ.

Then for the two measures above, we move to expectations with respect to λ.

�1
λ(N,R) = E

λ

[∑N
i=1Ui (d∗ (N,U)) − ∑N

i=1Ui (d(U,N,R))
]
,

�2
λ(N,R) =

E
λ

[
(U1(d∗ (N,U)) −U1(d(U,N,R)) , . . . ,UN (d∗ (N,U)) −UN (d(U,N,R)))

] =
E
λ

[
(U1(d∗ (N,U)) , . . . ,UN (d∗ (N,U)))

] − E
λ
[(U1(d(U,N,R)), . . . ,UN (d(U,N,R)))] .

These two measures are derived from welfare foundations. Since this paper is
about the measurement of the distance to the “one man, one vote” principles, we will
modify later at the margin these measures to make sure that the values do not depend
upon irrelevant factors. For instance, we do not want the size of the population per
se to have an impact on the comparisons. In some other applications, we do not want
some specific elements of the set D to have an impact on the comparisons. We will
explain in due time how to adjust the above measures to do so.

Toproceedwith thesemeasures,we doneed a detailed description of the derivation
of d(U,N,R). Depending upon the nature of the setD, many alternative institutions
can be considered. To study the behaviour of representatives within these institutions,
we will need to model the objectives of the representatives and the nature of the game
that they play among themselves. We limit our attention here to two canonical cases.

The first canonical case is the classical binary framework: D = {0, 1} and for
each i , there are two possible utility functions: either Ui (1) = 1 and Ui (0) = 0 or
Ui (1) = 0 andUi (0) = 11. Here d∗ (N,U) is the popular majority decision. If all the
representatives of territory k endorse the majority opinion among voters in territory
k, the decision d(U,N,R) denotes the majority decision in the council. d(U,N,R)

need not to be equal to d∗(U): an outcome such that d(U,N,R) �= d∗ (N,U) is called
in voting an election inversion.

For any probability model λ, we can (in principle) compute �i
λ(N,R) for i = 1

and 2. A large value indicates a large departure from the popular majority decision
which is here the reference outcome to define at best “one man, one vote”.

Using �1
λ informs about the distance from a decision that reflects the “one man,

one vote” principle. It is important to call attention to the fact that postulating that the

8Since the paper is about the “one man, one vote” principle, then the probability model itself must
display symmetry across voters.
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ideal “one man, one vote” is reflected at best by the majority mechanism demands
more than the equal treatment of voters.9

Using �2
λ gives us a more detailed information about the decomposition of the

aggregate difference �1
λ into its individual components. Indeed if �1

λ(N,R) > 0,
then some of (maybe all) the coordinates of �2

λ(N,R) are positive. As for �1
λ, the

reference to the majority outcome is important: having the vector �2
λ(N,R) on the

diagonal ofRN is not enough. If we compare several mechanisms (all different from
the majority mechanism), on the basis of their respective vectors �2

λ(N,R), we may
opt for a criterion different from the utilitarian one.

Instead of measuring the distance from the reference point through utilities, we
could (as in de Mouzon et al. 2020, for the U.S. Electoral College) calculate for each
state k, a number measuring the decisiveness of a voter from state k.10

A perfect application of the “one man, one vote” principle would require the per-
fect equality of these K numbers. In reality, these numbers differ among themselves.
Appendix 1 (see supplementary material) contains a computation of �1

λ(N,R) and
�2

λ(N,R) and a third measure in the case where K = 3 and R = (1, 1, 1). As advo-
cated, we can of course normalize the above two measures in order to make them
invariant with respect to the size N of the population to allow comparisons of situ-
ations where the population sizes are not the same. For instance, instead of �1

λ, we
could consider �̂1

λ defined as follows:

�̂1
λ(N,R) = �1

λ(N,R)

φ(N , λ)

where φ(N , λ) is a function taking care of the population scale factor.
In the second canonical case (often recorded under the headings “Distributive

Politics” or “Divide the Dollar”), the set of public policiesD is a simplex:

D = S ≡
{
X ∈ R

K
+ :

K∑

k=1

Xk = M

}
, (1)

where M is a positive number. The council decision consists in a distribution of the
total budget M across the K territories. In such a case, it is natural to assume thatUi

depends only upon Xk (where k is the territory where i lives) and is strictly increasing
with respect to that variable.

If we assume further that the share of the budget received by territory k is divided
equally among its residents, i.e. if the good which is considered is purely private (no

9In the paper, we restrict ourselves to two-step majority mechanisms (i.e. indirect majority elections
through a set of representatives described by R) but we could compute �1

λ (N , V ) for any voting
mechanism mapping {0, 1}N onto {0, 1}. Any anonymous mechanism (even peculiar ones like
selecting the minority candidate, drawing randomly the winner or drawing randomly a dictator)
treats equally the voters.
10For some probability models λ, the two approaches are equivalent.
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economies of scale), the benefit of a resident of territory k is Xk
Nk

and then the utility
derived by i from decision d is:

Ui (
Xk

Nk
).

Further, if we postulate symmetry in inter-comparison of utilities, i.e. thatU does
not depend upon i , then the utilitarian welfare attached to decision d is:

K∑

k=1

NkU (
Xk

Nk
). (2)

If U is strictly concave, maximization of (2) under constraint (1), i.e.

max
K∑

k=1

NkU (
Xk

Nk
),

under the constraints X ∈ S yields an unique interior solution:

X∗
k (N,U ) = Nk

N
M ≡ nkM for all k = 1, . . . , K .

The reference point is perfect proportionality. According to the utilitarian princi-
ple, each territory should receive a share of the budget proportional to its population.
We note that now, in contrast to the first canonical case, the reference point does
not depend upon the profile U . There are several ways to transform (N,R) into
d(U,N,R). Hereafter,11 we will focus on the case where:

Xk(U,N,R) = Rk

R
M ≡ rkM for all k = 1, . . . , K .

Asbefore, d(U,N,R) does not depend uponU in that case. If the utility function12

U is drawn randomly from a set U of admissible utility functions according to a
specific probability model λ, we obtain13:

�1
λ(N,R) = E

λ

[
K∑

k=1

Nk

(
U (

M

N
) −U (

MRk

RNk
)

)]
.

11An alternative to the one considered in the text is described in Appendix 4 (see supplementary
material).
12In contrast to the first canonical case, it is assumed that the profile is diagonal and summarized
by a single increasing utility function.
13And similarly: �2

λ(N,R) = E
λ

[
U ( N1

N M) −U ( R1
R M), . . . ,U ( NK

N M) −U ( RK
R M))

]
.
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This measure calls for several comments. For any fixed U , we want this measure
to be as small as possible. Ideally, we would like

�1
U (N,R) ≡

K∑

k=1

Nk

(
U (

M

N
) −U (

MRk

RNk
)

)

to be as small as possible pointwise, i.e. for all admissible U . For any given U , �1
U

evaluates the distance between the “ideal” and the reality induced by the situation
(N,R). When we compare two situations (N,R) and (N′,R′) such that N = N ′, the
difference �1

U (N′,R′) − �1
U (N,R) writes:

−
[
N ′

K∑

k=1

n′
kU (

M ′r ′
k

N ′n′
k

) − N
K∑

k=1

nkU (
Mrk
Nnk

)

]
+ NU (

M

N
) − N ′U (

M ′

N ′ )

i.e. what matters are the vector of shares (n, r) and (n′, r′) and the per capita budgets
M
N and M ′

N ′ .When N �= N′, this simplification does not hold unless we replace utili-
tarian welfare by average utilitarian welfare. Since we are interested in measuring
deviation from proportionality per se, we don’t want the size of the budget and the
size of the population to have an effect onmeasurement14 andwe change themeasure
�1

λ(N,R) above into the following one:

�̂1
λ(N,R) = −E

λ

[
K∑

k=1

nkU (
rk
nk

)

]
= E

λ

[
K∑

k=1

nkg(
rk
nk

)

]
≡ E

λ

[
�̂1

g(N,R)
]

where g ≡ −U . If we consider U to be the set of increasing and concave functions
on R, the set G of admisible g is the set of decreasing and convex functions on R.

2.3 The Lorenz Order

By choosing a specific convex function g, we can order any two situations (N,R)

and (N′,R′) according to the measure �̂1
g:

14In inequality measurement, these two properties are called scale invariance (if the amount of
resource received by each individual is multiplied by the same constant, then inequality remains
unchanged) and population invariance (if the number of individuals in each of the K groups is
multiplied by the same constant, then inequality is unchanged). In contrast, in welfaremeasurement,
the resource scale and population scales matter. This is why some authors move from Lorenz curves
to generalized Lorenz curves. These questions are discussed in Appendix 2.
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(N,R) dominates (N′,R′) iff
K∑

k=1

nkg

(
rk
nk

)
≤

K∑

k=1

n′
kg

(
r ′
k

n′
k

)

This dominance reads as follows: Given g, the situation (N,R) is closer to the
ideal “one man, one vote” than the situation (N′,R′). This ordering is complete, i.e.
any two situations can be compared. But it is also very sensitive to the choice of a
specific convex function g in the class G. Two different convex functions could lead
to two opposite statements. One way to proceed is to move to expectation, i.e. to
consider the measure �̂1

λ defined before for some probability measure on G. Since
suchmeasuremay be sensitive to the probabilitymodel λ, an alternative road consists
in considering the following partial ordering:

(N,R) unambiguously dominates (N′,R′) iff
K∑

k=1

nkg

(
rk
nk

)
≤

K∑

k=1

n′
kg

(
r ′
k

n′
k

)

for all convex functions g.
This partial ordering15 is presented in Appendix 2 (see supplementarymaterial). It

is an extension of the classical majorization ordering16 (Marshall et al. 2011) which
is exclusively defined over the subclass of situations such that nk = n′

k = 1
K for all

k = 1, . . . , K .
Howdowe prove or disprove that (N,R) unambiguously dominates (N′,R′)? The

main characterization theorems are also presented in Appendix 2 (see supplementary
material). The most important one consists in introducing the Lorenz curve which is
defined here as follows.

First, for any situation (N,R), we consider the rearrangement of the coordinates
of the vector ( r1

n1
, r2
n2

, . . . , rK
nK

) from the lowest to the largest. From this vector, denoted

( r̃1
ñ1

, r̃2
ñ2

, . . . , r̃K
ñK

), we construct the following curve which contains (according to us)
all the relevant statistical information on (N,R).

We plot on the horizontal axis all the cumulative fractions: 0, ñ1, ñ1 + ñ2, ñ1 +
ñ2 + ñ3, . . . , 1 and on the vertical axis all the cumulative ordered fractions 0, r̃1, r̃1 +
r̃2, r̃1 + r̃2 + r̃3, . . . , 1.

This provides a sample of K + 1 points in the unit square [0, 1] including (0, 0)
and (1, 1). This sample is increasing and convex in the sense that:

∑k
j=1 r̃ j∑k
j=1 ñ j

≥
∑k−1

j=1 r̃ j∑k−1
j=1 ñ j

for all k = 1, . . . , K .

15Strictly speaking, we should consider the more restricted family G, i.e.assume that g is also

decreasing. But since
∑K

k=1 nk
rk
nk

= ∑K
k=1 n

′
k
r ′
k
n′
k

= 1, we can show that imposing that restriction

does not change the partial ordering.
16This partial ordering is also known as second-order stochastic dominance.
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Fig. 1 Illustration of the Lorenz curve

For convenience, we identify this finite set of points to a curve by piece-wise
linear interpolation between any pair of adjacent points. Let us denote by L(N,R) (x)
this curve defined for all x ∈ [0, 1] and with values in [0, 1]. For the sake of
illustration, the construction of such a curve is depicted in Fig. 1 when K = 5,
n = (0.10, 0.32, 0.30, 0.20, 0.08) and r = (0.2, 0.2, 0.2, 0.2, 0.2).

Wewill say that the pattern (N,R) (strictly) Lorenz dominates the pattern (N′,R′)
iff L(N,R) (x) ≥ L(N′,R′) (x) for all x ∈ [0, 1] (with a strict inequality for at least one
value of x).

Implicit in the above construction is the fact that the relevant units in our compar-
ison are the individuals and what they ultimately receive through the redistribution
of the resources.

This should be contrastedwith alternative choices as those discussed and criticized
by Van Puyenbroeck (2006).17 For instance, in many measures, the frequencies do
not appear in the weighted sum and scholars look instead at an ordering like:

K∑

k=1

g

(
rk
nk

)
≤

K∑

k=1

g

(
r ′
k

n′
k

)
for all convex functions g.

17Van Puyenbroeck (2006) and also Goldenberg and Fisher (2019) contain a lot of develop-
ments including discussions about the rearrangement. In particular, they spend time contrasting
the arrangement based on the ratios rk

nk
with the arrangement based on the differences rk − nk . Both

papers agree that if k and k′ are such that rk
nk

> 1 and rk′
nk′

< 1, then k′ should be on the left of k but
possibly disagree on k and k′ when they are on the same side.
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In doing so, we move from the voters to the territories or the parties as rel-
evant recipients/units. This choice amounts to drawing a Lorenz curve where
the relevant coordinates on the horizontal (vertical) axis are 0, 1

K , 2
K , . . . , K−1

K , 1

(

(
0,

r̃1
ñ1∑K

k=1
r̃k
ñk

,
r̃1
ñ1

+ r̃2
ñ2∑K

k=1
r̃k
ñk

, . . . ,

∑K−1
k=1

r̃k
ñk∑K

k=1
r̃k
ñk

, 1

)
).

VanPuyenbroeck (2006) also discusses the possibilities offered byplotting respec-
tively the coordinates 0, 1

K , 2
K , . . . , K−1

K , 1 on the horizontal axis and the coordinates
0, n1, n1 + n2, . . . , 1 and 0, r1, r1 + r2, . . . , 1 on the vertical axis where the coor-
dinates are rearranged according to the ordering attached to n and r (under the
presumption that these two orderings are the same). As pointed out by Goldenberg
and Fisher (2019) and Van Puyenbroeck (2006), this leads to problematic issues
when we analyze seat transfers.18

In addition to Van Puyenbroeck (2006), the Lorenz curve that we use in our paper
has also been used by Colignatus (2017c, b, a) in a series of applications to recent
electoral data. In Chap.32, we compute this Lorenz curve for several apportion-
ment situations and one ideological situation. Let us conclude this section with three
remarks.

First, note that whenM = 1 andwhenwe limit ourselves to vectorsRwith integer
coordinates in the unitary simplex, then the Lorenz curve has a very simple shape
depicted in Fig. 2.

When the choice is the vector R where the kth element is equal to 1, then the
curve is flat until 1 − nk and is linear after. This implies that if k and l are such that
nk > nl , then the Lorenz curve attached to k is above the Lorenz curve attached to l.
The Lorenz curve ordering is compatible with the absence of an election inversion.
From the Lorenz perspective, it is always better to allocate the seat to the candidate
with the highest number of votes.

Second, note that when we compare (N,R) and (N′,R′) when R = R′ =
(1, 1, . . . , 1), the ordering of the units on the horizontal axis amounts to the ordering
of the units from the most populated to the less populated.

Third, note that the Lorenz criterion is also useful to compare situations where the
map of the districts has been reshaped. For instance, we may consider two situations
(N,R) and (N′,R′) where K ′ = K

2 , N
′ is deduced from N through a matching,

i.e. according to a grouping of the old districts by pairs, R = (1, . . . , 1) and R′ =
(2, . . . , 2) .19 If we move from the first situation to the second one, we may wonder
what the best matchings from a Lorenz perspective are.20

18The sum
∑K

k=1
r̃k
ñk

= ∑K
k=1

rk
nk

is not invariant under the transfer of seats between territories or
parties. Van Puyenbroeck writes “Conversely, and equally unfortunately, it seems difficult to sustain
that the latter construct, 1

K

∑K
k=1

rk
nk
, provides a reasonable benchmark of equality”.

19In the second situation, the number of districts has been reduced by one half while the total
population and the total number of representatives have remained unchanged.
20Clearly, grouping is always a good move from a Lorenz perspective. Note that this question is
formally related to the issue of aggregation. When we move to a more aggregated level and average
the values accordingly, we lose information and we ultimately underestimate malapportionment or
disproportionality.
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Fig. 2 Illustration of the Lorenz curve

2.4 Malapportionment and Disproportionality Indices

The Lorenz ordering defined in the preceding section is partial (we cannot compare
(N,R) and (N′,R′) when their Lorenz curves intersect). To overcome this difficulty
when it arises, it is useful to complement the measurement analysis based on Lorenz
by computing the value of some indices. A (relative) index is a function I which
maps any situation (N,R) into a real number I (N,R) and satisfies the monotonicity
property:

If L(N,R) (x) ≥ L(N′,R′) (x) for all x ∈ [0, 1] then I (N,R) ≤ I (N′,R′).

as well as the scale and population invariance properties.
Among the most popular indices, the Gini index is defined as follows21:

G(N,R) = 1

2

K∑

k=1

K∑

j=1

nkn j

∣∣∣∣
rk
nk

− r j
n j

∣∣∣∣ .

We could of course import from the inequality measurement literature other
indices among which Atkinson–Kolm’s indices are defined as follows:

21It is defined alternatively as the surface of the area between the diagonal and the Lorenz curve
L(N,R).
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AKTα (N,R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
(∑K

k=1 nk
(

rk
nk

)1−α
) 1

1−α

if α �= 1,

1 −
(

K∏
k=1

(
rk
nk

)nk
)
if α = 1.

The parameter α is a parameter of inequality aversion. The larger α is, the larger
is the aversion to inequality. When α tends to +∞, this index tends to

1 − Min
1≤k≤K

rk
nk

.

We could alternatively22 consider the class of generalized entropy indices defined
as follows:

GEα(N,R) =

⎧
⎪⎪⎨

⎪⎪⎩

1
α(α−1)

(∑K
k=1 nk(

(
rk
nk

)α − 1
)
if α �= 0, 1,

∑K
k=1 nk

(
rk
nk
ln rk

nk

)
if α = 1,

−∑K
k=1 nk ln

rk
nk

if α = 0.

The class of indicesGEα is part of the general class of indices I defined as follows:

I (N,R) =
K∑

k=1

nkg(
rk
nk

) where g is a convex function.

To conclude this point,23 let us mention the DK index (after Dauer and Kelsay
1955) which is advocated by Ansolabehere and Snyder (2008).

Let x∗ be the unique value of x such that L(N,R) (x) = 0.5. Fromwhat precedes, x∗
is larger than 0.5. The DK index attached to the pattern (N,R), denoted DK (N,R)

is the number 1 − x∗.
It evaluates the smallest size of a population of citizens which control a majority

of representatives in the assembly. For instance if DK (N,R) = 0.32, it means than
in the context (N,R), 32% of the electorate controls 50% of the seats/representatives.
Here we prefer to have large values of DK which means that, strictly speaking, the
index should be defined as being x∗ itself.

All these indices are useful in the case where the Lorenz curves intersect. Drawing
the Lorenz curves of situations is always important as when they do not intersect,
it shows that the conclusion does not depend upon the choice of a particular index.
In contrast, when they intersect, indices help to say something on the evolution of

22The two classes of indices are ordinally equivalent since they deduce from each other through
increasing transformations. See e.g. Lambert (2001).
23We could also consider other measures like for instance the ratio between the largest coordinate
and the smallest one but note thatwhile popular in inequalitymeasurement, this number is insensitive
to changes in other parts of the vectors.
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malapportionment/disproportionality. In Chap.32, wewill focus on theGini and DK
indices.

Let us remind the reader that the indices considered in this section are those which
are monotonic with respect to the Lorenz ordering introduced before. This means
for instance that the popular Gallagher index (Gallagher 1991) GA(N,R) defined as
follows:

GA(N,R) =
√√√√1

2

K∑

k=1

(rk − nk)2,

is not an index as defined above since it is not always monotonic with respect to the
Lorenz ordering.

This difficulty with Gallagher’s index is pointed out in Goldenberg and Fisher
(2019) and Renwick (2015). There is an enormous literature24 on the measurement
of disproportionality. As emphasized by Van Puyenbroeck (2006), who refers to a
“zoo of no fewer than 19 proposed indices” many of them, including among others
some versions of Gini’s index,25 are problematic if the concern is to examine how
far we are from the “one man, one vote” principle.
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“One Man, One Vote” Part 2:
Measurement of Malapportionment and
Disproportionality and the Lorenz Curve
B: Applications

Olivier de Mouzon, Thibault Laurent, and Michel Le Breton

Abstract This chapter contains applications of the tools to the evaluation of
malapportionment and disproportionality, already presented in Chap. 31. It is applied
to the 2010 Electoral College and the French parliamentary and local elections with
a special attention to the electoral reform of 2015. In these applications, the Lorenz
curve ordering is almost conclusive, and consequently the Gini and DK indices are
aligned and complement the almost complete ranking derived from Lorenz.

1 Introduction

This chapter applies to real-world cases the Lorenz curve and the Gini and DK
indices presented in Chap.31.

We apply these tools to several situations. First, we evaluate the Lorenz curve
together with the Gini and the Dauer and Kelsay (DK hereafter) indices for the latest
national legislatures. Second, we explore the Lorenz curve of each “département”
in the Metropolitan part of France as well as two indices before and after the 2015
electoral reform. Third and last, we estimate the evolution of disproportionality over
the last French parliamentary elections and the 2010 U.S. Electoral College.

The four real-world cases considered here are:
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1. The Evolution of the geographical Lorenz curve in the “Assemblée Nationale” of
the French 5th Republic.

2. The Evolution of the ideological Lorenz curve in the “Assemblée Nationale” over
the recent twenty five years of the French 5th Republic.

3. The Evolution of the geographical Lorenz curve in the “départements” before and
after the 2015 electoral reform.

4. The 2010 Electoral College in the USA.

Supplementary material including original data and code can be found at http://
www.thibault.laurent.free.fr/code/4CT.

2 The Evolution of the Geographical Lorenz Curve in the
“Assemblée Nationale” of the French 5th Republic

The composition of the “Assemblée Nationale” results from the election of a single
representative in each electoral district known as “circonscription électorale”.

The number of electoral districts has changed over time but since 1986, this num-
ber has remained unchanged at 577. Further, as pointed out by Sauger and Grofman
(2016),1 changes in the number and/or map of electoral districts, i.e. redistricting
plans2 in France3 have been very infrequent. They write:

“First redistricting plans in France have been very infrequent. During the more than five
decades of the Fifth Republic, France has had only three censuses leading to redistricting:
One linked to the initial district plan in 1958, then one in 1986 and, most recently, in
2009. Second, France has used the Adams method for apportionment. Of the set of standard
apportionmentmethods theAdamsmethod canbe shown tobe the onemost favorable to small
units by assuming even the smallest of them at least one seat. Third, [...], malapportionment
in France at the constituency level is only partially constrained by constitutional rules.”

1The factual and institutional informations reported in the beginning of this subsection are taken
from Sauger and Grofman (2016). In the third section of their paper, Sauger and Grofman (2016)
provide an assessment of the evolution of malapportionment from 1988 to 2012 for two different
choices of units: “départements” on one hand and electoral districts on the other hand. Their results
over the period from 1993 to 2012 are aligned with us.
2As noted by Sauger and Grofman (2016), “In France, we may think of redistricting as a two-step
procedure. First, seats have to be allocated to geographically defined administrative units. In France,
going back at least as far as the 3rd Republic, a divisor rule, called ‘méthode de la tranche’ (called the
Adams rule in the U.S.) is used to allocate seats to ‘départements’. Second, within ‘départements’,
single seat constituencies require that their boundaries be specified, and that rules be laid down
about the degree of population equality needed across them. In France, the basis of apportionment
and of evaluating population equality is namely persons (residents) rather than citizen population,
registered voters, or something else”.
3On the U.S. history, we refer to Ansolabehere and Snyder (2008) and Cox and Katz (2002).
Their books contain among other things a lively presentation of what is sometimes called the
“reapportionment revolution” initiated by the Supreme Court decision on March 26, 1962 in the
case Baker v. Carr.

http://www.thibault.laurent.free.fr/code/4CT
http://www.thibault.laurent.free.fr/code/4CT
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The 1986 plan provided for mandatory redistricting to be conducted after each
second general census but it was only on the basis of the third census, that of 2006
(results published in 2009), that a post-1986 districting plan was created. This failure
to follow the law caused protest and the Constitutional council issued a first warning
about the malapportionment issue. Sauger and Grofman (2016)’s appendix describes
the timing of the 2009 redistricting plan. They point out that

“The 2008 constitutional reform introduced by the government places a ceiling onmaximum
assembly size of 577 and also required the creation of eleven new seats designated for
French citizens living abroad. Since the imposition of both requirements could not be done
while preserving the existing seat allocations, a new apportionment was a necessity... It also
introduced a new element, an independent commission, the consultative council, which is to
review and publish a public statement on any redistricting bill, although the option is only
advisory”.

In spite of some continuity between 1986 and 2009, as noted by Sauger and
Grofman (2016):

“There were changes in the requirement for minimal representation of each apportionment
unit. The rule of a minimum of two seats for each metropolitan ‘département’ implemented
in 1986 was rejected as unconstitutional by the Constitutional Council, and minimal rep-
resentation was decreased to one seat per unit. That decision asserted that representation
should be based mainly on population. [...] When we move from apportionment of seats
to ‘départements’ to district lines within ‘départements’, a guiding principle was that the
population of districts within any ‘département’ were not to be under or over 20 percent of
the mean district population of the ‘département’ – except for special circumstances. Two
other principles approved by the Constitutional Council are also very important. The first
principle requires the territorial continuity of districts. The second principle is that cantons
with fewer than 40,000 residents should be kept intact within a single constituency even if
splitting the canton would have allowed for greater population equality across the districts
within a ‘département’ (86-208DC). The third principle is that municipalities with less than
5000 inhabitants should be kept intact”.

This election occurs every 5 years which means there were 6 elections between
1993 and 2017 (1993, 1997, 2002, 2007, 2012, 2017). For each election, we have
the results of the votes at the two rounds. Among the variables collected, we have
the number of people who have the right to vote, the number of voters and the votes
obtained by the different candidates.

It is important to point out that in the first application, only the data related to
the number of people who have the right to vote is available for each election. Since
the method to allocate the deputies is related to the number of inhabitants which is
different from the number of people who have the right to vote, our conclusions are
valid under the presumption that the ratio (voters/inhabitants) is sufficiently stable
across time and space.

Figure 1 represents the boxplot and kernel density plot of the number of people
who have the right to vote per “circonscription électorale”, with respect to the year
of the election. On this figure, it is obvious that the distribution of the number of
voters for each deputy has globally increased across the elections (meaning that the
French electoral population has increased throughout the country over the years).
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Fig. 1 Year by year boxplot (the boxplot presents three sample statistics—the lower quartile, the
median and the upper quartile; it also presents the outliers) and kernel density plot of the number
of people who have the right to vote per “circonscription électorale”

For any fixed election, we observe both outliers and a strong variance in the data,
which seems to indicate that some circonscriptions are better (those with less voters)
or worse (those with more voters) represented. Moreover, the distributions around
the median seem uniform for the elections held in 2012 and 2017, while there are
not for the elections held before.

In the next section, we try to better understand this distribution for a fixed year.

2.1 Analysis of the 2017 Election

We consider the population data in 2013 which is the one which is supposed to be
used to settle the geographical boundaries of the circonscriptions.

Those geographical boundaries were used for the 2017 election. For this election,
10 districts were allocated to the French citizens living in foreign countries. We did
not include these circonscriptions hereafter.

We look at the number of deputies observed per “département” to check if the
rule “a ‘département’ has at least one deputy and an additional deputy is allocated
every additional 125,000 inhabitants” is indeed followed.

Figure 2 plots the number of inhabitants per representative in each “départe-
ment” with respect to its population. Note that “départements” ZS (Saint-Pierre-et-
Miquelon), ZW (Wallis-et-Futuna) and ZX (Saint-Martin) have few inhabitants and
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Fig. 2 Number of inhabitants per deputy for each “département” with respect to its population and
dotted lines representing the average level (in dashed line) and the theoretical threshold leading to
a supplementary deputy (in dotted line)

have 1 deputy each. It explains why the ratio (number of inhabitants)/(number of
deputy) is very low for these circonscriptions.

Since the seat variable is integer valued, the rule is constant over intervals of
populations and admits discontinuous jumps:

• 1 deputy if the number of inhabitants is lower than 125,000,
• 2 deputies if the number of inhabitants is between 125,000 and 250,000,
• etc.

The “départements” which are close to the lower bound are favoured and the
“départements” which are close to the upper bound are disadvantaged. For example
“départements” 05 (Hautes-Alpes) and ZN (Nouvelle Calédonie) have two deputies,
but the first one has 139,279 inhabitants and the second has 268,767 inhabitants.
In this case, it is interesting to notice that this last “département” should have three
deputies like “département” 39 (Jura) which has 3 deputies and 260,502 inhabitants.
The departure lies in the fact that the population data considered here is not the same
as the one used to design the circonscription.

For the biggest “départements” (like 75-Paris), we observe that the ratio (number
of inhabitants)/(number of deputies) is close to the theoretical blue line 125,000.
The red line corresponds to the total number of inhabitants divided by the number
of deputies and is equal to 117,274.
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2.2 Lorenz Curve

Figure 3 plots the Lorenz curve for each year.
We define by n j

k the number of voters and r j
k the number of deputy in circonscrip-

tion k, k = 1, . . . , 577 in election j , j = 1997, 2002, 2007, 2012, 2017 (the election
of year 1993 was not kept because the data was incomplete). We plot on the horizon-
tal axis all the cumulative fractions: 0, ñ j

1, ñ
j
1 + ñ j

2, ñ
j
1 + ñ j

2 + ñ j
3, . . . , 1 and on the

vertical axis all the cumulative ordered fractions 0, r̃ j
1 , r̃ j

1 + r̃ j
2 , r̃ j

1 + r̃ j
2 + r̃ j

3 , . . . , 1,
where ñ j

k and r̃
j
k have been defined in Chap.31.

Zooming on this figure leads to the following observations:

1. 2012 seems always above the other curves except in two cases, where it is just
under but still very close to the maximum curve (1997 when ñ < 0.0075 and
mainly 2017 when ñ > 0.9625).

2. 2007 is below all the other curves when ñ < 0.72 except for ñ < 0.007 where it
is just above but very close to 2017.

3. 2002 is below all the other curves when ñ > 0.72 except for ñ > 0.985 where it
is just under but very close to 1997.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Cumulative voters

C
um

ul
at

iv
e 

de
pu

tie
s year

1997

2002

2007

2012

2017

Fig. 3 Lorenz curve for the last five French “Assemblée Nationale” elections (zooms for the dotted
rectangles can be found in the supplementary material)
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Fig. 4 Ranking of the closest Lorenz curve to the diagonal for each seat in the last five French
“Assemblée Nationale” elections (and zooms for the first and last seats, where most crosses are
observed)

4. At the beginning of the curve (i.e. ñ < 0.5), 1997 and 2017 are very close (except
for ñ < 0.05where 2017 is below 1997), then (when ñ > 0.5) 1997 is below 2017
(except for ñ > 0.999).

Moreover, we observe very few crossings between the curves. To check this, the
rankings of the 5 studied elections were computed seat by seat (for each of the 577
seats) and are presented in Fig. 4. The link with the specific Lorenz curve of this
application is the following: all the curves are based on 577 dots, which share the
same y-coordinates (cumulative deputies). Hence, the ranking is easily obtained.

All the curves cross one another at least once. Yet, in all pairs of curves but one,
there is always one curve that clearly is above the other one for most of the graph (at
least around 94% of the graph). And the 6% or less of the graph where the situation
is reversed is always at the very beginning or the very end of the graph.

The only pair of curves that does not match this trend is 2002 and 2007: in about
72% of the graph, the 2002 curve is above the 2007 one. Then, for the 28% or so
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remaining part of the graph, the situation is reversed (except at the very end where
the curves cross three times).

In spite of these few intersections, it seems that the elections in 2007 and 2002
were the least fair ones, then 1997, 2017 and finally the election in 2012 was the
most fair ones (the one just after the application of the new rules).

2.3 Gini Index

The Gini index leads to the following results:
Best: 2012 (G = 0.0464) < 2017 (G = 0.0497) < 1997 (G = 0.0517) < 2002

(G = 0.0589) < Worst: 2007 (G = 0.0613)
Unsurprisingly, the Gini index confirms the conclusion derived from the Lorenz

analysis: the elections in 2007 and 2002 were the least fair ones, then 1997, 2017
and finally the election in 2012 was the most fair ones.

2.4 DK Index

For the DK index, both versions (discrete4 and continuous5) lead to similar results.
Here are those for the continuous case:
Best: 2012 (DK = 0.435)< 2017 (DK = 0.431)< 1997 (DK = 0.429)< 2002

(DK = 0.419) < Worst: 2007 (DK = 0.416)
Again, the ranking is the same as with the Gini index and in line with what was

conjectured from the Lorenz curve shapes.

> Conclusion on Application 1
In this application, the Lorenz curve ordering is almost conclusive, and conse-
quently the Gini and DK indices are aligned with it for the fairness ranking of
the studied elections. Moreover, the curves and indices are very close from one
year to another, meaning that the fairness of the different elections seems quite
stable in time. It is clear that the 2012 reform has designed circonscriptions
fitting “at best” the population distribution of that year, leading to the fairest
election. For the following election, the population had evolved a little, leading
to a small decrease in the fairness of the year 2017 election. But its fairness
seems very close to the year 1997. And year 1997 is two elections after the
previous circonscription apportionment (which occurred in 1988). Then 2002
is one more election away as 2007. So it seems quite logical that the fairness

4In the discrete case: we search for the value of x∗ = min(xk), k = 1, ..., n so that L(xk) > 0.5 and
we get the DK with 1 − x∗

k .
5More computation time is needed (due to the linear interpolation) for the continuous case, but the
results are more accurate.
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tends to decrease when moving away from the last apportionment, because
population changes tend to follow a time trend.

3 The Evolution of the Ideological Lorenz Curve in the
“Assemblée Nationale” of the French 5th Republic

In this section, we consider the same data used previously.
However, instead of considering the effect of apportionment (as in the previous

section), we focus here on the differences between the vote shares and seat shares
obtained for each competing party. For instance, Fig. 5 shows these differences for
each of the 17 competing parties of the year 2012 election.

On this figure, the parties are ranked with respect to the Lorenz curve order: the
first party is the one that was best off for this election and the last party is the one that
was worst off (highest vote shares with no seat). The 4 first parties benefited from
the electoral system (higher seat shares than vote shares) at the expense of the 11
others. Some parties with higher vote shares than others still get lower seat shares
than the latter.
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Fig. 5 Differences between the vote shares and seat shares obtained for each of the 17 competing
parties of the year 2012 election
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Hence, the correlation between the two shares is unclear. These huge differences
cannot be explained by the small malapportionment studied in the previous section
(especially in the case of the year 2012 where the malapportionment was the lowest).
In fact, these differences are mainly due to the electoral system.6

Similar discrepancies are observed for the five other elections (years 1993, 1997,
2002, 2007 and 2017). They can be seen in the supplementary material.

3.1 Lorenz Curve

Figure 6 plots the different elections’ Lorenz curves on the same graph.
Let us definebyn j

k the number of voters for party k, k = 1, . . . , K j and r j
k the num-

ber of deputies obtained by party k in election j , j = 1997, 2002, 2007, 2012, 2017.
We plot on the horizontal axis all the cumulative fractions: 0, ñ j

1, ñ
j
1 + ñ j

2, ñ
j
1 +

ñ j
2 + ñ j

3, . . . , 1 and on the vertical axis all the cumulative ordered fractions 0,
r̃ j
1 , r̃ j

1 + r̃ j
2 , r̃ j

1 + r̃ j
2 + r̃ j

3 , . . . , 1, where ñ j
k and r̃

j
k have been defined in Chap. 31.

Yet, as the party choice set K j differs from one election to another (even in
quantity) and also from one circonscription to another, it is difficult to explain the
observed differences.

If we compare to Fig. 3, it appears that the Lorenz curves of Fig. 6 are much
further away from the diagonal and with a much higher variability from one election
to another. In fact, a deputy represents more or less the same number of voters
throughout the country, but the seat shares are not necessarily in line with the vote
shares.

Up to ñ = 26%, the election in 2017 seems to be themost proportional one (closest
to the diagonal). Then, after ñ = 26%, it is 2007.

On the contrary, up to ñ = 21%, the election in 2002 seems to be the least propor-
tional one (farthest from the diagonal). Then, after ñ = 21%, it is 1993. In fact, up
to ñ = 14%, the two curves overlap each other. So 2002 is a little worse than 1993
only for 5% of the vote shares.

Hence, 1993 seems the farthest from the proportional rule. Then, 1997, 2002 and
2017 seem close. Finally, 2007 seems the closest to the proportional rule, followed
by 2012.

There are some curves crossing. Most of the crosses are on the first third of the
vote shares. Then, after ñ = 54%, the curves do not cross.

6Note that the vote shares are computed at the first round of the election and the seat shares are
computed after the second round. The rules to be able to maintain candidacy between the two
rounds, and the game of political alliances strongly differ from the proportional rule.

http://dx.doi.org/10.1007/978-3-030-73249-3_31
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Fig. 6 Lorenz curves for 1993, 1997, 2002, 2007, 2012 and 2017 elections

3.2 Gini Index

The Gini index leads to the following results:
Best: 2007 (G = 0.134)< 2012 (G = 0.162)< 1997 (G = 0.189)< 2002 (G =

0.195) < 2017 (G = 0.201) < Worst: 1993 (G = 0.233)
As in the previous application, the Gini index is in line with the almost Lorenz

ordering: the elections in 2007 and 2012 were the most proportional ones, then 1997,
2002 and 2017 and finally the election in 1993 was the least proportional one.

Specifically, the Gini index enables to break the ties, i.e. to rank the three years
that were close but not straightforwardly ranked in terms of Lorenz curves.

3.3 DK Index

The continuous DK index leads to the following results which coincide with those
derived from Gini:
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Best: 2007 (DK = 0.360)< 2012 (DK = 0.312)< 1997 (DK = 0.291)< 2002
(DK = 0.271) < 2017 (DK = 0.264) < Worst: 1993 (DK = 0.242)

> Conclusion on Application 2
Like in the first application, the Gini and DK indices are aligned and com-
plement the almost complete ranking derived from Lorenz. However, in this
application, the curves and indices are far from the principle of proportional-
ity mostly due to the electoral system. Moreover, we observe more variability
from one election to another that could also be explained by the different party
choice-sets across time and space.

4 The Evolution of the Geographical Lorenz Curve in the
“départements” Before and After the 2015 Electoral
Reform

The main objective of this section is to explore how the geographical Lorenz curve at
the “département” level has changed as the result of an electoral reform simultaneous
with some redistricting.

Each “départment” elects a chamber of representatives. This legislative body is in
charge of a number of local policies and redistributes resources across the territories
within the perimeter of the “départment”.7

This election proceeds from a division of the “département” into districts called
cantons. Before 2015, the district magnitude was equal to 1: there was one seat per
district and ballots consisted of a single candidate.

From 2015 on, several changes were implemented. First, the number of districts
has been basically divided by two.8 Second, the district magnitude was increased
from 1 to 2 with a very peculiar “winner-takes-all” electoral formula: each ballot
consists of a ticket (not a list) of candidates (one male, one female).

The main objective of this reform was to guarantee the perfect equality of the
two genders in the chamber. The electoral reform leaves unchanged the size of the

7This issue of malapportionment has an intrinsic interest but since one of our main motivations was
rooted in distributive politics, it is legitimate to ask which fraction of the resources of a department
could be considered discretionary enough to be modelled as a divide to the dollar game? Besides
some anecdotical evidence that part of the budget falls into that category, we do not have, so far
estimates of the fraction that can be classified under this heading.We thank Karine Van Der Straeten
who has raised this question.
8In fact, the result of the division is rounded to the closest upper even number. Moreover, this
number is at least 17 for “départments” with 500,000 or more inhabitants, and 13 with 150,000 or
more.
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chamber9 and has two components: a new map of the districts and a new elec-
toral formula. It must also be pointed out that the reform has been exploited as an
opportunity to solve at least partially the severe malapportionment problems of the
historical electoral maps. This combination of multiple changes makes the problem
quite complicated to analyze.

In the rest of this section, we will proceed to an evaluation of the 2015 reform
from the perspective of the Lorenz curve. But before doing so, let us call the attention
of the reader on the alternative evaluation, motivated by voting among two camps,
that was presented in Sect. 2.2 in Chap. 31. We could indeed apply this method
here with a focus on the colour (D or R) of the chamber. It may well happen that a
majority of the voters of the “départment” vote D and a majority of districts vote R.
This is what we have called an election inversion. We could in particular compute
how the measures �1

λ and �2
λ have changed under the reform, for some λ. This

question is explored in Le Breton et al. (2017), where another index (called an index
of disproportionality) is also introduced. As demonstrated there, if the principle “one
man, one vote” is defined from that voting perspective, it is not clear that the reform
led to an improvement.

In the context of distributive politics, things are different. Had the reform exclu-
sively consisted in merging two old districts to create a new one, the post electoral
reform Lorenz curve would have been closer to the diagonal than the pre-electoral
reform one. This follows from a sequential application of the Pigou–Dalton principle.
When two districts merge, the equal distribution within the new district dominates
the unequal distribution prevailing in the union of the two old ones. We cannot apply
without qualification this argument to the actual reform for many reasons, on top of
which the fact that the redrawing of the map of districts was not as simple as a series
of pairing. In this section, we look carefully at this question. As in Application 1, we
focus here on the geographical distribution of the seats.10

4.1 Lorenz Curve

Figure 7 shows 100 graphs (one per “département” before the reform).
Each graph shows the Lorenz curve at the last “département” election before the

reform (dotted line) and, for 98 of them, the one just after the reform (full line).11

It is obvious that 96 “départements” out of 98 are better off after the reform:
the full line is always closer to the diagonal than the dotted one. This means that

9In fact, the size of the chamber has slightly increased in some “départments”, as explained in
Footnote 8.
10Again, we consider here the number of voters (available for the elections before and after the
reform) and not the number of inhabitants (as such data was not easily available for each canton).
So our conclusions are valid under the assumption that the ratio (voters/inhabitants) is sufficiently
stable across time and space.
11Note that the full line is present only for 98 “départements”: two small “départements” (overseas)
disappear after the reform, so only the dotted line appears for them.

https://doi.org/_31
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Fig. 7 Lorenz curves for each French “département” in the case of the 2015 election (full lines),
after the reform, compared to the previous one (dotted lines, just before the reform)

the reform has enabled us to take into account the population changes that had
occurred with time, similarly to the case of Application 1 (2012 election, right after
the reform, was fairer than the previous one). There is a clear exception in the case
of one “département” (Mayotte, last graph on the figure) which is worse off after the
reform. This may occur when the actual number of voters and number of inhabitants
are not so well correlated throughout that “département”.

The only questionable case is for “département” 94 (Val-de-Marne), but both
dashed and full lines are very close to the diagonal and almost overlapping. In fact,
the full line is closer to the diagonal at the beginning and at the end of the graph.
The dotted line is only very slightly closer to the diagonal from ñ = 34% to ñ =
74%. So, in the case of “département” 94, a few cantons are worse off, but overall
“département” 94 seems better off.
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Fig. 8 Gini index before and after the reform. The 3 classes “high”, “medium” and “low” are
defined with respect to the slopes and are represented on the map

It is interesting to notice that Fig. 7 before the reform shows dotted lines that can
still be not so far from the diagonal (as all studied elections of Application 1) and
others that are much further away (similarly to the worst case of Application 2). The
graphs with a red line far from the diagonal correspond to “départements” where the
population has probably most changed, so they most benefit from the reform, even
if all of them reach a fairer situation.

4.2 Gini Index

Figure 8 on the left represents the Gini index for each “département” before and after
the reform.

A line represents the evolution of the same “département”. The position of the
boxes and the slopes of the lines indicate clearly a negative trend (except for two
“départements”: Mayotte, clearly positive, and Val-de-Marne, flat but positive). We
have represented the lines with different colours according to the absolute values of
the slopes.

Our idea is to represent on a map those classes of “départements” and visualize12

if there exists a spatial autocorrelation. It appears that there exists a spatial autocor-
relation and a trend North/South. The “départements” with the largest changes are
mostly located in the South of France. The “départements” nearby Paris seem the
ones with the smallest changes. Finally, the “départements” with medium changes
are mostly located in the North. It would be interesting to use a spatial econometric
approach and model the Gini index by some socio-economic factors, to explain these
differences in behaviour.

As before, and unsurprisingly, the Gini index corroborates the judgments based
on the Lorenz curves.

12This kind of representation has been studied by Laurent et al. (2012).
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Fig. 9 DK index before and after the reform. The 3 classes “high”, “medium” and “low”, are
defined with respect to the slopes and are represented on the map

4.3 DK Index

The left part of Fig. 9 represents the DK index for each “département” before and
after the reform.

A line represents the evolution of the same “département”. We have represented
the lines with different colours with respect to the absolute values of the slopes, as
in the previous section (cf. Gini index).

The positions of the boxes and the slopes of the lines seem reversed compared
to those obtained with the Gini index, so the conclusions are very similar (fairness
is decreasing with the Gini index, and increasing with DK ). The only noticeable
change is for Val-de-Marne (“département” 94) where the more or less flat curve
shows a small reduction in fairness, which is not in line with what the Gini index
shows (we focus more on the area under the diagonal, which coincides with the Gini
index).

> Conclusion on Application 3
We have shown that, except in the case of “département” Mayotte, all the new
Lorenz curves are closer to the diagonal. As explained, the case of Mayotte
could be explained by a change in the percentage of people who have the right
to vote. In 96 out of 98 “départements”, the Lorenz Curves do not cross, so all
indices (G or DK ) confirm an improvement also. The interesting part of this
application is for “département” Val-de-Marne (94): the Lorenz curves cross
twice, meaning that the cantons having fewer seats per inhabitants and those
that have most seats per inhabitants are better off, whereas the intermediary
ones are worse off. This part is interesting because it shows that indices might
not be aligned when the curves cross. Here, the Gini index concludes that
the situation overall is better: the population update benefits to a majority of
inhabitants.
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On the contrary, the DK index concludes that the situation is worse because
a smaller number of people may have half of the seats. To avoid misinterpre-
tation, note that the inhabitants are not necessarily at the same abscissa before
and after the reform, especially as the cantons are not the same in the two cases.
So it might be the case that cantons that have the most population are better
off after the reform, but they may concern totally different people.

Spatial analysis is required if wewant to look atwhich areas are better/worse
off. In fact, in this example, the situation might even not have occurred at all,
had we access to the population of each canton (and not only to the number of
voters): the two curves with population might not cross.

Also, we have looked at the curves as if they were continuous, but in reality,
it might be difficult to obtain a set of cantons corresponding to at least half of
the cantons, where the total population is under half of the total population.
So the unfair situation captured by the DK index might in fact never occur.
Finally, both curves are very close to the diagonal, so the situation is not so
different before and after the reform. For all these reasons, no strong conclusion
should be based on this result, but it is interesting to stress that the Gini and
DK indices might not always be aligned, as in this case.

5 Electoral College

In this section, we consider the presidential U.S. elections during the 2010–2019
time period (based on the 2010 census).

The number of electoral votes (called hereafter “seats’’) of a state is the sum of
its number of representatives and number of senators (which is 2 for all states). The
District of Columbia is allocated 3 seats. This data is fully presented in Table 1 of
deMouzon et al. (2020). The aim of this section is to compare the malapportionment
when considering the allocation of the seats or the allocation of the representatives.

5.1 Lorenz Curve

Figure 10 presents the Lorenz curve when considering the number of seats (full line
curve) and the number of representatives (dotted curve), based on the 2010 census.

The dotted curve is very close to the diagonal which shows that the representatives
are allocated proportionally to the population of the State.However, the full line curve
is always further away from the diagonal which indicates that the fact to allocate
automatically 2 senators per state creates malapportionment.
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Fig. 10 Lorenz curve for the Electoral College in the U.S. elections based on the year 2010 census

5.2 Gini Index

The Gini index is equal to G = 0.0484 for the number of seats and G = 0.0106
when considering the number of representatives.

As the Lorenz curves do not cross, the Gini index is of course in line with what
was observed in the previous section.

In the ideal situation corresponding to G = 0 (Lorenz curve aligned with the
diagonal), it is interesting to observe that the number of seats has a Gini index 4.6
times higher than the number of representatives.

5.3 DK Index

The DK index is equal to DK = 0.433 for the number of seats and DK = 0.486
when considering the number of representatives.

Again, as expected, the DK index is in line with what was observed in the two
previous sections.

It is interesting to observe that the distance to the ideal situation (DK = 0.5 when
the Lorenz curve is aligned with the diagonal) is 4.8 times higher for the number of
seats than the number of representatives.

Hence, both indices, Gini and DK , give a very similar relative difference to the
ideal situation between the number of seats and the number of representatives.
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> Conclusion on Application 4
This fourth application enables to show, in a simple setting, that both indices,
Gini and DK , can sometimes be aligned even up to the relative difference
to the ideal situation between two settings. This is of course not a general
rule (e.g. in the previous application, we even had totally opposite outcomes in
“Départment” 94: with the Gini index finding an improvement after the reform,
whereas the DK index finds a worse off situation).

Of course, this result is straightforward: the representatives are allocated
on a proportional basis (and only suffer from the curse of rounding to integers
their numbers). Adding two senators, whatever the population of the state,
necessarilymoves the curve further fromproportionality of seats to populations
of the states. And obviously, this result is not dependant on the census year: an
equivalent result is obtained for the year 2000 census and any other.

Depending on the population distribution throughout the states in the dif-
ferent census years, it could be the case that some green (resp. red) curves are
closer to the diagonal than others. But the green curves are always very close
to the diagonal and the red ones always a little further away (although they are
still close to the diagonal, as the curves of Application 1).

A more pragmatic question is to know whether the two “senatorial” seats
really give a bonus to the small states in the presidential elections or whether
they more or less correct some other unfairness (due to the fact that the biggest
states have more representatives and thus more power in deciding who will be
president). This question has been studied in the light of the three main voting
probability models in de Mouzon et al. (2020).
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Visualizing France with Cartograms

Jonathan Haughton and Dominique Haughton

Abstract France has a long tradition of using statistical (choropleth) maps, which
use shading to represent the spatial distribution of a variable, such as population, by
department. Such maps lead the observer to underestimate the importance of urban
areas, especially Paris. A solution that complements the choropleth map is to cre-
ate a cartogram, which deliberately distorts each department so that the area is in
proportion to the variable (such as population). Shading can then be used to show a
second variable, typically representing density, on the same map. We illustrate the
use of cartograms for the case of metropolitan France, with maps that show the spa-
tial distribution of social housing, unemployment, immigration, suicides, election
patterns, and the advance of COVID-19. The maps are relatively straightforward
to construct, using ArcMap, but attention is needed to the use of colors and clas-
sifications. The cartograms reveal patterns that would not be clear based solely on
traditional statistical maps.

1 Introduction

For almost two centuries, maps have been used to convey social, economic, and
demographic information. In France, this is often done at the level of the depart-
ment, which provides enough granularity to show spatial differences, but without
overwhelming the observer with too much detail.
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There is a strong French tradition of innovative map-making. As far back as 1826,
Charles Dupin produced a choropleth (statistical) map of France where departments
with higher levels of illiteracy are colored in darker shades of gray.1 The high levels
of literacy in the Basque country, and in the northeast, emerge clearly. In 1858,
Charles Joseph Minard superimposed pie charts on a map of departments indicating
the number of cattle sent to the abattoirs of Paris. His most famous map depicts the
losses suffered by Napoleon’s army during the Russian campaign.2 Among the many
statistical maps produced by Emile Cheysson, one of the most interesting is a stack
of maps of France designed to dramatize the reduction in travel time over the two
centuries prior to its publication in 1888.3 While the term“cartogram”was sometimes
applied to such maps, most are best thought of as choropleth maps, or imaginative
extensions to them; Tobler (2004) reviews a number of these early examples of visual
analytics.

Modern choropleth maps use shading that is in proportion to an underlying statis-
tical variable and are a popular form of thematicmap. The top rowof Fig. 1 shows two
such maps. The first shades departments in 2020 according to population density—a
form of spatially intensive data; the dense areas around Paris, Lille, Lyon, and Mar-
seille stand out, in contrast to the emptiness of the Alps and of the Massif Central.
The top-right-hand map in Fig. 1 colors departments by total population—spatially
extensive information—and draws the eye somewhat better toward the centers of
population in France.

Yet neither map is entirely satisfactory, because the true size of the population, by
area, is not apparent. One solution is to superimpose symbols—such as the circles
in the lower left panel of Fig. 1—that are in proportion to population, creating a
graduated circles map. This map is designed to mimic those produced by INSEE on
its excellent website.4 The concentrations of population are certainly clearer here,
but the circles overlap, so it is still hard to get a good sense of how the population is
distributed.

In this paper we argue that it is typically useful to complement the standard
choropleth or graduated circles maps with cartograms, such as that shown in the
bottom-right panel of Fig. 1. In what follows we explain what cartograms are, how
they can be constructed, what makes a good cartogram, why they are illuminating,
and the potential limits to their use. This essay is inspired by the work on visual
analytics of Christine Thomas-Agnan and her colleagues.

1Dupin’smapmaybe found at http://math.yorku.ca/SCS/Gallery/images/dupin1826-map_200.jpg.
2Minard’s map of pie charts may be found here: https://en.wikipedia.org/wiki/
Charles_Joseph_Minard/media/File:Minard-carte-viande-1858.png and his celebrated “Carte
Figurative des pertes successives en hommes de l’Armée FranÇaise dans la campagne de Russie
1812-1813” is available here: https://en.wikipedia.org/wiki/Charles_Joseph_Minard\char"0023/
media/File:Minard.png.
3“Accélération des voyages en France depuis 200 ans”, Plate 8a in Album de Statistique Graphique
by Emile Cheysson. The map is available here: http://www.sci.utah.edu/~kpotter/Library/Papers/
friendly:2008:GASS/friendly_2008_GASS_14.png.
4For instance, https://www.insee.fr/fr/statistiques/2012713.

http://math.yorku.ca/SCS/Gallery/images/dupin1826-map_200.jpg
https://en.wikipedia.org/wiki/Charles_Joseph_Minard/media/File:Minard-carte-viande-1858.png
https://en.wikipedia.org/wiki/Charles_Joseph_Minard/media/File:Minard-carte-viande-1858.png
https://en.wikipedia.org/wiki/Charles_Joseph_Minard{char "0023}/media/File:Minard.png
https://en.wikipedia.org/wiki/Charles_Joseph_Minard{char "0023}/media/File:Minard.png
http://www.sci.utah.edu/~kpotter/Library/Papers/friendly:2008:GASS/friendly_2008_GASS_14.png
http://www.sci.utah.edu/~kpotter/Library/Papers/friendly:2008:GASS/friendly_2008_GASS_14.png
https://www.insee.fr/fr/statistiques/2012713
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Fig. 1 Population by Department 2020. Data source: INSEE. Notes: Density is in population per
square kilometer; deciles range from 15-26 to 9043-2123

2 Cartograms

A cartogram is a thematic map where areas are stretched or shrunk so they are in
proportion to the variable of interest. For instance, the bottom-right map in Fig. 1 is a
cartogram of the French departments, where the area of each is shown in proportion
to its population. The coloring, which is darker for denser departments, provides
additional information, in effect allowing the simultaneous presentation of two sets
of data—here the density, and relative totals, of population. The cartogram is rec-
ognizably France, but now the Paris region looms large, reflecting its substantial
share of the national population; on the other hand, the Alps andMassif Central have
shrunk into near demographic irrelevance.
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Why does this deliberately distorted map work so well? It is probably because
most viewers have a clear mental picture of France, and the cartogram provides a
contrast, almost a shock, as they realize how unevenly the population is distributed
spatially. If the population were evenly spread throughout Metropolitan France, the
cartogram would look just like a “normal” map, and be uninteresting. Thus, the real
power of the cartogram is that it “distorts the geography to overcome some of the
problems of heterogeneous reality” (Field 2017), and the larger those differences,
the more dramatic the visual effect. In practice, cartograms work best when shown
side by side with standard choropleth maps, so that the differences become obvious.

Cartograms come in a wide variety of styles and types, as the recent review by
Nusrat and Kobourov (2016) makes clear. Among the most effective, and the only
ones we use here, are diffusion-based cartograms, constructed using the algorithm
developed by Gastner and Newman (2004). These maps are statistically accurate,
in that the size of the areas reflect the underlying variable; they are contiguous, so
that areas are glued to each other, preserving the principle of adjacency; but they are
geographically distorted.

Some of the most dramatic cartograms are those available on the WorldMapper
website Worldmapper (2020), which offers a number of visualizations of the world
as a whole, with areas reflecting such variables as population, GDP, HIV/AIDS
cases, CO2 emissions, and the like. Hennig (2019) provides some background to the
WorldMapper project. In the United States, cartograms have been widely used to
visualize the national breakdown of votes in Presidential elections, where Flanagan
(2016) has written about the “battle of the maps.” Low-density states are more likely
to vote Republican, so an undistorted map shows a lot of red area; but when states
are scaled by the number of votes, the country looks more evenly divided between
red (Republican) and blue (Democrat).

Curiously, these types of cartograms have not been widely used for France, so in
this paper we provide several examples, which are interesting in their own right, and
may also inspire others to use the tool more frequently.

Below, we present a selection of cartograms related to housing, unemployment,
immigration, elections, and COVID-19, with brief commentaries on the content,
in the spirit of computer scientist Ben Shneiderman’s remark that “the purpose of
visualization is insight, not pictures.”

What makes a useful map? In his classic book The Visual Display of Quanti-
tative Information, Tufte (2001) argues that “there are two goals when presenting
data: convey your story and establish credibility.” He emphasizes the importance
of good design, argues for simplicity and the removal of graphical clutter (includ-
ing extraneous “chartjunk”), and favors maximizing the “data to ink” ratio. These
principles of parsimony are broadly applicable to cartograms, but maps (including
cartograms) are typically more complex than graphs, and require attention to other
principles. Buckley (2012) argues that maps, among other features, need to provide
a clear visual contrast, and must be legible. Geographer Keith Clarke (2020) asserts
that “good design makes a map more effective and interpretable”, and notes that the
eye picks up similarities, the proximity of phenomena, and continuities when it scans
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a map. This helps explain why the key patterns shown in a cartogram can be grasped
almost at a glance.

In what follows, we show examples of cartograms that work well, as well as some
that are not worth the trouble. Three generalizations, to which we return below, seem
particularly important:

1. Cartograms are typically most effective when paired with choropleth maps.
2. The coloration of cartograms works best when it measures variables related to

density (such as population density, or death rates) rather than totals (such as
population, or deaths).

3. Cartograms are most helpful when the geographic distortions they produce are
greatest.

Mechanically, it is relatively straightforward to create cartograms with ArcMap,
whichwas used for all the cartograms shownhere, butwe have also achieved adequate
results with ScapeToad (2008). A “cartogram tool for ArcGIS” (ESRI 2015) needs
to be downloaded and installed; the instructions are clear, and, with a little practice,
cartograms can be created as easily as new maps.

3 Housing and Camping

Of the 34.6 million residences in France, ten percent are secondary residences. The
top-left panel of Fig. 2 shows that they are concentrated along the Atlantic seaboard,
Mediterranean, and Alps. The cartogram below uses the same shading, but shapes
the departments so that they reflect the number of secondary residences. The large
number of secondary residences along theMediterranean is striking and is in contrast
to their dearth in the northeast.

The right-hand side of Fig. 2 shows another form of leisure facility, the camp-
site. The pattern is comparable to that of secondary residences, with the difference
that there are essentially no campsites in or close to Paris—indeed this is one of
the few cartograms for which the Parisian region remains unimportant—and they
are relatively more common in Brittany and in the southwest. While secondary resi-
dences are popular in the mountainous east, this is not as true of campsites. This is a
straightforward case where the cartograms quickly provide a more complete picture
than the statistical maps above them. They also contain more information, because
they illustrate two variables—the density of secondary residences (or campsites),
and their total number.

The next maps (Fig. 3) show the distribution of social housing, which accounts
for 14% of all residential units in the country. The density of social housing is
highest in the north, but the cartogram shows more clearly how much social housing
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Fig. 2 Secondary Housing and Campsites by Department, 2015. Data source: INSEE. Notes:
Secondary residences sharing reflects secondary residents as a percentage of all residents, anddeciles
range from 0.9-2.0% to 28.6-45.2%. Campsite shading reflects campsites per million population,
and deciles range from 0-21 to 746-1298

there also is in and around Paris, and how little in the south and southwest. When
compared to the population cartogram in Fig. 1, there is an evident geographical
inequality in the availability of social housing. When this cartogram is set beside
that for unemployment (Fig. 4), it is interesting to note that while both the north
and southeast have high unemployment rates, only the north has a high incidence of
social housing.
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Fig. 3 Social Housing by Department 2015. Data source: INSEE. Notes: Shading reflects social
housing per 10,000 population, and declines range from 240-343 to 1,131-1,360

4 Unemployment

The high rate of unemployment in France over the past several years is a matter of
ongoing concern. There was also wide variation across departments in 2018, from
5.3% in Cantal to 14.4% in Pyrénées-Orientales. The top-left graph in Fig. 4 is a
conventional map of the unemployment rate by department. The high rates at the
northern and southern edges of France are notable. It is also difficult to see what is
happening in the Paris area. The top-right graph shades, in beige, the departments
with more unemployed people, and this changes the picture considerably: AriÃ¨ge,
for instance, has a high unemployment rate, but given its small population, has
relatively few unemployed people. On the other hand, this choropleth graph is not
very convincing, because it does not give sufficiently precise visual cues as to the
extent of unemployment.

The bottom graphs in Fig. 4 are cartograms. On the left, the areas reflect the
unemployment rates, but this is hardly an improvement over the map above it, and
indeed is not an appropriate use of the cartogram: it is included here tomake precisely
that point. On the other hand, the cartogram on the bottom-right shows where the
unemployed are to be found—in the greater Paris area, the north, and along the
Mediterranean littoral. The persistence of differentials in unemployment rates is
discussed in some detail in Aragon et al. (2003), who examined this issue in the
context of the (then) Midi-Pyrénées Region: it is not always easy for the unemployed
to move to where jobs are more plentiful, and there may also be reluctance to move
from attractive parts of the country.
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Fig. 4 Unemployment by Department, 2018. Data source: INSEE. Notes: Shading reflects unem-
ployment rate (for red/yellow maps) and groups range from 5.3 to 13.1-14.0. Shading in tan map
reflects total number of unemployed, and groups range from 1,925-15,827 to 127,037-140,937

5 Immigration

Immigration is a politically and economically sensitive topic in France, as elsewhere.
In 2016 there were 6.1 million immigrants in Metropolitan France, out of a total
population of 64 million. Figure 5 shows the spatial distribution of immigrants in a
number of ways. The top-left panel is a choropleth map that shows the number of
immigrants and classifies departments into deciles, so there are approximately equal
numbers of departments with each degree of shading. The pattern of immigration
is not obvious, although urban areas (Paris, Lille, Lyon, Toulouse, Bordeaux, and
Marseille) appear to have relatively more immigrants.
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The top-right map shows the same data, but uses a different shading protocol,
with a set of fixed rather than relative classes. It shows that in most departments, the
absolute number of immigrants is small—typically less than 30,000. A somewhat
different picture emerges from the bottom-left panel of Fig. 5, where the shading
reflects the density of immigrants, as measured by the number of immigrants per
1,000 population. The low density of immigrants in Brittany, indeed in the areas
west of Paris, is striking and was not evident from the maps in the top row. The
most useful map is probably the cartogram, which shows how strong the pull of the
Île-de-France region is for immigrants: the maw of the greater Paris area accounts
for over a third of the total.

It is clear that the choice of shading is important to the story that is to be told.
This is true of all good maps, which emphasize features of interest and downplay
elements that are not germane to the matter at hand. But the fact that map-making
is as much art as science is also a call for the reader to be vigilant, because it means
that maps can be, in effect, manipulated by their makers. Unless otherwise noted,
we use a consistent shading scale for the maps within any figure, to allow for proper
comparisons. So the high immigration density in the Bouches-du-Rhône department
is shaded the same way in both panels at the bottom of Fig. 5.

6 Suicides

The geographic distribution of medical and health outcomes lends itself naturally to
cartograms. To illustrate this, we consider the case of male suicides. In 2015, almost
nine thousand people committed suicide in France, and just over three-quarters of
these were men. At 12.1 suicides per 100,000 people in 2016, France has one of the
highest suicide rates in Western Europe, more than double that of Spain and Italy,
and somewhat higher than the global average of 10.6 (Organization 2017).

There were wide differences in male suicide rates from department to department
in 2015, from an astonishing 343 per 100,000 males in Nord to just 9 per 100,000 in
Belfort. The cartogram on the right-hand side of Fig. 6 gives a somewhat better sense
of where the number of male suicides is large than the statistical map on the left:
there are almost as many suicides in Brittany, or in the North, as in the Parisian Basin.
High suicide rates appear to be a characteristic of rural and small-town France.

7 Elections

Cartograms have been widely used to show the spatial distribution of votes for
Democrats and Republicans in the United States. In France, political competition
does not divide so neatly along two-party lines: In the local elections of 2015 there
were at least 17 significant political parties. Nguyen et al. (2018) classify these into
three groups—Left, Right, and Far Right—and generate a ternary diagram, recreated
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Fig. 5 Immigration by Department, 2016. Data source: INSEE

here in Fig. 7, that locates each department (except for Paris and Lyon, which have
a separate electoral regime) on the relevant scales. For instance, the department of
Aube is marked with a red X: 14% of its votes went to parties on the left, 49% to
parties on the right, and 37% to parties on the far right. While the diagram does show
the heterogeneity in voting patterns, it is not designed to reflect the spatial pattern of
political preferences.

The spatial pattern of voting can be seen in the choropleth maps and cartograms
shown in Fig. 8. The strength of left-leaning parties in the west and southwest is
well-established and clear from both the map and the cartogram, although the latter
does show the substantial number of left-leaning votes in the north and near Paris.
The regional nature of the votes going to the Far Right is clear in the cartogram on
the bottom-right of Fig. 8, perhaps to a greater extent than one would understand
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Fig. 6 Male Suicides by Department 2015. Data source: INSEE. Notes: Shading reflects suicide
rate per 100,000 population, and declines range from 4.4-5-3 to 38.3-43.3

from the map above it. Despite these differences, the cartograms do not add a great
deal to what may be seen from the conventional choropleth maps, in part because
of the greater complexity of dealing with multiple political groupings rather than a
binary choice, but also because the spatial variation in voting preferences is in fact
relatively modest.

8 Covid-19

The devastating novel coronavirus that reached France in early 2020 had killed 516
people by March 20, and 16,643 by May 20, according to official statistics. The
geographic distribution of deaths related to Covid-19 has been extremely uneven,
with the great bulk of the cases occurring in the northeast, and in Paris and the
surrounding areas. The pattern is dramatized in Fig. 9. The top row of choropleth
graphs shows the evolution of the cumulative death rate from the virus betweenMarch
20 and May 20, during the period of its most rapid spread, and then the distribution
of cumulative deaths as of October 4, 2020. Initially, deaths were mainly contained
to the northeast, but gradually spread westwards.

The bottom row of Fig. 9 shows a series of cartograms that reflect the total number
of deaths. The pattern is remarkable: through May 20, the great bulk of deaths
continued to be in the greater Paris area, and in the northeast, with very few elsewhere,
although by October the pattern of deaths spread more widely around the country.
The early geographic confinement of the virus in France mirrors that of China,
where the great bulk of cases were in Hubei province; Gao et al. (2020) represent
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Fig. 7 Ternary Diagram of Voting by Departments in French Local Elections, 2015. Data source:
French Ministry of Interior

this very effectively with a Dorling cartogram, which represents provinces by circles
of different size rather than by maintaining the pattern of geographic contiguity as
we have done. Worldmapper (2020) has also made good use of cartograms to map
the worldwide evolution of COVID-19.

Cartograms show relativities, so the bottom-left cartogram that shows the distri-
bution of 516 deaths has the same area as the bottom-right cartogram that reflects the
geographic spread of 21,212 deaths. Perhaps the cartograms themselves should be
scaled. The tiny boxed cartogram in the bottom-right panel of Fig. 9 is the cartogram
for March 20 drawn to scale. A lot changed in six months.

9 Conclusions

Cartograms, of the type we have presented in the paper, can effectively complement
the more traditional choropleth maps that have, up to now, been the main tool for
conveying spatially distributed statistical data. They can be produced relatively easily

https://www.interieur.gouv.fr/Elections/Les-resultats/Departementales/elecresult__departementales-2015/(path)/departementales-2015/index.html
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and quickly using ArcMap, and they work very well when applied to France at
the departmental level. By European standards, France is a large and heterogenous
country. Most standard maps do not adequately convey the importance of the Paris
region, while cartograms make this absolutely clear. Cartograms of France are also
effective because readers begin with a clear mental picture of what France looks
like geographically and can appreciate the deviations from this baseline that are
represented in a cartogram.

There are a few basic recommendations for anyone planning to create and present
cartograms. First, they work best when coupled with choropleth maps, so the two can
be compared side by side. Second, it is important to choose the shading carefully,
as illustrated in Fig. 5; poor choices can give a misleading impression, or obscure
an interesting pattern. Moreover, the shading should reflect a variable that measures
density; the area of each unit in the cartogrammeasures the (relative) numbers. Third,
cartograms are most revealing when the distribution of some attribute—population,
campsites, suicides—differs substantially from the distribution of land area. When
this is not the case, as with the election results shown in Fig. 9, the cartograms do
not add a lot of insight.

Wegot interested in the topic of cartogramswhenwebegan to think about thework
of Christine Thomas-Agnan, who has long had an interest in the spatial dimensions
of statistics. Her paper on elections (Nguyen et al. 2018) led us to create cartograms
for the same electoral data (Figs. 7 and 8). Her work on regional unemployment
(Aragon et al. 2003) prompted us to construct cartograms for unemployment rates
and levels (Fig. 4). And her development of GeoXp (Laurent et al. 2012) has been
an inspiration: it is a package for exploratory spatial data analysis that allows one to
create maps with statistical information at the same time as graphs with associated
distributional data, such as densities, histograms, Lorenz curves, and the like. Itwould
be interesting indeed if that tool could be expanded to draw cartograms as well.
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Kernel and Dissimilarity Methods for
Exploratory Analysis in a Social Context
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Abstract While most of the statistical methods for prediction or data mining have
been built for data made of independent observations of a common set of p numerical
variables, many real-world applications do not fit in this framework. Amore common
and general situation is the case where a relevant similarity or dissimilarity can be
computed between the observations, providing a summary of their relations to each
other. This setting is related to the kernel framework that has allowed to extend
most of standard statistical supervised and unsupervised methods to any type of
data for which a relevant such kernel can be obtained. The present chapter aims
at presenting kernel methods in general, with a specific focus on the less studied
unsupervised framework. We illustrate its usefulness by describing the extension of
self-organizingmaps and by proposing an approach to combine kernels in an efficient
way. The overall approach is illustrated on categorical time series in a social-science
context and allows to illustrate how the choice of a given type of dissimilarity or
group of dissimilarities can influence the output of the exploratory analysis.
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1 Introduction

While most of the statistical methods for prediction or data mining have been built
for data made of independent observations of a common set of p numerical variables,
many real-world applications do not fit in this framework. Typical such examples
include categorical variables, relations between entities (e.g., a graph or network)
or even more complex frameworks such as categorical time series. A particularly
useful simplification of these more general situations is the case where a relevant
similarity or dissimilarity can be computed between the observations, providing a
summary of their relations to each other. In addition, when this similarity has some
mild additional properties, it is called a kernel and provides a strong mathemati-
cal framework (Berlinet and Thomas-Agnan 2004) for extending most of standard
statistical supervised and unsupervised methods to any type of data for which a rele-
vant such kernel can be obtained (Cristianini and Shawe-Taylor 2000; Shawe-Taylor
2004). This approach has already proven useful in computational biology (Schölkopf
et al. 2004) or in social sciences and humanities (Boulet et al. 2008; Massoni et al.
2013).

Nevertheless, the choice of a relevant kernel is still an open problem. Some authors
have proposed to combine all candidate kernels into a “meta-kernel” which is an
“optimal” linear or convex combination of the individual kernels. This approach
is known as the “multiple kernel learning problem” and has been widely stud-
ied in the supervised framework (Gönen and Alpaydin 2011). The present chapter
aims at presenting the less addressed unsupervised framework. More precisely,
after a brief introduction to kernels and their relation with the more general sim-
ilarity/dissimilarity settings (Sect. 2), we describe how statistical methods can be
extended to the kernel framework by using the so-called “kernel trick” (Sect. 3).
Section 4 focuses more precisely on the extension of an exploratory method, called
Self-Organizing Maps (Kohonen 2001), to the kernel framework and discusses the
issue of complexity and how it can be solved in this particular setting. Section 5
explains how kernels can be combined in an unsupervised setting, as a processing
prior to the unsupervised methods presented before. The overall approach is illus-
trated in Sect. 6 on categorical time series in a social-science context: originally
developed in bioinformatics, sequence analysis is indeed increasingly used in social
sciences for the study of life-course processes. In this section, we discuss how the
choice of a given type of dissimilarity or group of dissimilarities influences the output
of the exploratory analysis and allows to extract relevant patterns from this particular
kind of data.
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2 Kernels and More General Proximity Data

2.1 Kernels and RKHS

Kernel methods consider the case where data are described by a kernel obtained from
a Reproducing Kernel Hilbert Space (RKHS; Berlinet and Thomas-Agnan 2004).
Usually, the sample of interest takes values in an arbitrary space,X that encompasses
a variety of data types. This sample is then described by a function K : X × X → R,
which is symmetric (∀ x, x ′ ∈ X , K (x, x ′) = K (x ′, x)) and positive (∀ N ∈ N,
∀(αi )i=1,...,N ⊂ R and ∀ (xi )i=1,...,N ⊂ X ,

∑N
i,i ′=1 αiαi ′K (xi , xi ′) ≥ 0) and is called

the kernel. Indeed, in this case, it is known (Aronszajn 1950; Berlinet and Thomas-
Agnan 2004) that there exists a unique Hilbert space (H, 〈., .〉H) and a unique appli-
cation φ : X → H, such that

∀ x, x ′ ∈ X , 〈φ(x), φ(x ′)〉H = K (x, x ′).

(H, 〈., .〉H) is the RKHS of K and is also often called feature space; φ is the feature
map of K .

In statistics and machine learning, this framework is often used to deal with
observations that are not just multidimensional vectors (e.g., categorical time series
or graphs, among others) or to incorporate expert knowledge in the analysis (see
Examples 1 and 2 below with standard examples of kernels often used in practice).
The sample (xi )i=1,...,n is then described by pairwise relations between observations,
as measured by the kernel. This leads to the computation of the kernel matrix K =
(kii ′)i,i ′=1,...,n , with kii ′ = K (xi , xi ′), which is symmetric and semi-definite positive,
by definition of the kernel K .

The idea of kernel methods is to perform standard linear statistical analyses in the
feature space (H, 〈., .〉H). Since the only operations involved in these analyses are
related to the computation of dot products and norms, the Hilbert space H and the
feature map φ are usually not explicitly given but used implicitly through the kernel
K instead. This principle, which we illustrate below, is called the kernel trick.

Example 1 Some useful kernels

Kernels in Rp. Kernel methods are often used for standard multidimen-
sional data to provide more flexibility and non-linearity in the analyses.
In these spaces, a trivial kernel is given by using the standard dot product
of Rp: K (x, x ′) = (x ′)
x , which leads to the trivial feature map φ = Id.
The feature space is then unchanged as compared to the original space
(X = H = R

p) and the performed statistical analysis is thus still linear.
Among more interesting kernels for R

p, one of the most popular is
the Gaussian kernel (also called Radial Basis Function—RBF— kernel)
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Kγ (x, x ′) = e−γ ‖x−x ′‖2 , which shape is controlled by a hyper-parameter
γ > 0. This kernel is of special importance since it is continuous and uni-
versal for every compact set of X , C (meaning that the set of all functions
induced by x ∈ C → K (x, .) is dense in the set of all continuous functions
C ⊂ X → R). This property allowed Steinwart (Steinwart 2001, 2002) to
demonstrate the consistency of kernel classification and regression meth-
ods in the statistical sense (when the sample size grows to infinity and in
terms of convergence of the error loss to its optimum). The polynomial
kernel (K (x, x ′) = (1 − (x ′)
x)γ for γ > 0) and the exponential kernel
(K (x, x ′) = e(x ′)
x ) are also universal kernels.

Kernels on graphs. In many application fields including social sciences and
biology, graphs (also called networks) are widely used to represent pair-
wise relations between entities (friendship, professional contacts, regulation
between genes, ...). A number of kernels for graphs have been proposed to
provide a similarity measure between nodes based on the graph structure.
Most of them are derived from regularized version of the Laplacian of the
graph (Kondor and Lafferty 2002; Smola and Kondor 2003) and have been
used in prediction or exploratory analyses in biology (e.g., for introducing
known relations between genes (Vert and Kanehisa 2003; Rapaport et al.
2007) or in social sciences (e.g., to extract information from a medieval
social network Boulet et al. 2008).

2.2 From General Similarities to Kernels

In practice, data are often described by similarities (or dissimilarities) that are not
necessarily definite positive (see Example 2). This situation is addressed either by
generalizing kernel methods to the “pseudo-Euclidean” framework (Goldfarb 1984;
Ong et al. 2004), by embedding the sample directly into a Euclidean space whose
dot product resembles the original similarity (Multidimensional Scaling—MDS—is
one of these approaches Cox and Cox 2001), or by using a proper definite kernel
instead of the original indefinite similarity. In the latter case, the chosen kernel is often
obtained by a simple transformation of its spectrum meant to obtain only positive
eigenvalues. Chen et al. (2009), Schleif and Tino (2015) are two reviews describing
the topic of general similarity learning and its relation with kernel methods.
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Example 2 Some more general similarities and dissimilarities

Categorical sequences or time series. Categorical sequences are naturally
used in biology to represent the DNA sequences or proteins (with the cate-
gories being the amino acids). Among the many proposals for quantifying
the similarities between two sequences, edit distances (also known as “Lev-
enshtein distances” or “optimal matching dissimilarities”) (Needleman and
Wunsch 1970) are one of the most famous. Their main idea is to quantify
the minimum number of transformations needed to obtain a sequence from
another one. A cost is associated with insertion, deletion, and substitution
transformations to allow a flexible customization of these dissimilarities.
These measures have been increasingly used in social sciences as well, for
studying life-course processes (Abbott andTsay 2000;Massoni et al. 2013).
Section 6 describe in further details those dissimilarities.

Dissimilarities based on phylogeny. As already mentioned, kernels and dis-
similarities can also embed prior expert information in their computation.
A typical example is the case where variables are the abundances of dif-
ferent species for which a phylogeny information (a parental information
between those species) is given. Such frameworks are met when studying
the biodiversity of different places or inmetagenomics for instance. In these
applications, data are described by vectors of counts that represent the num-
ber of times given species or Operational Taxonomic Units (OTUs) have
been found for a given individual. For these data, computing a measure
of proximity between observations that accounts for the distances between
the species has been shown to provide a more relevant information than the
simple Euclidean distance between counts (Lozupone and Knight 2005;
Lozupone et al. 2007). Such distances include the (weighted) UniFrac dis-
tance or the generalized UniFrac distance (Chen et al. 2012).

3 Basics of Statistical Learning with Kernels

3.1 Supervised Setting

A simple example of a supervised learning method that has been extended to kernels
is the ridge regression. More precisely, when given a training sample {(xi , yi )i=1,...,n}
for which xi ∈ R

p and yi is a real number, the ridge regression finds the best linear
predictor for (yi )i based on (xi )i that minimizes the squared loss plus a regularization
term based on the �2 norm:
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β∗ = argminβ∈Rp

n∑

i=1

(
yi − β
xi

)2 + λ‖β‖2 (1)

for a given λ > 0, called regularization parameter, which is usually tuned by a cross
validation approach. The solution of Eq. (1) is given by

β∗ =
(

n∑

i=1

xix

i + λIp

)−1 (
n∑

i=1

yixi

)

,

that can also be written as

β∗ = (
X
X + λIp

)
X
y = X
 (

XX
 + λIn
)

y,

with y = (y1, . . . , yn)
 and X being the (n × p)-matrix with rows containing the xi
so that the matrix XX
 is the (n × n)-matrix with entries the pairwise dot products
x

i xi ′ for all i, i ′ = 1, . . . , n. In summary, the solution writes

β∗ =
n∑

i=1

α∗
i xi with α∗ = (

XX
 + λIn
)−1

y. (2)

The extension of this approach to samples (xi )i taking values in an arbitrary space
X through the use of kernels is called kernel ridge regression (Saunders et al. 1998).
The idea is simply to search for a linear predictor in the feature space induced by the
kernel, H, which transforms the optimization criterion of Eq. (1) into:

w∗ = argminw∈H
1

n

n∑

i=1

(yi − 〈w, φ(xi )〉H)2 + λ‖w‖2H. (3)

The best linear predictor in H is thus given similarly as the solution of Eq. (2)
but in the feature space, replacing xi by φ(xi ) and the R

p dot product by 〈., .〉H.
In particular, this means that the matrix XX
 is replaced by a matrix with entries
equal to 〈φ(xi ), φ(xi ′)〉H, which, by the so-called kernel tricks, turns out to simply
be equal to K. We thus have that

w∗ =
n∑

i=1

α∗
i φ(xi ) with α∗ = (K + λIn)

−1 y.

This result can alsobe foundas a consequenceof theRepresenterTheorem(Kimel-
dorf and Wahba 1970; Schölkopf et al. 2001) or directly solving the dual of Eq. (3):

α∗ = argminα∈Rn

1

n

n∑

i=1

(
yi − α
Ki

)2 + λ‖α‖2K, (4)
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in which Ki is the i-th row of the kernel matrix K and ‖.‖K is the �2 norm induced
by this matrix in Rn: ‖α‖2K = α
Kα.

Variants of this framework include Support Vector Machines (SVM, Boser et al.
1992), for the classification case, or ε-SVM, for the regression case. In both cases,
the main difference with the kernel ridge regression lies in the loss function but the
main principle of the approach remains identical: the Representer Theorem allows to
express the solution as a linear combination of the images by φ of the observations
and the solution is obtained by solving a dual optimization problem obtained thanks
to the use of the kernel trick.

3.2 Unsupervised Setting

Kernel methods have also been developed for the unsupervised setting. Among the
most direct of these extensions, the generalization of PCA (Schölkopf et al. 1998)
and that of k-means (Dhillon et al. 2004) are probably the most known and used.
They both use approaches similar to the supervised case described in the previous
section, and more precisely:

• computations related to the original method (i.e., standard PCA and k-means) are
performed in the feature space;

• to do so, the kernel trick is used instead of the standard computation of dot products
or norms.

Kernel PCA.

StandardPCA is oftenpresented as the eigendecompositionof thevariance/covariance
matrix associated to the (n × p)-matrix of sample measures, X. Assuming without
loss of generality that X is centered, this eigendecomposition is equivalent to the
dual eigendecomposition of XX
, that provides the coordinates (or scores) of the
projection of X on the different principal components. More precisely, if T is the
(n × k) column matrix with the first k eigenvectors of XX
, orthogonal and with
a norm equal to 1√

λ j
, then the (p × k) column matrix of the unit-scaled loadings

(orthogonal and with a norm equal to 1) is X
T.
Kernel PCA uses a similar approach taking advantage of the analogy between

XX
 and K and between the i-th row of X and φ(xi ). More precisely,

1. assuming that K is centered in the feature space1, the eigendecomposition of K
is obtained. It gives (λ j ) j=1,...,k , the first k eigenvalues of K, and (t j ) j=1,...,k , the
associated first k orthogonal eigenvectors with a norm equal to 1√

λ j
;

2. the first k (orthogonal) unit-scaled loadings are thus obtained as

1If K is not centered, the centering operation is simply K − 1
n 1nK − 1

n K1n + 1
n2

1nK1n , in which
1n is an n × n matrix with all entries equal to 1.
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wj =
n∑

i=1

t jiφ(xi ),

and have a norm equal to 1 inH. The coordinate of φ(xi ) on the j-th axis is thus
〈wj , φ(xi )〉H = λ j t j i .

Kernel k-means.

Similarly, kernel k-means performs a standard k-means algorithm in the feature space
H. To do so, in addition to computing dot products and norms using the kernel trick,
it is necessary to obtain a representation of the cluster barycenters. More precisely,
if (xi )i∈C are the observations assigned to a given cluster C , then, the barycenter is
given by

x̄C = 1

|C |
∑

i∈C
φ(xi )

and its (squared) distance to any other observation, xi , in the sample is obtained by

‖φ(xi ) − x̄C‖2H =
∥
∥
∥
∥
∥
φ(xi ) − 1

|C |
∑

i ′∈C
φ(xi ′ )

∥
∥
∥
∥
∥

2

H

= ‖φ(xi )‖2H − 2

|C |
∑

i ′∈C
〈φ(xi ), φ(xi ′ )〉H + 1

|C |2
∑

i ′,i ′′∈C
〈φ(xi ′ ), φ(xi ′′ )〉H

= kii − 2

|C |
∑

i ′∈C
kii ′ + 1

|C |2
∑

i ′,i ′′∈C
ki ′i ′′ .

In both situations (kernel PCA and kernel k-means), the adaptation of the algo-
rithms to kernel data is made by their direct rewriting in the feature space. New
data points that were not previously in the feature space (principal components or
barycenters) are represented by linear combinations of the images by the featuremap,
φ, of observations. In addition, distances to these new elements can be expressed in
function of the kernel, using the kernel trick. These adaptations are thus very similar
to the supervised case situations.

4 Kernel Self-Organizing Maps and Complexity Reduction

In this section, we present an extension of kernel k-means to a more general method,
which simultaneously performs clustering and dimensionality reduction for visu-
alization, namely, the self-organizing map (SOM) algorithm. Originally designed
for unsupervised exploration of standard numerical datasets (Kohonen 2001), the
method has been extended to handle non-numeric data by using approaches based
on Multiple Correspondence Analysis (Cottrell and Letrémy 2005) or by relying
on an algorithm that represents all the clusters by a prototype chosen among the
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data (median SOM, Kohonen and Somervuo 1998). Even if very general, the lat-
ter approach is very restrictive and generates representation issues, with associated
biases in the obtained maps. In the present section, we present the extension of SOM
to kernels that has been introduced by several authors for batch and online versions
(MacDonald and Fyfe 2000; Boulet et al. 2008) and has also been generalized to data
represented by general dissimilarities (rather than kernels) (Hammer and Hasenfuss
2010). The second part of this section will discuss associated complexity issues when
the sample size is large and review the different strategies that can be implemented
to overcome them.

4.1 Kernel Self-Organizing Maps

For the standard case of a dataset (xi )i=1,...,n of multidimensional observations
xi ∈ R

p, SOM algorithm is close to k-means algorithm, except that the clusters
are organized on a map equipped with a distance, d. More precisely, a map (also
sometimes called a grid) is a set of U clusters (also sometimes called units or neu-
rons) associated to physical locations in a low dimensional space. The clusters are
frequently positioned inR2 at coordinates (a, b)a=1,...,A, b=1,...,B with AB = U . Clus-
ters are related to each other using pairwise distances, that can be, for instance, the
Euclidean distances between their coordinates in R2. In addition, every cluster, u, is
summarized by a prototype, pu that takes its values in the input space Rp.

When fixing the number of neurons U , one should take into account the fact
that SOM is more intended as a method for non-linear mapping and dimensionality
reduction —in the sense of vector quantization—than as a method for clustering the
data into a small number of clusters. Some authors (Ultsch and Siemon 1990) suggest
to build very large SOMs, with a number of units U larger than the sample size, n.
In this context, SOM essentially reduces to non-linear mapping and to mining the
underlying distribution of the data. A second option, which is more commonly used
in practice, consists in building medium size maps that are smaller than the sample
size, but still large enough to have a few input observations representing each unit
(Kohonen 2001). This strategy is a good trade-off between mapping and clustering,
and a heuristic suggests to set U close to

√
n/10 (Villa-Vialaneix 2017).

Themethodaims at assigning everyobservation in thedataset to oneof the clusters,
while minimizing the distortion of the topology between the original space (here,
R

p) and the map (as seen through the distance d). The prototypes are thus expected
to be representative of the observations assigned to their cluster, as the barycenter is
representative of its cluster in kernel k-means. To do so, the stochastic version of the
method iterates over two steps:

• an assignment step in which an observation, xi is randomly chosen and assigned
to the unit with the closest prototype:

f (xi ) = argminu=1,...,U‖xi − pu‖2
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where f (xi ) is the cluster to which observation xi is assigned;
• a representation step in which all prototypes are updated according to the new
assignment:

∀ u = 1, . . . ,U, pu ← pu + μH(d( f (xi ), u))(xi − pu)

where μ > 0 is chosen so as to vanish during the training process and H is a
decreasing function, generally chosen such that H(0) = 1 and
limz→+∞ H(z) = 0.

The method is usually initialized with a random choice of the prototypes in R
p.

Different heuristics can be used to choose T : either it is defined proportionally to the
sample size (typically, T = 5n) or it is not fixed in advance and the algorithm stops
when the iterations no longer modify the solution.

The extension of SOM to kernel data is based on the same key tools as the
ones described for kernel PCA and kernel k-means, and which allow to re-write the
algorithm in the feature space H:

• the prototypes are expressed as convex combinations of the images by φ of the
observations, and the assignment step is written in terms of coefficients related to
each image φ(xi );

• the representation step is expressed with K by means of the kernel trick.

The full version of the method is provided in Algorithm 1.

Algorithm 1 Stochastic kernel SOM

1: ∀u = 1, . . . ,U and ∀i = 1, . . . , n, random initialization of the prototypes: p1u =∑n
i=1 β1

uiφ(xi ) with β1
ui ∈ [0, 1] and ∑

i β
1
ui = 1

2: for t = 1 to T do
3: Select randomly one observation i ∈ {1, . . . , n} � Assignment step

f t+1(xi ) = argminu=1,...,U‖φ(xi ) − ptu‖2H

= argminu=1,...,U

⎛

⎝kii − 2
n∑

l=1

β t
ul kil +

n∑

l,l ′=1

β t
ulβ

t
ul ′kll ′

⎞

⎠

4: For all u = 1, . . . ,U , � Representation step

pt+1
u = ptu + μt H

t (d( f t+1(xi ), u))(φ(xi ) − ptu)

⇔ β t+1
u = β t

u + μt H
t (d( f t+1(xi ), u))

(
1ni − β t

u

)
,

where 1ni is a vector of length n with all entries equal to 0 except for the i th, which is
equal to 1.

5: end for
6: return (pT+1

u )u (prototypes) and ( f T+1(xi ))i (clustering)
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4.2 Complexity of Kernel SOM

Kernel methods are generally considered efficient to deal with large dimensional
data (when the original space is a standard multidimensional space, Rp, with p
large) but often encounter scalability issues when the sample size, n, becomes large.
As noted by Rossi (2014), the complexity of kernel SOM is O(n2UT ) whereas the
complexity of the numeric SOM inRp isO(npUT ). When p � n and n is large, this
cost can be very prohibitive since, typically, T is of order O(n). Different strategies
have been developed to overcome this difficulty, among which approximations with
dimensionality reduction or sparse representations (Hofmann et al. 2015; Mariette
et al. 2017a) or exact approaches using a storage of intermediate results (Mariette
et al. 2017b). Other alternatives to reduce the complexity of kernel methods directly
use accelerated computations of the kernel dot products (used in most kernel meth-
ods) with tiled reduction schemes on GPU, without even storing the kernel itself
(see KeOps, https://www.kernel-operations.io/keops/index.html). They would be a
practicable approach to accelerate the assignment step of kernel SOM when the full
kernel matrix itself does not fit in memory but we will restrict to the simpler case
where the kernel is already computed and stored, in the remaining of this section.

Low rank and sparse approximations.

The first type of approaches relies on a simpler representation of the prototypes, with
a reduced number of (non-zero) coefficients. Mariette et al. (2017a) proposes two
types of solutions. The first one is very similar to the strategies developed inHofmann
et al. (2015) and uses a direct sparse approach in which an additional step is added
to each iterations, aiming at thresholding the smallest coefficients (βui )i for every
prototype pu . The second method relies on a prior step (a kernel PCA) to provide
inputs that are the coordinates of the original observations on the first k principal
components of the kernel PCA. The SOM algorithm then used is a simple numeric
SOMwith a complexity ofO(nkTU )with k � n. However, this prior step has a high
computational cost itself: the full eigendecomposition of K has a computational cost
ofO(n3) but it can be reducedwith theNyström approximation (Williams and Seeger
2000). This method allows to obtain an approximation of the eigendecomposition
of K using an eigendecomposition of a submatrix K(m) based on m observations
chosen at random in the original sample. The eigendecomposition approximation is
even exact if the rank of K is smaller than m. The complexity of the approach is
reduced to O(nm2) where m is usually chosen � n.

Exact approaches.

Most of the complexity of the kernel SOM comes from the assignment step, which
is O(n2U ). Re-formulating this step and transforming it into the update of stored
results, we reduced it to O(U ). More precisely, the assignment step writes

f t+1(xi ) = argminu=1,...,U At
u − 2Bt

ui

https://www.kernel-operations.io/keops/index.html
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with At
u = ∑n

j, j ′=1 β t
u jβ

t
u j ′k j j ′ and Bt

ui = ∑n
j=1 β t

u j ki j . Storing these quantities in
memory (a vector of size U and a (U × n)-matrix), the representation step reduces
to an update of At and Bt :

At+1
u = (1 − λu(t))

2At
u + λu(t)

2kii + 2λu(t)(1 − λu(t))B
t
ui

Bt+1
ui ′ = (1 − λu(t))B

t
ui ′ + λu(t)ki ′i ,

with λu(t) = μt H t (d( f t+1(xi ), u)). The representation step thus has a complexity
of O(nU ) (update of Bt ) and the total complexity of the approach is reduced to
O(nUT ). This reduction of the computational time is thus obtained at the cost of
storing operations with a memory cost of O(U ) and O(nU ) for At and Bt , respec-
tively.

5 Combining Kernels

Kernel methods have proven to be particularly efficient when data are described by
multi-source and multi-type information obtained on the same n observations. In
this case, each source of data, of a given particular type (numerical, graph data, fac-
tors,...), can be passed through a kernel, Km (m = 1, . . . , M): this kernel provides
the similarity information between observations, seen from the point of view of the
source m. The advantage of such an approach is that it provides a common repre-
sentation of the different sources that can be easily combined. A similar framework
is the one where multiple kernels can be obtained from a single dataset, each cap-
turing a specific feature. Combining these kernels avoids having to choose between
them, and also benefits of the information coming from different aspects of the data.
Among the combination approaches (Gönen and Alpaydin 2011), one that has been
widely developed is the computation of a convex combination of the M kernels into
a single meta-kernel:

Kγ =
M∑

m=1

γmKm, st

{
γm ≥ 0, ∀m = 1, . . . , M
∑M

m=1 γm = 1
.

In the context of supervised methods, the choice of (γm)m is usually done by solving
a global optimization problem that aims at minimizing a prediction loss, with respect
to the parameter of a given method (SVM for instance) and to the value of (γm)m
(Zhao et al. 2009; Yu et al. 2012; Huang et al. 2012; Gönen and Margolin 2014).
In the unsupervised setting, choosing relevant (γm)m is harder since the objective
function might not be as easily designed or because, as it is the case for kernel
PCA, its joint optimization to estimate the principal components and the (γm)m is
degenerate (Speicher and Pfeifer 2017).

Several propositions have thus been made (Lin et al. 2010; Zhuang et al. 2011;
Speicher and Pfeifer 2015; Wang et al. 2017; Mariette et al. 2018) to overcome
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this issue and, in the latter, we proposed two solutions that can cope with non-
numerical observations, contrary to the others. The first method, named STATIS-
UMKL (where “UMKL” stands for Unsupervised Multiple Kernel Learning), is
based on the STATIS method (L’Hermier des Plantes 1976; Lavit et al. 1994) and
aims at searching for a consensual meta-kernel. More precisely, the method searches
for the kernel that is the most similar, on average, to all the kernels to be combined,
(Km)m=1,...,M :

max
v

M∑

m=1

〈

Kv,
Km

‖Km‖F

〉

F

for Kv =
M∑

m=1

vmKm,

and v ∈ R
M such that ‖v‖2

RM = 1,

where 〈., .〉F and ‖.‖F stand for the Frobenius dot product and norm. It is easy to
show that the solution is given by the spectral decomposition of a M × M-matrix,

C, such that Cmm ′ = 〈Km ,Km′ 〉F
‖Km‖F‖Km′ ‖F

and γ is thus chosen as v∑
m vm

.
The second method first creates a proxy of the local geometry induced by each

kernel Km using a k nearest neighbor graph and the global adjacency matrix of
these M graphs, W is then used in a global criterion. This criterion is designed to
preserve at best the local geometry measured by W in the feature space induced by
the meta-kernel Kγ :

argminγ∈RM

n∑

i,i ′=1

Wii ′ ‖Ci (γ ) − Ci ′(γ )‖2
Rn ,

st γm ≥ 0 and
M∑

m=1

γm = 1,

with

Ci (γ ) =
〈

φγ (xi ),

⎛

⎜
⎝

φγ (x1)
...

φγ (xn)

⎞

⎟
⎠

〉

Hγ

=
⎛

⎜
⎝

K γ (xi , x1)
...

K γ (xi , xn)

⎞

⎟
⎠ .

This problem has a sparse solution that performs a selection of the kernels (some
of the entries of (γm)m are forced toward 0) because of the convexity constraint∑M

m=1 γm = 1 but this can be relaxed by replacing the �1 constraint with a constraint
on the �2 norm instead (the two versions are called sparse-UMKL and full-UMKL).

Once the kernel is obtained, it can be used as input to kernel-based algorithms,
like kernel PCA, kernel k-means, or kernel SOM for exploratory purpose.
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Fig. 1 Chronogram of the labor market structure as illustrated by the “Génération 98” dataset.
x-axis is time (in month) and y-axis is the proportion of each type of contract

6 Application

The combined-kernel SOM algorithm is illustrated on data related to school-to-work
transitions, extracted from the survey “Generation 98”2. The dataset contains infor-
mation on 16,040 young people having graduated in 1998 and monitored during 94
months after having left school. The labor-market status has nine categories, labeled
as follows: permanent contract, fixed-term contract, apprenticeship, public tempo-
rary contract, on-call contract, unemployed, inactive,military service, education. The
following stylized facts are highlighted by a first descriptive analysis of the data, as
shown in Fig. 13:

• permanent contracts represent more than 20% of all status after 1 year and their
ratio continues to increase up to 50% after 3 years and almost 75% after 7 years;

• the ratio of fixed-term contracts is more than 20% after 1 year on the labor market,
but it is decreasing to 15% after 3 years and then seems to converge to 8%;

• almost 30% of the young graduates are unemployed after 1 year. This ratio is
decreasing and becomes constant, 10%, after the fourth year.

Some trajectories were duplicated (some people had exactly the same job trajec-
tories) so, to reduce redundancy and computational time, we used only the 12,471
unique trajectories.

Three optimal combined kernels were computed from three sets of dissimilarities
with different features, and each of these kernels was then used as input to the kernel
SOM. The three sets of dissimilarities are described with more details in the next
section. For each set of dissimilarities, the optimal combined kernel was obtained as
follows:

2Available thanks toGénération 1998 à 7 ans - 2005, [producer] CEREQ, [diffusion] CentreMaurice
Halbwachs (CMH).
3The graphical illustrations were carried out using the TraMineR package (Gabadinho et al. 2011).



Kernel and Dissimilarity Methods for Exploratory Analysis in a Social Context 683

• first, each dissimilarity matrix, D, was transformed into a (centered) similarity
matrix by computing

∀ i, j = 1, . . . , n, s(xi , x j ) = −1

2

⎛

⎝D2
i j − 1

n

n∑

l=1

D2
il − 1

n

n∑

l=1

D2
jl + 1

n2

n∑

l,l ′=1

D2
ll ′

⎞

⎠ .

Each of these resulting similarity matrices was used as a kernel, even though a
small part of their spectra were non-positive;

• second, the resulting kernel matrices were optimally combined using STATIS-
UMKL, as described in Sect. 5.

All dissimilarities were computed using the R package TraMineR (Gabadinho
et al. 2011) and the combination of kernels was obtained using the R package mixK-
ernel. Each combined kernel was processed through a kernel self-organizing map
using the implementation provided in the R package SOMbrero. For each map to be
trained, a 10 × 10 configuration was selected and default values of the package were
chosen for the initialization step, the topology of the map (choice of Ht in Algo-
rithm 1) and the decreasing value μt (also as in Algorithm 1). We decided to use 10
× 10 maps as a trade-off between having a meaningful visualization and a reduced
number of meaningful typical trajectories. Since many trajectories are redundant—
the permanent contracts are overrepresented—a map with a number of units equal
to about a tenth of the number of inputs was a reasonable choice. Final results were
represented as chronograms: more precisely, each unit of the map was featured by
a rectangle containing the chronogram of the subsample of trajectories assigned to
this unit.

6.1 Three Sets of Dissimilarities and Relations Between
Them

There is currently a vast literature devoted to measuring similarities for longitudinal
data, and the community agrees that the differences between the various criteria
focus on three different aspects of sociological importance: the sequencing or the
order in which the states appear, the timing, and the duration of the states. A recent
and detailed review of these methods, focusing on these different aspects, and also
introducing some new and versatile criteria, is available in Studer and Ritschard
(2016). Starting from these considerations, three sets of distances were selected for
the present study: the first aimed at focusing on the sequencing and possibly the
duration, the second on the timing, and the third on the duration only.

The first group of dissimilarities contains one criterion based on the number of
matching subsequences, and two based on generalizations of the classical OMmetric
(Needleman and Wunsch 1970; Abbott and Forrest 1986):

• The SVRspell distance, proposed by Elzinga and Studer (2015), is computed using
the number of matching subsequences within the distinct sequences of states,
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where the durations of the spells are weighted by some parameter b. This method
is built to be sensitive to sequencing, and, depending on b, it may be also made
sensitive to durations. In the following, we set b = 0, so that the sensitivity to the
order only is put forward.

• The OMspell distance, introduced in Studer and Ritschard (2016), generalizes the
OM distance to sequences of spells. The increasing size of the alphabet and of
the costs to be specified are controlled through a linear function depending on a
parameter δ, representing the cost of extending or compressing a spell by one unit
of time. For small values of δ, the method favors the expansion or the compression
of existing spells. For δ = 0, OMspell reduces to the usual OM distance between
the distinct sequences of states. Let us remark here that the smaller δ, the less
sensitive the criterion is to the duration of the spells and the more it is to the
sequencing.

• The OMstran distance, also introduced in Studer and Ritschard (2016), adapts the
OM distance to sequences of transitions. Here also, the alphabet and the number of
costs to be specified are much larger than in the usual setting, but the dimension of
the parameters is reduced by considering a convex combination between the costs
of the spells and the transition costs, controlled by some w. In the following, the
value ofwwas fixed so as to favor a criterion sensitive to differences in sequencing.

The second set of dissimilarities was focused on highlighting timing. Four dis-
tances were tested: the Hamming distance (HAM), based on the number of non-
matching states, the Euclidean distance (EUCLID), which, in this case, is the squared
root of the Hamming, the χ2 (CHI2), which is similar to the two previous dissimi-
larities except that it gives more weights to the infrequent states, and the Dynamic
Hamming distance (DHD). For both EUCLID and CHI2 distances, the sensitivity
between duration and timing is controlled through a parameter, L . When L = 94
(i.e., in our case the trajectory length), scores are similar to those of the Hamming
family regarding timing, when L = 1, dissimilarity measures are more sensitive to
duration. DHD, proposed by Lesnard (2010), generalizes the Hamming distance by
considering an OM dissimilarity without insertions or deletions, and with the sub-
stitution costs defined at each temporal instant from the corresponding transition
matrices. While taking the position in the sequence and time into account, DHD has
often been criticized for its risk of over-parameterization. In the following, distance
parameters used are specified between parentheses.

The third group of dissimilarities was defined to be sensitive to duration of
states. Again, four distances were selected: Euclidean and χ2 distances between
state distributions in the whole trajectories, OMspell with δ = 1, which is sensitive
both to sequencing and duration, and a distance based on the length of the longest
common subsequence of two trajectories,LCS, as described inBergroth et al. (2000).
Whereas the Euclidean distance is more sensitive to differences between states with
a high duration, the χ2 gives more importance to rare states.

Figure S1 of Supplementarymaterial illustrates the relations between the different
distances on a cosine matrix (computed from the Frobenius dot product) for the
school-to-work transition dataset. Within the first group of distances, SVRspell with
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b = 0 appears to behave very specifically, and is even very different from the other
distances of its own group, except for the OMspell with δ = 0. This is explained by
the fact that SVRspell is sensitive to the sequencing only, and not at all to timing or
duration. Furthermore, since it is based on the number of common subsequences only,
its principle and computation are quite different from its OM-based counterparts.

The only distance highly correlated toSVRspell is theOMspellwith δ = 0,which
is also sensitive to sequencing only. The OMspell with δ = 0 is also very different
from the distances in its own group, except for OMspell with δ = 0.1 and OMstran.
These two distances introduce some sensitivity with respect to the duration of the
spells, while still mainly favoring sequencing. These results are consistent with the
conclusions in Studer and Ritschard (2016), based on simulated data.

In the second group, the four distances are all very similar, and more particu-
larly HAM, Euclid and DHD. The χ2-distance stands out because of its particular
weighting. We can also note that all four distances in Group 2 are also very similar
to OMstran and OMspell with δ = 0.1, which favor sequencing and duration, and
very different from SVRspell and OMspell with δ = 0, which favor sequencing
only.

Within the third group of distances, all distances are also very similar, even if
the value of the cosine is a bit lower than within distances in the second group.
The distances in the third group are also similar to the ones in the second group, to
OMspell with δ = 0.1 and to OMstran in the first group.

In conclusion, SVRspell and OMspellwith δ = 0 are very different from all other
distances, which are globally similar. This indicates that, for this dataset, criteria
favoring sequencing are quite opposite to those favoring timing or duration.

6.2 Results of the Clusterings

The map obtained with the first four distances is provided in Fig. 2. For the sake of
conciseness, the other two maps are available in Figures S2 and S3 and in Section
S2 of the Supplementary material.

As one may easily see, most of the clusters show smooth sigmoidal transitions
between states, and in some cases “sandwich”-like representations. These patterns
are inherent to the fact that the first set of distances was built to point out similar-
ities in terms of sequencing and not in terms of timing or duration. A chronogram
representation is not a well-suited representation in this case because it allows for
temporal shifts. Despite that, some clusters of particular interest can be identified,
such as the lower left corner of the map, showing the outcomes of public fixed-term
contracts.

The final convex combination for the first group of distances was:

0.27 × OMstran + 0.26 × OMspell(δ = 0) + 0.28 × OMspell(δ = 0.1) + 0.19 × SVRspell.
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Fig. 2 Final map obtained with the first group of distances

It gives more weight to the OM-inspired distances, which appear to be more discrim-
inant than the SVRspell. As it has already been stressed in the comparison between
distances (Figure S1 of the Supplementary material), the SVRspell distance behaves
very differently from all the other distances and, according to Studer and Ritschard
(2016), it is very sensitive to sequencing and small random perturbations. The latter
may be a reason for which the other dissimilarities appear to be fitter for clustering
trajectories based on their sequencing properties.
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6.3 Concluding Remarks

This chapter has presented a global approach to perform exploratory analysis in
the presence of multiple sources of data or of multiple kernels describing different
features of the data. The approach has been illustrated on a dataset of categorical
time series representing labor-market status of recently graduated people. We have
shown the effectiveness of the approach to identify a relevant typography of the
dataset, with contrasting results depending on which features the focus is put on.
Different dissimilarities led to highlight different characteristics of the trajectories,
some less suited to chronogram representations than others. To fully exploit that
diversity, alternative representations would be needed, which could be able to better
represent similar duration of states or similar global distributions of the trajectories
and thus to highlight the distance features.
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Of Particles and Molecules: Application
of Particle Filtering to Irrigated
Agriculture in Punjab, India

Alban Thomas

Abstract We present an estimation method for agricultural crop yield functions,
when unobserved productivity depends on water availability that is only partially
observed. Using the setting of Bayesian non-linear filtering for estimating Hidden
Markov Models, we discuss joint estimation of state variables and parameters in a
structural production model with potentially endogenous regressors. An extension
to particle filtering with resampling, convolution filter based on kernel regulariza-
tion, is then discussed. We apply this non-parametric method to estimate a system of
structural equations for rice crop yield and unobserved productivity on panel data for
10 districts in Punjab, India. Results based on computer-intensive resampling steps
illustrate the interest of convolution particle filtering techniques, with low interquar-
tile range of time-varying estimates. We compare fertilizer elasticity estimates with
and without accounting for unobserved productivity, and we find a significant rela-
tionship between unobserved productivity and nitrogen fertilizer input, when the
former is conditioned on district-level climate variables (summer rainfall, potential
evapotranspiration).

1 Introduction

Irrigation has been a major driver of the tremendous increase in crop yield of major
crops, in many developing countries over half a century. Yet, the dynamics of water
productivity is not so easy to evaluate, because contrary to other production inputs
such as labor, fertilizer, and pesticide, water used on crops is in most cases not
observed by the practitioner.

While water is a major agricultural input in many settings due to the need to
complement rainfall, its use is difficult to record for several reasons.Onemajor reason
is that irrigation water is seldom charged in proportion to its actual use. Second, even
if water abstracted from surface or ground resources is observed, the ultimate water
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volume available to plants is difficult to observe accurately, because of heterogeneous
local soil and climate conditions. Third, proxies for water availability such as model-
based agronomic simulations or data on irrigation facilities are not always available
and are often of poor precision. Fourth, irrigation water is often a complement to
rainfall, the latter being in most cases more and more insufficient given targeted
crop yields. The contribution of rainfall to water availability for crops in irrigated
agriculture is therefore a process with multiple channels, involving direct water use
from rainfall, water stocking in reservoirs, canals and wells, as well as groundwater
recharge (Lapworth et al. 2014).1 As a consequence, evaluating agricultural input
productivity in settings where water is a major input, from irrigation and/or rainfall,
is a major empirical challenge.

Beside available water for crops, there aremanymore determinants of agricultural
production that are also unobserved and that condition both crop yield and input use,
resulting in possible simultaneity and/or selection bias in estimation. Production eco-
nomics has provided the analyst with consistent methods to deal with the estimation
of production functions under productivity that is unobserved by the econometrician
but observed by the producer (the firm). When unobserved productivity is correlated
with regressors such as inputs, least squares estimates of the production function are
affected by a simultaneity bias (Sickles and Zelenyuk 2019). Major advances to deal
with such bias have been Olley and Pakes (1996) and Levinsohn and Petrin (2003),
who suggest controlling for unobserved productivity by introducing inverse demand
functions for investment or intermediate inputs (labor), see Chap. 14 (Sect. 14.5) of
Sickles and Zelenyuk (2019) for details. However, when only limited information
on such inputs are available, other estimation methods are needed than this control
function approach. Kutlu and Sickles (2012) have proposed a structural estimation
procedure based on a Kalman filter technique applied to random coefficients. This
procedure is derived from Kim (2006) and is adapted to structural models with
endogenous regressors of the form yt = f (xt , β) + wt + εt , where yt is output, xt is
an observed input, εt is an i.i.d. error term, and wt is unobserved heterogeneity, spec-
ified as a dynamic process wt = ρwt−1 + ztγ + ut , with zt a vector of exogenous
variables.

We propose to generalize the structural estimation approach above, described in
Sickles and Zelenyuk (2019), by allowing unobserved heterogeneity wt to interact
with observed input xt , and by relaxing distributional assumptions on the error terms
of the model. To do this, we consider a more flexible procedure than the Kalman filter
used in Kutlu and Sickles (2012), and we specify a non-linear production function
with quadratic and interaction terms. The structural model we propose is dedicated
to deal with potential endogeneity caused by unobserved productivity terms that are

1When the objective is to evaluate water productivity in agriculture, these multiple contributions
have to be accounted for, given that the relevant indicator in biophysical terms is water availability
for the crop (for most crops, in the soil below the root zone). The latter can be related to available
groundwater resources, irrigation facilities, and observed ambient climate variables. However, each
of these components is not sufficient to represent the full volume of water available to grow crops
(i.e., below the root zone of most plants), which in most cases forms a combination of direct rainfall
on crops, groundwater recharge, and/or surface reservoirs used for irrigation.
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likely to be correlated with observed inputs. It is of the form: yt = g(xt ,wt , β) + εt ,
andwt = ρwt−1 + ztγ + ut , where g(.) can be a flexible functional form that satisfy
regularity and concavity conditions.

Our application to agriculture consists in specifying crop yield (production in
tons of a crop such as rice, per unit of surface such as hectares) as an increasing and
concave function of both observed fertilizer application rate and unobserved produc-
tivity. By specifying a dynamic process to represent the latter, a structural model can
be considered with crop yield as the observed dependent variable, and productivity as
an unobserved state variable, depending on local variables that condition its dynam-
ics. Our model admits the specification discussed in Sickles and Zelenyuk (2019) as
a special case and is justified by the need to represent agricultural production as a
concave function in a primal framework, where a major input such as water is not
directly observed. Although water availability can be associated with observed cli-
mate and soil conditions, irrigation water and actual water available to plants remain
in most cases unobserved. For this reason, it is recognized in our framework as a
major component, although not the only one, of total unobserved productivity. We
emphasize at this stage that our purpose is not to estimate unobserved water avail-
ability or productivity, but we aim at providing a consistent estimation procedure for
agricultural production (crop yield function) with unobserved heterogeneity (includ-
ing water availability to crops). We use the theoretical setting of Hidden Markov
Models (HMM) to specify and estimate such system of equations on time series data
for Punjab, one of the most important Indian states in terms of agricultural produc-
tion (in particular, rice and wheat). We use district-level data from the Icrisat Village
Dynamics of South Asia project on rice crop yield, rainfall during the hot season
(Kharif) and fertilizer use, complemented by data on potential evapotranspiration
(ETP) to control the process of unobserved rice productivity.

To our knowledge, this is the first time a method of particle non-linear filtering is
applied to the estimation of agricultural production (crop yield function), to account
for unobserved productivity, partly associated with water availability. Although the
paper does not propose any new estimation method, its major contributions are, first
to extend the basic production model with unobserved productivity discussed in
Sickles and Zelenyuk (2019), with a more flexible form interacting the latter with
observed regressors; and second, to propose an original estimation method for such
model, with less distributional restrictions than the Kalman filter approach to Hidden
Markov Chains.

The chapter is organized as follows. In Sect. 2, we briefly present the HMM
and discuss early estimation methods, before moving to a presentation of particle
filtering as a general Bayesian non-linear filtering method. Joint estimation of state
variables and parameters is also discussed. Section 3 presents an interesting extension
to particle filtering with resampling: the convolution filter technique based on kernel
regularization. The empirical application is presented in Sect. 4, in which we present
the data, a first estimation of the crop yield function and model calibration, and
estimation results. Section 5 concludes.
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2 Estimation of Hidden Markov Models

Consider a dynamic state-space system of equations of the form

yt = f (wt ; θ; εt ), (1)

wt = g(wt−1; θ; ut ), (2)

where wt is a scalar unobserved (hidden) state variable, yt is the observed dependent
variable, εt and ut are independent (white noise) random terms. Functions f (.)
and g(.) represent the probability density functions (pdf) of observation and state
variables respectively. Parameters are gathered in vector θ in the observation and
state equations, with possibly a common subset.

A wide variety of economic models can be specified as Equations (1) and (2),
including production models dedicated to efficiency analysis of industries, firms,
farms, etc. Of particular interest in empirical applications are stochastic frontier (SF)
models, which measure the maximum amount of output that can be obtained from
a given level of inputs. In the SF framework, measurement errors (two-sided error
terms) and (in)efficiency indexes (one-sided error terms) are not observed,making the
production frontier stochastic, and they may be time-varying as well as producer-
specific. SF models are therefore interesting applications of Bayesian estimation
methods because, as discussed in Koop and Steel (2001), such methods are useful
in providing more accurate representation of parameter uncertainty through the use
of prior knowledge (and possibly, imposing regularity conditions on the production
frontier). Bayesian econometric methodsmay also providemore precise inference on
(in)efficiency indexes in small samples, i.e., the (in)efficiency index can be retrieved
directly through the computation of its predictive posterior.2

Bayesian econometric methods are particularly useful in cases where inference
on individual (in)efficiency indexes is likely to be more precise when unobserved
efficiency is explicitly considered as separated from unobserved heterogeneity. For
example, Griffiths and Hajargasht (2016) consider a SF model in a Bayesian context
with endogeneity of Type I and Type II (i.e., the two-sided error term is correlated
with some regressors of the production frontier, or with the one-sided efficiency
error term, respectively). Atkinson and Tsionas (2016) use Bayesian techniques to
estimate optimal firm-specific directions for a set of inputs and outputs, estimat-
ing jointly the directional distance with first-order conditions associated with profit
maximization. Gallan et al. (2014) use a Bayesian approach to estimate a SF model
with a dynamic process for unobserved inefficiency and random parameters for the
observed inefficiency component. Estimating SF models with a Bayesian approach
typically requires computer-intensive numerical methods, in order to construct indi-
vidual contributions to the likelihood function.Markov ChainMonte Carlo (MCMC)
algorithms such as Gibbs sampling are generally used in empirical applications, see,
e.g., Griffin and Steel (2007).

2See Chap. 7, pp. 168–177 in Koop (2003) on Bayesian econometric methods applied to SFM.
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In this chapter, we consider a Bayesian approach that can be applied to a wide
variety of models including SF models, which is based on non-linear filtering
and which does not require the evaluation of the model likelihood function. We
assume that the conditional density pt (yt |wt ) exists and is bounded. For infer-
ence purposes, and in particular to estimate parameters θ , we need to form the
conditional density of the state variable with respect to observations up to time t ,
pt (wt |y1, . . . , yt ) = pt (wt |y1:t ). We will discuss the issue of parameter estimation
below, and consider for the moment the objective of deriving an estimate of the
state variable, wt , conditional on fixed parameters θ and observations {y1, . . . , yT }.
The Bayesian sequential approach would evaluate the posterior probability density
function pt (wt |y1:t ) recursively, from the following relationship:

pt (wt |y1:t ) = pt (yt |wt ) ×
∫
pt (wt |wt−1)pt−1(wt−1|y1:t−1)dwt−1

pt (yt |y1:t−1)
, (3)

which cannot be in general determined analytically. In the linear case with Gaussian
random terms, the Kalman filter (Kalman 1960) can be used to produce a consis-
tent estimate of the state variable, based on a recursive algorithm involving first
and second Gaussian conditional moments. If the model is non-linear, the Extended
Kalman Filter (EKF) can be considered, based on a linearization around previous
estimates and applying Kalman filter recursion rules. In practice, however, the EKF
can be unstable and produce biased estimates if the assumption of linearity (locally) is
violated. Moreover, deriving the Jacobian matrices may be non-trivial in many appli-
cations, in particular when the model is highly non-linear. This is mainly because the
EKF relies on a Taylor expansion that neglects higher order terms, leading to under-
estimation of the covariance of the state variable. Corrections have been proposed,
such as the Unscented Kalman Filter (UKF), which adds to the current state and its
covariance estimate, expected values of second-order terms. Sample points denoted
sigma points are selected around the mean of the state variable and are propagated
through the non-linear model equations, to form updated mean and covariance esti-
mates. Another advantage of the UKF is that closed-form expressions of the Jacobian
matrices are not necessary. Difficulties such as convergence issues remain in prac-
tice with EKF or UKF, especially regarding the choice of coordinates for the state
variable wt and when the posterior distribution pt (wt |y1:t ) is unimodal.

2.1 Particle Filtering for Bayesian Non-Linear Filtering

Particle filtering is an extension of the Point Mass Filter (PMF), which was proposed
for estimating non-linear and non-Gaussian models by approximating the posterior
distribution over a deterministic grid of points, but with the original system of equa-
tions (not an approximation as in the EKF or the UKF). By contrast, the Particle
Filter considers an adaptive stochastic grid for the state space (Murphy and Russell
2001). The principle of particle filtering is based on sequential importance sampling,
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which consists in approximating the posterior pdf:

pt (wt |yt ) ≈
N∑

i=1

ω
(i)
t δ(wt − w(i)

t ), (4)

where N is the number of particles and
{
ω

(i)
t ,w(i)

t

}

i=1,2,...,N
defines a set of weighted

particles and δ is the Dirac function. ω(i)
t are normalized discrete weights such that∑N

i ω
(i)
k = 1,∀k and can be computed recursively. In practice, the standard particle

filter approach proceeds with the following steps:

(1) Draw N particles from a proposal (prior) distribution w(i)
t ∼ π(wt |w(i)

t−1, y0:t )
(2) Update particle weights according to the new observation:

ω
(i)
t = ω

(i)
t−1

pt (yt |w(i)
t )pt (wt |w(i)

t−1)

π(wt |w(i)
t−1, y0:t )

.

(3) Compute normalized weights ω
∗(i)
t = ω

(i)
t /

∑N
i ω

(i)
t .

(4) Resample if particle degeneracy occurs.

A major drawback with the standard sequential importance sampling procedure
above is degeneracy, very few particles being not zero as the algorithm proceeds.
The solution is to include a resampling step to the sequential importance sampling.
Let weight ω

∗(i)
t represent the probability to draw the particle i associated with the

set
{
w(i)
t , i = 1, . . . , N

}
. We can draw N such “samples” from the discrete distri-

bution of ω
∗(i)
t and replace the old sample with a new one formed by N resampled

indexes. Each weight is then set to 1/N . Resampling can be performed at every step
of the algorithm above, but this increases the variance of weights. Other options are
to perform resampling at a lower frequency, e.g., every M-th step, or use adaptive
resampling, based on the effective number of samples:

N ∗ ≈
[

N∑

i=1

(
ω

∗(i)
t

)2
]−1

. (5)

The performance of the particle filter depends on a series of factors, in particular the
choice of the proposal distribution π(wt |w(i)

t−1, y0:t ). The optimal importance density

is p(wt |w(i)
t−1, yt ) but it is not possible in general to draw from such distribution,

except in very special cases, such as a finite state space. Another possibility is to draw
from the state transition priori pt (wt |wt−1), but this does not provide accurate state
estimates, as the current observation yt is overlooked. Refinements of the standard or
sequential importance sampling particle filter with resampling have been proposed in
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the literature, to produce a better choice of proposal distribution, which significantly
improves the performance of the method.3

2.2 Joint Parameter Estimation

We now turn to the problem of non-linear filtering with parameter estimation. There
are two main approaches to this problem: either use a non-Bayesian method to
optimize some distance functionwith respect to parameter vector θ , or use aBayesian
method by augmenting the state space with parameters θ , treated the same way as
the state variable wt . Consider the non-Bayesian approach first. A conditional least
squares estimator can be constructed as

QT (θ) = 1

T

T∑

t=1

[
yt − Eθ (yt |y1:t−1)

]2
, (6)

where Eθ (yt |y1:t−1) is the conditional expectation of yt depending on parameter θ .

It can be approximated with particle filtering as Eθ (yt |y1:t−1) ≈
N∑

i=1

ω
(i)
t y(i)

t , where

ω
(i)
t , i = 1, . . . , N , are particle weights and y(i)

t is sampled from the observation
equation f (w(i)

t ; θ). The resulting conditional least squares estimator is then θ̂ N
T =

argminθ Q̂
N
T (θ), where

Q̂N
T (θ) = 1

T

T∑

t=1

[

yt −
N∑

i=1

ω
(i)
t y(i)

t

]2

. (7)

More general M-estimators can be considered, in particular the Maximum Likeli-
hood estimator that can be derived from sampled contributions y(i)

t (as above) to the
likelihood of observation yt , pt (yt , θ). See Fernandez-Villaverde andRubio-Ramirez
(2007) for an application of particle filtering to macroeconomic models.

Consider then the Bayesian approach, where the vector of parameters is consid-
ered a latent variable, of the same nature as wt , and which can be time-dependent.
Methods based on Rao-Blackwellised particle filters have been proposed in the lit-
erature, as discussed in, e.g., Lindsten et al. (2012). They consist in most cases of a
Gaussian conditional model, with normally distributed state and observation wt and
yt with conditional moments depending on time-varying parameters θt . The problem
discussed above without parameter estimation is now to evaluate the posterior distri-
bution pt (w1:t , θ1:t |y1:t ), which can be factored as pt (w1:y, θ1:t )pt (θ1:t |y1:t ). The first

3A popular extension of the standard particle filter is the Rao-Blackwellized Particle Filter, which
performs better than the standard particle filter when the number of state variables becomes large
(see, e.g., Liu and Chen 1998).
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term is Gaussian and can be evaluated with Kalman filter recursion rules. The second
term is proportional to pt (yt |θ1:k, y1:k−1)pt (θt |θt−1)pt (θ1:k−1|y1:k−1) and can also be
evaluated with a Kalman filter or from recursively drawing from importance distri-
butions. Static parameters can also be accommodated by assuming that the posterior
distribution of θ depends on sufficient statistics Tt (w1:t , y1:t ), for which a recursion
rule exists (Fearnhead 2002).

Particle filtering of both state and parameters has been applied while trying to deal
with the problem of sample degeneracy, by adding random disturbances (roughen-
ing penalties) to parameter particles between updating steps. Model parameters are
therefore artificially viewed as time-varying and are replaced by θt in an augmented
state vector (Storvij 2002). Such artificial evolution allows one to generate updated
parameter values at each step of the filtering algorithm, including a resampling step
to take care of the sample attrition issue. The drawback with such method is that it
introduces an artificial loss of information, so that approximated posterior distribu-
tions are too diffuse with respect to their theoretical counterparts (associated with
fixed value parameters).

A solution is to regularize the model equations by, e.g., smoothing the empirical
measure of the posterior distribution of θ with a Gaussian distribution, as proposed
by Liu and West (2001). An important restriction is that, on top of the variances or
random terms being non-zero (and the likelihood function to be tractable for some
of the inference approaches), both the state and the observation variables must be
regularized to avoid the problem of degeneracy of particle filters. The next section
proposes an interesting alternative that deals with issues of joint estimation of state
and parameters in non-linear filtering problems, namely, the regularization with con-
volution kernels.

3 The Convolution Particle Filter

We consider here a particle filter estimation procedure that avoids numerical issues
such as empoverishment and degeneracy. The convolution particle filtering approach
has been developed in tracking and shape recognition problems. It is based on a
convolution kernel density estimation and a regularization of the distribution of state
and observation variables. When the likelihood associated with the model and the
sample does not admit an analytical solution, complex problems can nevertheless be
solved.

Filters based on sequential importance sampling with resampling have however
remaining drawbacks in practical use, although they have interesting theoretical
properties. First, systems with non-noisy observations or with a very low noise to
signal ratio may hamper convergence of such filters, because noise density is used to
weight the particles. Second, as discussed in Hurzeler and Kunsch (1998), a degree
of regularization on the distribution of the state variable is necessary to stabilize the
signal to noise ratio, because of the discrete nature of the distribution approximations.
Third and more importantly, regularized filters rely on the availability of the obser-
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vation likelihood pt (yt |wt ). If only a limited knowledge of such likelihood function
is available, it may not be possible to update weights in step (2) of the algorithm
above.

We consider here a regularization approach for the state and the observation
distributions, which does not require analytical knowledge of p(yt |wt ), only the
ability to simulate observation yt from state variable wt using the structural model
(1)-(2). This approach is based on convolution kernel density estimation for the
estimation, weight updating, and resampling steps, and it avoids the problem of no
or small observation noise (Del Moral et al. 2001). We first consider the problem
of non-linear filtering with fixed parameter values that are not estimated. See Vila
(2012) for an analysis of the theoretical properties (almost sure convergence) of the
algorithm.

Suppose that we can draw random samples of size N ,
{
w(i)
t , y(i)

t

}
, from the

state and observation pdfs g(.|wt−1) and f (.|wt ). A sample can then be drawn from
their joint distribution by sequential simulation, starting from a proposal distribution
π0(wt ), where an estimate of the joint density is

pt (wt , y1:t ) ≈ 1

N

N∑

i

δ
(
wt − w(i)

t , yt − y(i)
1:t

)
. (8)

This is a direct generalization of the density approximation in (4), and its convolution
can be computed to provide a kernel estimate of the true joint density:

pN
t (wt , y1:t ) = 1

N

N∑

i

K w
h

(
wt − w(i)

t

)
× K ȳ

h

(
y1:t − y(i)

1:t
)

, (9)

where K ȳ
h = 
t

j=1K
y
h (y j − y(i)

j ) and Kw
h and K y

h and Parzen-Rosenblatt kernelswith
appropriate dimensions. The posterior conditional distribution of the state variable
can then be estimated by

pN
t (wt |y1:t ) =

∑N
i Kw

h

(
wt − w(i)

t

)
× K ȳ

h

(
y1:t − y(i)

1:t
)

∑N
i K ȳ

h

(
y1:t − y(i)

1:t
) . (10)

A major aspect of particle filtering, which also applies to the convolution parti-
cle filter, is that numerical (quadratic) complexity involved in computing the term

K ȳ
h

(
y1:t − y(i)

1:t
)
(over t periods) can be avoided. This is because resampling weights

associated with particles takes care of the dependence of density pN
t (wt |y1:t ) with

respect to past observations y1:t (see Rossi and Vila (2006)). In effect, one can form
the weight ω(i)

t with the recursion ω
(i)
t = ω

(i)
t−1 × K y

h (yt − y(i)
t ), and consider instead
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pN
t (wt |y1:t ) =

N∑

i

ω
(i)
t K w

h

(
wt − w(i)

t

)
, where weights ω

(i)
t sum to 1 and are resam-

pled.
A resampled convolution filter would (Rossi and Vila 2006) draw N particles

at t = 0 from a proposal distribution w(i)
1 ∼ π0, and for t = 1, . . . , T , resample

(w(1)
t−1, . . . ,w

(N )
t−1) from distribution pt−1, and sample state and observation w(i)

t ∼
g(w(i)

t−1) and y(i)
t ∼ f (w(i)

t ). The filter is finally updated: pt (wt |y1:t ) =
pN
t (wt |y1:t ) =

N∑

i

ω
(i)
t K w

h

(
wt − w(i)

t

)
, where ω

(i)
t = K y

h (yt − y(i)
t )/

∑N
i K y

h (yt −

y(i)
t ).
Let us now turn to the joint estimation of state and parameter by convolution filter.

As discussed in the previous section, sequential importance sampling schemes with
resampling can accommodate parameter estimation, provided some regularization
and resampling of parameter particles are performed. The performance of the convo-
lution particle filter crucially depends on the design parameters, in particular kernel
functions and their associated bandwidth parameters, the number of particles, and
the proposal distribution function. The full algorithm for kernel convolution particle
filter with parameter estimation is as follows:

(1) t = 0. Initialization. Generate N particles from proposal distributions of state
and parameters:
w(i)
0 ∼ p0(w), θ(i)

0 ∼ p0(θ), and initialize weights ω
(i)
0 = 1/N .

(2) Iterate for t = 1, . . . , T
if t = 1: Prediction, for i = 1 to N

(i) Sample state w(i)
1 ∼ g(w(i)

0 , θ
(i)
0 ), parameter θ

(i)
1 from θ

(i)
0 and observation

y(i)
1 ∼ f (w(i)

0 , θ
(i)
0 ).

(ii) Go to step 3)

if t > 1:

(i) Resampling, for i = 1 to N :(
w(i)
t−1, θ

(i)
t−1

)
∼ pN

t−1(wt−1, θt−1|y1:t−1), set weights ω
(i)
t−1 = 1/N

(ii) Prediction, for i = 1 to N : Sample state w(i)
t ∼ g(.|w(i)

t−1, θ
(i)
t−1), parameter

θ
(i)
t from θ

(i)
t−1 and observation y(i)

t ∼ f (w(i)
t , θ

(i)
t )

(iii) Update weights, for i = 1 to N : ω(i)
t = ω

(i)
t−1 × K y

h (yt − y(i)
t )

(iv) Estimate conditional densities of wt and θt :

pN
t (wt , θt |y1:t ) =

(
N∑

i=1

ω
(i)
t

)−1 N∑

i=1

ω
(i)
t K θ

h (θt − θ
(i)
t )Kw

h (wt − w(i)
t ).
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pN
t (wt |y1:t ) =

(
N∑

i=1

ω
(i)
t

)−1 N∑

i=1

ω
(i)
t K w

h (wt − w(i)
t ).

pN
t (θt |y1:t ) =

(
N∑

i=1

ω
(i)
t

)−1 N∑

i=1

ω
(i)
t K θ

h (θt − θ
(i)
t ).

(3) Estimate final state and parameter values:

ŵt =
N∑

i=1

ω
(i)
t w(i)

t , θ̂t =
N∑

i=1

ω
(i)
t θ

(i)
t .

4 Empirical Application

Punjab has been a central state in India’s green revolution, thanks to fertile soils
and abundant surface and groundwater resources. Punjab produces currently about
20 percent and 11 percent, respectively, of India’s wheat and rice production (Lap-
worth et al. 2014). Between 1970 and 2010, the area planted with rice increased
from 390,000 ha to 2,826,000 ha (Punjab 1971, 1981, 2000, 2001, 2010). Punjab is
characterized by a significantly higher irrigated rice yield (4,010 kg/ha) than other
Indian states, with an average applied irrigation water of 180 cm, and an applied irri-
gation water productivity of 0.22 kg/m3 (Sharma et al. 2018). Rice and wheat, two
of India’s most important food crops, are also the most water-intensive: producing
a kilogram of rice requires an average of 2,800 liters of water, while a kilogram of
wheat takes 1,654 liters. As a consequence, ever growing withdrawal of groundwater
for rice (paddy) cultivation has resulted in a rapid decline of the water table in Punjab
districts.

Thepurpose of the present empirical application is to estimate a cropyield function
for rice, with observed fertilizer input use but accounting for unobserved productiv-
ity. The latter is expected to depend on unobserved water availability, originating
from direct rainfall and rainfall harvesting and irrigation facilities, and we assume
that unobserved productivity may interact with fertilizer input use. To account for
such interaction and non-linearities (concavity) in the crop yield function, we con-
sider a quadratic production function for rice crop yield, depending on observed
fertilizer application rate and unobserved productivity (assumed to depend on unob-
served water availability, which depends upon observed ambient climate variables).
We use district-level time series on rainfall during the hot season (Kharif) and on
potential evapotranspiration (ETP) to control the process of unobserved productivity.
Evapotranspiration is a widely used indicator of the pressure put by cropping sys-
tems on water availability and is negatively correlated with the latter, while rainfall
is a positive contributor to it. The Penman-Monteith equation is currently used by
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the food and Agricultural Organization to estimate a reference evapotranspiration
(ET0), which is multiplied if needed by crop coefficients Kc (see, e.g., Burman and
Pochop 1994). It is important to note that care should be taken when interpreting
results from a system of equations with unobserved productivity (with water avail-
ability as a major component) specified as a hidden Markov process. This is because
many other unobserved factors, even aggregated at the district level, may influence
crop yield, and water availability may not be easily singled out from unobserved
productivity. Conditioning unobserved productivity on climate variables (rainfall,
ETP) is justified because of its expected relationship with water availability for the
crop. Checking whether such conditioning is relevant in a statistical sense is the only
option we have at this stage, without imposing additional assumptions on the rela-
tionship between unobserved productivity, water availability for crops, and observed
variables in state and observation equations.

4.1 Data and Model Specification

The sample used in the application is obtained from Indian district-level data col-
lected from ICRISAT over the period 1966–2007, as part of the Village Dynamics in
South Asia (VDSA) data collection effort. See Icrisat (2012) for a description of the
VDSA data set. We have data on 11 districts followed from 1966–2007 in Punjab,
but in order to maintain a balanced sample, we drop districts with too many missing
observations over the 42 years. The final sample consists of 10 districts (Amrit-
sar, Bathinda, Firozpur, Gurdaspur, Hoshiarpur, Jalandhar, Kapurthala, Ludhiana,
Patiala, and Sangrur) and contains 420 observations in total.

We specify a quadratic crop yield function and an autoregressive AR(1) process
for unobserved productivity w:

yit = β0 + β1xit + 1

2
β2x

2
i t + wit + 1

2
β3w

2
i t + β4xitwit + σεεi t ,

wit = ρwi,t−1 + γ1zit + γ2rit + uit ,

where yit is crop yield (ton/ha), xit is fertilizer application rate (kg/ha), wt is unob-
served productivity (depending on water availability), zit is the reciprocal of ETP
and rit is average summer (kharif rainfall, in mm/ha). We specify z = 1/ET P for
ease of interpretation without loss of generality, to have both exogenous explana-
tory variables in the state equation with the same expected (positive) sign. Quadratic
terms in unobserved productivity and observed fertilizer application rate allow us to
explore the degree of concavity in the crop yield function, while the interaction term
xit × wit is useful to evaluate the direction of the relationship between productivity
and actual fertilizer input use.

Table 1 presents descriptive statistics on the sample.
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Table 1 Descriptive statistics

Variable Unit Mean Std. deviation Min. Max.

Rice yield (ton/ha) 2.9240 0.8167 0.9090 4.6540

Rice fertilizer (kg/ha) 171.8289 77.4493 10.9879 325.2017

Summer
rainfall

(mm/ha) 332.34 179.7496 0 994

1/ETP 0.1601 0.0168 0.1467 0.2188

Notes. 420 observations: 42 years (1966–2007), 10 Punjab districts. Icrisat VDSA Survey (Icrisat
2012), except ETP (evapotranspiration) obtained from the Indian Water Portal

Table 2 Crop yield function estimates

Parameter Estimate Standard error p-value

1/ETP 23.5359*** 3.0321 0.000

0.5(1/ETP)2 −10.1237*** 1.3500 0.000

Fertilizer 1.1724*** 0.1694 0.000

Fertilizer2/2 −0.3403*** 0.0305 0.000

Fertilizer ×(1/ETP) −0.2163 0.1592 0.175

Intercept −13.0280*** 1.6796 0.000

σ 2
u 0.1412

σ 2
e 0.1137

Notes. 420 observations: 42 years (1966–2007), 10 Punjab districts. All variables are divided by
their sample mean
*p < 0.1
**p < 0.05
***p < 0.01. R2 = 0.5843. Fisher test for individual effects F(9,405) = 29.47 (p-value = 0.000).
ETP is potential evapotranspiration at district level (in mm/ha). σ 2

u and σ 2
e respectively denote the

variance estimate of individual and i.i.d. error terms

Let θ denote the vector of parameters to be estimated, θ = {β0, . . . , β5, σε, ρ, γ1,

γ2}. Initial values for some parameters in θ are obtained from a panel-data estimation
with fixed effects. In the observation and state equations, we replace productivity w
(not observed) by 1/ET P ; in the state equation, we do not have any proxy for
the original z = 1/ET P , and we arbitrarily set initial parameter value γ1 to 1. All
observed variables are divided by their sample mean to have normalized variables
with unit mean. Estimation results of the fixed-effect model for quadratic crop yield
are presented in Table 2.

Most parameters are significant at the 5 percent level, except the interaction term
between fertilizer and 1/ET P . The crop function is increasing and concave in its
arguments (fertilizer and 1/ET P), but no significant substitutability pattern is found
between both regressors. We present in Table 3 parameter estimates for the modified
state equation. The autoregressive parameter of 1/ET P is significantly different
from 1 so that a panel-data unit root test is not deemed necessary. Summer (July–
August) rainfall is significant and positive as expected, indicating that when a year
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Table 3 Dynamic panel-data equation for 1/ETP

Parameter Estimate Standard error p-value

(1/ETP)t−1 0.6216*** 0.0357 0.000

Summer rainfall 0.0018*** 0.0006 0.006

Constant 0.3760*** 0.0372 0.000

Notes. 404 observations
*p < 0.1
**p < 0.05
***p < 0.01. Sargan overidentifying restrictions test chi2(39) = 9.8554 (p-value = 1.000) with
two-step GMM estimates
Arellano-Bond test for zero autocorrelation in first-differenced errors: Order 1 -1.4666 (p-value
0.1425) ; Order 2 -1.1619 (p-value 0.2453)

is relatively less dry, crop evapotranspiration decreases as plants demand less water
for their growth (see Burman and Pochop 1994 for details).

As for random terms in the systemof equations,we estimate the standard deviation
of ε, σε, and we impose a variance of 1 for ut to reduce the number of parameters to
estimate. We consider a model where all parameters are district-dependent, and all
10 districts are treated as independent time series with 42 time periods each. A final
estimation step is also implemented on a single time series constructed from average
values over the districts of all observed variables (y, x , z, and r ) as well as values
used for building the proposal distribution for w.

The initial distribution π0(w) is specified from groundwater availability (per ha)
estimates for selected years (from 1998 to 2010) obtained from the Indian Ministry
of Water. This is justified because, as discussed above, we assume a strong rela-
tionship between unobserved productivity w and unobserved water availability to
grow crops. We select the highest value from these figures in each district, assuming
that water available for crops has been diminishing over the 1966–2007 period. We
are of course aware that water available for crops (in the soil) does not correspond
to groundwater availability, however, it is the closest indicator we could find for
our empirical application. We considered the minimum groundwater avalability per
hectare for the mean of the distribution, but we multiplied the standard deviation by
a factor of 4.0 to account for a time-dependent drift in the distribution.

4.2 Estimation Results

The convolution particle filter procedure is implemented with various values of N ,
from20,000 to 2,000,000 (2million).Wepresent here results obtainedwith 1,000,000
random draws, as increasing N above that value did not yield significantly different
results. At the end of the estimation process, accuracy of parameter estimates can
be examined from the interquartile range of the empirical distribution of θ . For the
implementation of the convolution filter, we specifyGaussian kernelswith bandwidth
computed from the following rule of thumb: hA = 0.79I QA × N−1/5, where A =
w, y, βi , i = 1, . . . , dim θ and I QA is the Interquantile Range of A.
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Table 5 Fertilizer elasticities of rice crop yield

District OLS estimates Convolution filter estimates

Gurdaspur 0.7702 0.3069

(0.1444) (0.0860)

Amritsar 0.7664 1.2372

(0.1253) (0.2393)

Kapurthala 0.7335 0.4381

(0.1388) (0.2165)

Jalandhar 0.7138 0.9145

(0.1483) (0.1820)

Hoshiarpur 0.8460 1.0504

(0.1300) (0.1727)

Ludhiana 0.6466 0.3953

(0.1530) (0.2253)

Firozpur 0.7025 0.9294

(0.1745) (0.1682)

Bathinda 0.7110 0.9326

(0.1842) (0.1873)

Sangrur 0.8004 0.2111

(0.1241) (0.3510)

Patiala 0.7620 0.7742

(0.1434) (0.3266)

All districts 0.7460 0.6908

(0.1404) (0.2788)

Notes. 42 years (1966–2007), 10 Punjab districts. Standard errors for OLS and interquantile range
(IQ) for convolution filter estimates are in parentheses

Estimation results from the convolution particle filter estimator are presented in
Table 4, with Interquantile Range (Q.75 − Q.25) to represent the precision of the
algorithm. Based on such indicator, the convolution particle filter provides remark-
ably precise parameter estimates. Of particular interest are parameters β3 and β4,
associated with squared unobserved productivity and its interaction with fertilizer
input, in the observation equation (y). The former is negative in all cases, indicating
some degree of concavity in the unobserved productivity. As for β4, it is negative
in five districts out of 10 (as for the sample average of all districts), leading us to
reject a systematic form of complementarity (or substitutability) in the crop yield
production, between productivity and nitrogen fertilizer input. Moreover, the autore-
gressive parameter in unobserved productivity is also estimated accurately and lies
between 0.4180 (Gurdaspur district) and 0.7766 (Patiala district). Parameters γ1 and
γ2 inform about the correlation between unobserved productivity on the one hand,
and inverse ETP and rainfall on the other. Both are significant and, while rainfall
is positively correlated with productivity in all districts, inverse ETP has a positive
correlation with w in eight cases out of 10.
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Finally in our empirical application, we compare the effect of fertilizer application
rate on rice yield, when unobserved productivity is accounted for and when it is not.
To do this, we compute the relative, marginal fertilizer productivity as the elasticity of
rice yield with respect to fertilizer input use based on our convolution filter estimates,
which we compare with OLS estimates (with only x and 0.5x2 as regressors). Results
in Table 5 illustrate the consequence of introducing a latent productivity process,
resulting in a much stronger heterogeneity in elasticity estimates than in the OLS
case. However, for the average sample on all districts, the elasticity estimate is fairly
similar between both estimation methods (0.7460 for OLS compared with 0.6908
for convolution filter).

5 Conclusion

This chapter uses the framework of Hidden Markov Models (HMM) to estimate
a system of structural equations for agricultural production with unobserved pro-
ductivity, in a context where the latter is expected to depend on unobserved water
availability. We generalize the structural approach of production function estimation
with endogenous regressors discussed in Chap. 14 of Sickles and Zelenyuk (2019),
by considering a non-linear production function that accommodates concavity and
interaction with observed inputs for the unobserved productivity process. To our
knowledge, this is the first time a method of particle non-linear filtering is applied
to the estimation of agricultural production (crop yield function), to account for
unobserved productivity, partly associated with water availability. This work con-
tributes to empirical literature by extending the production model with unobserved
productivity discussed in Sickles and Zelenyuk (2019), with a more flexible form
interacting the latter with observed regressors, and by proposing an original estima-
tion method with less distributional restrictions than the Kalman filter approach to
Hidden Markov Chains.

We use ICRISAT data for Punjab districts in India on rice crop yield, fertilizer use,
rainfall during the Kharif season, and potential evapotranspiration for unobserved
water availability (with their relationship with productivity as the main motivation).
We discuss estimation methods for HMM, focusing on particle filter techniques
for sequential importance sampling algorithms. In the framework of Bayesian non-
linear filtering, we are particularly interested in joint estimation of state variables and
parameters, for which we present the convolution filter technique based on kernel
regularization as an interesting extension to standard particle filtering.

The estimation procedure proposed in this chapter can prove useful for practition-
ers, in particular those considering productionmodels dedicated to efficiency analysis
and prediction of productivity in agriculture and other economic activities. The gen-
eral framework presented here allows for a wide range of possible specifications
on unobserved inefficiency and heterogeneity random terms, making specification
checks possible when investigating dynamic components of, e.g., stochastic fron-
tiers. Moreover, the Bayesian non-linear filtering approach discussed in the chapter
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is particularly interesting to consider in empirical settings where data are difficult to
collect, or simply not available. This is for example often the case of productivity
components such as available water in agriculture, or other inputs for which price
and quantity data are not systematically recorded. As far as policy guidance is con-
cerned, we stress that our approach should, whenever possible, be considered jointly
with other data or information sources. However, the approach proposed here can be
useful in providing information for helping decision-makers to design, e.g., better
targeted policies given limited available information.

Regarding the empirical application, there are obvious caveats to note, in particular
the fact that the state process we consider (unobserved productivity depending on
water availability for crops) may well depend on other unobserved, time-varying
components for which control variables are needed. The only way to ensure our
interpretationof the hiddenprocess corresponds effectively to productivity depending
on unobserved water availability is to examine the statistical significance of variables
used to condition the state process. In our case, available water for crops is assumed
to (positively) depend on actual summer rainfall and potential evapotranspiration,
and our estimates confirm that this is valid for rainfall in all cases, and in a majority
of cases (eight districts out of 10) for inverse ETP. Our parameter estimates are
fairly precise, based on final interquantile range, and confirm that this conditioning
is relevant. Our model is estimated for rice at this time, and a possibility is to estimate
the model for more crops, but keeping the same process for unobserved productivity,
wt . Concerning the choice of proxies to estimate initial parameter values and start
the convolution filter algorithm, other choices than inverse ETP are possible, and
robustness checks could be used with other proxies for unobserved heterogeneity.

Econometric methods used in the application can be extended and improved in
several directions. First, block sampling and resampling can be considered, to better
exploit the panel structure of the data. Another possibility would be to obtain w and
θ in each time period for all districts successively, and then move to the next time
period, hence allowing to draw a “block” sample accounting for a covariance matrix
with error components and individual effects. Second, more efficient procedures
for selecting the bandwidth parameters in kernel density can be considered, along
the lines, e.g., of Botev et al. (2010). This is also true of the choice of the Parzen-
Rosenblatt kernel K (.) used for convolution particle filter, other specifications than
the Gaussian kernels (Epanechnikov, etc.) being likely to produce more efficient
results. This is left for future research.
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